Chapter Test

Form A

Chapter 14

Simplify each trigonometric expression.

1.
$$\csc \theta \tan \theta$$

3.
$$-\cos^2\theta - \sin^2\theta$$

2.
$$\sec \theta (\sec \theta - \cos \theta)$$

$$4. \ \frac{1 + \tan^2 \theta}{\sec \theta}$$

Verify each identity.

5.
$$\tan \theta (\cot \theta + \tan \theta) = \sec^2 \theta$$

7.
$$\cos^2\theta \csc^2\theta + \cos^2\theta \sec^2\theta = \csc^2\theta$$

6.
$$\sec \theta \sin \theta \cot \theta = 1$$

8.
$$\cot \theta \cos \theta + \sin \theta = \csc \theta$$

Use a unit circle and 30°-60°-90° triangles to find the value in degrees of each expression.

9.
$$\cos^{-1}\left(\frac{1}{2}\right)$$

11.
$$\sin^{-1}\left(-\frac{1}{2}\right)$$

10.
$$\tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$$

12.
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

Solve each equation for $0 \le \theta < 2\pi$.

13.
$$2 \sin \theta + \sqrt{3} = 0$$

15.
$$3 \tan \theta = \sqrt{3}$$

14.
$$\sqrt{2} \cos \theta = 1$$

16.
$$8\cos\theta - 4 = 4\cos\theta$$

In $\triangle ABC$, find each value as a fraction and as a decimal. Round to the nearest hundredth.

17. sin *A*

18. $\cos A$

19. tan *B*

20. $\csc A$

21. sec *B*

- **22.** cot *B*
- **23.** In $\triangle FGH$, $\angle G$ is a right angle. Find h if f = 11 and g = 13. Round your answer to the nearest tenth.
- **24.** Find the area of $\triangle ABC$ if $m \angle A = 35^{\circ}$, b = 15 cm and c = 12 cm. Round your answer to the nearest tenth.
- **25.** Find a using the triangle below. Round your answer to the nearest whole number.

Chapter Test (continued)

Chapter 14

26. In $\triangle GHI$ if $m \angle G = 25^{\circ}$, i = 8 in. and g = 10 in. Find $m \angle I$ to the

Find each value using the triangle below. Express answers to the nearest whole degree.

27. $m \angle A$

28. $m \angle B$

29. *m*∠*C*

Verify each identity.

30.
$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin\theta$$

32.
$$\tan\left(-\frac{\pi}{2} + \theta\right) = -\cot\theta$$

31.
$$\sec\left(\theta + \frac{\pi}{2}\right) = -\csc\theta$$

33.
$$\cos\left(\theta - \frac{\pi}{2}\right) = \sin\theta$$

Solve each trigonometric equation for $0 < \theta \le 2\pi$.

34.
$$2\cos(\frac{\pi}{2} - \theta) = \sqrt{3}$$

35.
$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\left(-\theta\right)$$

36.
$$\sec\left(\frac{\pi}{2} - \theta\right) = \sec\theta$$

$$37. \ \sqrt{2} \sin \left(\frac{\pi}{2} - \theta\right) = -1$$

- **38.** Use a double-angle identity to find the exact value of sin 120°.
- **39.** Use a half-angle identity to find the exact value of cos 15°.
- **40. Open-Ended** Write an equation involving sine, cosine, or tangent that has solutions of $\frac{\pi}{4}$ or $\frac{7\pi}{4}$ for $0 \le \theta < 2\pi$.
- **41.** Writing Explain why the Law of Cosines, rather than the Law of Sines, is used to find an angle in a triangle if three sides of the triangle are given.