
Using a Java-method in a Package in a JAR-file from COBOL

Page 1 of 2

Java programmers use packages to give their classes worldwide unique names. Additionally, these packages are

usually provided in JAR files, which can contain several class files. This article describes how to use a Java-class,

located in a package in a JAR file, based on Net Express 4.0, and Java SDK 1.4.2_08. The java and the COBOL

source file, 20060401_001.zip, are provided along with this article.

This article does not describe how to use a JAR file as an EJB in a J2EE Java Application Server. If you are

interested in this, please refer to the online manuals.

Look at the programs:

In the java source file demo.java the package is defined as:
 package com.microfocus.hco;

where a class named demo is defined:
 public class demo …

This must correspond with the declaration in COBOL in the repository paragraph of Cbltrig.cbl:
 repository.
 class demo as "$JAVA$com.microfocus.hco.demo".

The syntax above is ISO2002 COBOL – for the older MFOO syntax, please view the comments in the attached

demo.

To uses Java classes and methods from COBOL, use the INVOKE statement from OO COBOL:
 invoke demo "new" returning aJavaObj
 invoke aJavaObj "displayHW" returning ret

Prepare a Net Express command prompt:

This article uses the command prompt, where all steps can be done. In a non-demo real application, the Java part

and the COBOL part may be done with separate development environments for each language.

Please open a Net Express command prompt to follow the instructions.

Make sure, that the following environment variables are set correctly:

• PATH - must contain the directory of the Java compiler, javac.exe, where the jar.exe for building the jar-

file should also be located and the directory of the Java Virtual Machine, jvm.dll, necessary for executing

the java part.

• Entering: Set PATH in the command prompt should report a path like: C:\j2sdk1.4.2_08\bin

for the Java compiler directory and a path like C:\j2sdk1.4.2_08\jre\bin\client for the JVM.

Using a Net Express command prompt the following should set for you:

• PATH to the <Net Express>\base\bin directory

• CLASSPATH to the file mfcobol.jar, which is located in the <Net Express>\base\bin directory

Build the jar-file for the demo:

To compile the java source file, type in the command prompt:
 javac -d . demo.java

This instruction will place the compiled file into:
 com\microfocus\hco\demo.class

http://www.microfocus.com/_ex/Supportline/20060401_001.zip

Using a Java-method in a Package in a JAR-file from COBOL

Page 2 of 2

To build the JAR file from the command prompt, type:
 jar -cf mydemo.jar com*

The JAR file can by checked with WinZip:

- start WinZip

- open the JAR file

- the file demo.class must have a path: com\microfocus\hco

Compile and link the COBOL part:

To compile and link the COBOL source file from a Net Express command prompt, type:
 cbllink –RM cbltrig.cbl

It is necessary to link using the multi-threaded runtime system, which is done here by the M in –RM.

The –R means to link with the dynamic runtime system, which is located either via environment variable PATH or

via registry settings from the installation of Net Express or the Application Server.

When you use the IDE to compile/link your program, pay attention to select the multi-threaded runtime system,

i.e. right-click on the EXE, select “Build settings…”, choose tab “Link” and select “Multi-threaded”.

Run the demo:

To extend the environment variable CLASSPATH by the name of the JAR file, type in the Net Express command

prompt:
 set CLASSPATH=mydemo.jar;%CLASSPATH%

In a non-demo real application the jar-file may be specified with its full path.

Now the program is ready to run. Check, that the files Cbltrig.exe and mydemo.jar are in the local

directory. Then type in the command prompt:
 Cbltrig.exe

and you will receive the output, programmed in Java:
 in: hcodemo
 Hello world from JAVA

Please remember, that everything in Java is case sensitive, which is uncommon for COBOL programmers and

Windows users.

