
Create a mortgage portal with EGL Rich
UI

���

ii Create a mortgage portal with EGL Rich UI

Contents

Create a mortgage portal with EGL Rich
UI 1
Introduction 1
Lesson 1: Plan the mortgage application 4

Sketch the interface 4
List the parts 5
Lesson checkpoint 7

Lesson 2: Set up the workspace 7
Import the portal and dialog widgets 7
Create an EGL project 7
Get the support files 9
Change your build path 11
Lesson checkpoint 11

Lesson 3: Create the mortgage calculation Service. . 11
Create a Service part 12
Create a Record part 14
Lesson checkpoint 15

Lesson 4: Create the user interface for the calculator 15
Create a Rich UI Handler. 16
Construct the user interface 16
Lesson checkpoint 26

Lesson 5: Add code for the
MortgageCalculatorHandler functions 26

Change the Handler code. 26
Add the calculate() function 27
Add the showProcessImage() function 27
Add the hideProcessImage() function 28
Add the calculateMortgage() function 28
Add the displayResults() function 28
Complete the error display code 28
Test the calculator 29
Lesson checkpoint 29

Lesson 6: Create the CalculationResultsHandler
widget 30

Publish the service results 30
Create the CalculationResultsHandler widget . . 30
Test the pie chart 32
Lesson checkpoint 32

Lesson 7: Create the main portal 33
Create the MainHandler widget 33
Test the portal 34
Lesson checkpoint 35

Lesson 8: Add a calculation history portlet 35
Create the History portlet 36
Lesson checkpoint 37

Lesson 9: Add the calculation history portlet to the
main portal 37

Change the Results portlet 37
Change the main portal 38
Test the portal 38
Lesson checkpoint 41

Lesson 10: Create the UI for the Map portlet . . . 42
Get a Yahoo! application ID 42
Get a Google Maps key 43
Create the Local Search Interface 43

Add records to the Interface file 44
Create the GoogleMap externalType 45
Create the UI for the MapLocatorHandler widget 46
Lesson checkpoint 48

Lesson 11: Create the source code for the Map
portlet 48

Finish the source code for
MapLocatorHandler.egl 48
Test the new portlet 50
Lesson checkpoint 51

Lesson 12: Add the Map portlet to the main portal 51
Change the main portal 51
Test the portal 51
Lesson checkpoint 52

Lesson 13: Install Apache Tomcat 52
Download and install the server 52
Lesson checkpoint 54

Lesson 14: Deploy and test the mortgage application 55
Edit the deployment descriptor 55
Deploy the Rich UI application 56
Run the generated code 56
Lesson checkpoint 59

Lesson 15: (Optional) Use validating forms in the
Calculation portlet 59

Edit the Calculation portlet 59
Test the portlet 63
Test the portal in Preview view. 64
Redeploy and test 64
Lesson checkpoint 65

Summary 65
Finished code for MortgageCalculationService.egl
after Lesson 3 65
Finished code for MortgageCalculatorHandler.egl
after Lesson 4 66
Finished code for MortgageCalculatorHandler.egl
after Lesson 5 67
Finished code for CalculationResultsHandler.egl
after Lesson 6 69
Finished code for MainHandler.egl after Lesson 7 . 69
Finished code for CalculationHistoryHandler.egl
after Lesson 8 70
Finished code for MainHandler.egl after Lesson 9 . 71
Finished code for IYahooLocalService.egl after
Lesson 10 72
Finished code for MapLocatorHandler.egl after
Lesson 10 73
Finished code for MapLocatorHandler.egl after
Lesson 11 73
Finished code for MainHandler.egl after Lesson 12 75
Finished code for MortgageCalculatorHandler.egl
after Lesson 15 76
Notices 79

Index 83

iii

iv Create a mortgage portal with EGL Rich UI

Create a mortgage portal with EGL Rich UI

Create a Rich UI portal application that calculates mortgage payments, compares
principal to interest, maintains a history of calculations, and maps mortgage
businesses based on a U.S. zip code.

Learning objectives

In this tutorial, you will learn how to complete these tasks:

v Plan the application and design the interface

v Import a custom widget to manage portlets

v Write a service to calculate mortgage payments

v Create a portlet to request input for the calculation service and display the
results

v Create a pie chart to compare total principal to total interest

v Pass data between portlets by using the InfoBus widget

v Create a table that lists all calculations

v Create a portlet to find mortgage businesses

v Create a Rich UI portal page to contain the individual portlets

v Install and configure the Apache Tomcat Web server

v Deploy the Web page to the server and test the application

v Replace the Calculation portlet with a version that uses validating forms

Time required

90 minutes

Other tutorials for Rational® EGL Community Edition:

Format a Rich UI logon page

Introduction

Create a Rich UI portal application that calculates mortgage payments, compares
principal to interest, maintains a history of calculations, and maps mortgage
businesses based on a U.S. zip code.

Portal applications are one of the most popular Web 2.0 user interfaces. These
portals collect useful tools in independent areas of the Web page, which are called
portlets. The following image shows the portal application that you will create in
this tutorial:

1

http://publib.boulder.ibm.com/infocenter/eglce/v1r0/index.jsp?topic=/com.ibm.eglce.richui.intro.tutorial.doc/topics/eglce_richui_intro_abstract.html

Rational EGL Community Edition provides service-oriented architecture (SOA)
capabilities. With SOA, you can build applications in which customers interact
with Rich UI Web pages while services complete the complicated background
calculations.

In this tutorial, you use two services:

v A dedicated EGL service that performs mortgage calculations

v A Web service that lists businesses of a specified type within a specified zip code

In addition, you use an external program to find an address on a map.

You create the dedicated calculation service in this tutorial. A dedicated service is
available only to applications that reference the current project. Two protocols are
typically used with Web services: SOAP and the Representational State Transfer
(REST) protocol. To oversimplify, SOAP is highly extensible, and so allows for
great rigor and complexity. REST is more focused on typical HTTP communication.
This tutorial uses both protocols.

You can run the application with live data even before you deploy it to a Web
project. Deploying the application is a final step that creates the HTML and other
files that your customers use to run the application.

Learning objectives

In this tutorial, you will learn how to complete these tasks:

v Plan the application and design the interface

2 Create a mortgage portal with EGL Rich UI

v Import a custom widget to manage portlets

v Write a service to calculate mortgage payments

v Create a portlet to request input for the calculation service and display the
results

v Create a pie chart to compare total principal to total interest

v Pass data between portlets by using the InfoBus widget

v Create a table that lists all calculations

v Create a portlet to find mortgage businesses

v Create a Rich UI portal page to contain the individual portlets

v Install and configure the Apache Tomcat Web server

v Deploy the Web page to the server and test the application

v Replace the Calculation portlet with a version that uses validating forms

Time required

This tutorial takes approximately 90 minutes to finish. If you explore other
concepts related to this tutorial, it might take longer to complete.

You can create the EGL files you need for this application in one of the following
ways:

Line by line (most helpful)
Complete the individual lessons to explore the code in small, manageable
chunks, learning important keywords and concepts. This method also
requires the longest time commitment.

Finished code files
At the end of each lesson in which you create a file, there is a link to the
complete code for that file, which you can copy into the EGL editor.

Skill level

Introductory

Audience

This tutorial is designed for people who know the basic concepts of programming,
but have little experience with EGL. It is intended for people who work with Rich
UI and generate JavaScript™.

System requirements

To complete this tutorial, you must have the following tools and components
installed on your computer:

v Rational EGL Community Edition Version 1.0.1.

v A working Internet connection

Prerequisites

You do not need any experience with EGL to complete this tutorial. The Format a
Rich UI logon page tutorial is a useful introduction, but is not required.

Create a mortgage portal with EGL Rich UI 3

http://publib.boulder.ibm.com/infocenter/eglce/v1r0/index.jsp?topic=/com.ibm.eglce.richui.intro.tutorial.doc/topics/eglce_richui_intro_abstract.html
http://publib.boulder.ibm.com/infocenter/eglce/v1r0/index.jsp?topic=/com.ibm.eglce.richui.intro.tutorial.doc/topics/eglce_richui_intro_abstract.html

Expected results

You will create a working Rich UI application that calculates mortgages and finds
mortgage lenders in a specified area.

Lesson 1: Plan the mortgage application

Design your application on paper before you begin coding.

The first step in planning an application is to list your objectives. This tutorial has
the following objectives:

v Calculate mortgage payments based on a total amount, interest rate, and term.

v Display the total interest compared to the total principal in a pie chart.

v Display a history of prior calculations.

v Show a map with the locations of mortgage brokers in a specified zip code.

v Create individual, interactive portlets for the various features of the application.

v Use a combination of dedicated services and external Web services to complete
standard tasks.

Sketch the interface

When you create an application, sketch the interface before you write code. Use
this sketch as a guide when you create the components of the interface:

4 Create a mortgage portal with EGL Rich UI

List the parts

Determine which EGL parts you need to do the job. For an EGL Rich UI interface,
you usually need a combination of Services, Handlers, and widgets.

An EGL Rich UI Handler typically corresponds to a Web page. In this case, you
also create Handlers that correspond to portlets. The part is called a Handler
because it contains code to handle events that might occur on the page or portlet.
Widgets provide content, such as boxes, text, fields, and other screen items.
Services complete the behind-the-scenes work.

Create a mortgage portal with EGL Rich UI 5

In this tutorial, you use the following existing components to build the application:

com.ibm.egl.rui.portal
Contains widgets for a portal page and individual portlets within the page.
You will import this project in Lesson 2.

com.ibm.egl.rui.infobus
Provides communication between portlets. This package is part of the
com.ibm.egl.rui project in IBM® Rational EGL Community Edition.

com.ibm.egl.rui.widgets
Contains the following widgets that you use in this tutorial:

v Box

v Combo

v HyperLink

v Image

v TextField

v TextLabel

This package is part of the com.ibm.egl.rui project in the product.

com.ibm.egl.rui.dojo.widgets
Contains the following widgets that you use in this tutorial:

v Button

v DojoGrid

v DojoGridColumn

v DojoPieChart

v PieChartData

The Dojo Toolkit is an open source collection of JavaScript tools. The
com.ibm.egl.rui.dojo.widgets project is in the product.

Local Search Web Service
This Web service returns a list of businesses of a specified type within a
specified zip code, including the latitude and longitude for each business.
Yahoo! hosts the service.

Google Map Widget
This external program calls out a name and address on a map of the
surrounding area. Google hosts the program.

In addition, you create the following parts:

MortgageCalculationService
A Web service that calculates monthly payments. Write this service as a
dedicated EGL Service so that the code for the Service is part of the same
project as your other application files.

MainHandler
The portal page that contains the individual portlets

MortgageCalculatorHandler
The portlet where the application calculates monthly payments

CalculationHistoryHandler
The portlet that displays an interactive list of previous calculations

CalculationResultsHandler
The portlet that displays the pie chart

6 Create a mortgage portal with EGL Rich UI

MapLocatorHandler
The portlet that displays the locations of mortgage providers

Lesson checkpoint

In this lesson, you completed the following tasks:

v Established the objectives for the application

v Sketched the application interface

v Listed the required parts

In the next lesson, you download the external files that are required to run the
application and create an EGL project to hold them.

Lesson 2: Set up the workspace

Before you write code for the portlets, import the files you need for the tutorial
and create an EGL project.

Import the portal and dialog widgets

The portal widget manages both the main portal page and the individual portlet
widgets in the page.
The dialog widget provides function calls that create Windows dialog boxes. Use
the showError() function from the DialogLibrary in this plug-in to display error
messages.

1. Download com.ibm.egl.rui.portal_version at http://www.ibm.com/
software/rational/cafe/docs/DOC-3433.

2. Save the downloaded file on your hard disk.

3. Download and save com.ibm.egl.rui.dialog_version at http://
www.ibm.com/software/rational/cafe/docs/DOC-3434.

4. When both downloads are complete, import the plug-ins to your workspace.
For each downloaded .zip file, complete the following steps:

a. From the upper menu in the EGL workspace, click File → Import.

b. In the Import window, expand General and click Existing Projects into
Workspace.

c. In the next window, for the Select archive file field, browse to one of the
files you downloaded. The project is displayed in the left pane of the
window.

d. Click Finish.

Create an EGL project

The project is the fundamental unit of organization for EGL source files. It typically
corresponds to an application. Within a project, you can create packages if you
need greater organization. In this tutorial, you group the various kinds of parts in
packages.

To create an EGL project:

1. If you are in a workbench perspective other than EGL, change to the EGL
perspective by clicking Window → Open Perspective → [Other] → EGL. The
perspective icon is in the upper right corner of the workbench.

Create a mortgage portal with EGL Rich UI 7

http://www.ibm.com/software/rational/cafe/docs/DOC-3433
http://www.ibm.com/software/rational/cafe/docs/DOC-3433
http://www.ibm.com/software/rational/cafe/docs/DOC-3434
http://www.ibm.com/software/rational/cafe/docs/DOC-3434

2. Click File → New → EGL Project, or click the New EGL Project icon on the
menu bar.

3. In the New EGL Project window, enter the following information:

a. In the Project name field, type the following name:

MortgageEGLProject

b. Click Finish.

8 Create a mortgage portal with EGL Rich UI

EGL creates a project named MortgageEGLProject. Note the two folders inside the
directory:

v One for EGL source code

v One for the Web content that you create

Get the support files

This tutorial provides several files that belong in the WebContent directory that EGL
created:

v A cascading style sheet (CSS) file to format the finished Web page

v An animated GIF to indicate background activity in progress

v The JavaScript file for the Google Maps application

To add these support files to your application:

1. Download the MortgageSupport.zip file to location that is easy to remember,
such as your Desktop. You can download the file at http://www.ibm.com/
software/rational/cafe/docs/DOC-3435

2. From inside the workbench, import the contents of the archive:

a. In the Project Explorer view, select MortgageEGLProject. From the upper
menu in the EGL workspace, click File → Import.

b. In the Import window, expand General, click Archive File, and click Next.

c. In the Archive File window, for the From archive file field, browse to the
directory where you downloaded the archive file and click
MortgageSupport.zip. The top level of the archive is displayed in the left
pane of the window. Expand the directory structure to see the contents.

Create a mortgage portal with EGL Rich UI 9

http://www.ibm.com/software/rational/cafe/docs/DOC-3435
http://www.ibm.com/software/rational/cafe/docs/DOC-3435

d. Because MortgageEGLProject was selected when you started the Import
wizard, that project is displayed by default in the Into folder field.

e. Click Finish.

f. When an error message appears asking permission to overwrite the
MortgageEGLProject.css file, click Yes.
The default, empty style sheet is replaced with the downloaded version.

10 Create a mortgage portal with EGL Rich UI

Change your build path

The EGL build path determines the projects that EGL examines when trying to
resolve references in your programs. To add the projects you just downloaded to
your build path:

1. Right click MortgageEGLProject in the Project Explorer view, then click
Properties. On the left side of the Properties for MortgageEGLProject window,
click EGL Build Path. EGL displays a list of the projects in your workspace.

2. Select the com.ibm.egl.rui.portal project and the com.ibm.egl.rui.dialog project.
The finished build path window should look like the following image:
These selections mean that when you organize imports, EGL will look in all of

the selected projects to resolve references.

3. Click OK.

Related reference

EGL build path

Lesson checkpoint

In this lesson, you completed the following tasks:

v Imported the portal widget

v Imported the dialog widget

v Created an EGL project for the Mortgage application

v Imported support files for the application

v Adjusted your build path

In the next lesson, you create a dedicated service to calculate a monthly mortgage
payment.

Lesson 3: Create the mortgage calculation Service

Create a dedicated service to calculate monthly payments.

In this lesson, you create an EGL Service part. The part is a central concept in EGL,
and the term means what it seems to: An EGL part is one separable piece of an
EGL application. The Record, the Program, and the Library are examples of parts.

Create a mortgage portal with EGL Rich UI 11

http://publib.boulder.ibm.com/infocenter/eglce/v1r0/index.jsp?topic=/com.ibm.eglce.developing.doc/topics/pegl_core_buildpath_cpt.html

In EGL, generatable parts are the pieces of an EGL application that can be generated
separately. You must place each generatable part in a separate source file, and the
name of the part must be the same as the name of the file. The Service is a
generatable part.

Like a Library, the Service contains functions that you call from other programs.
You will use the Service you create in this lesson as a dedicated Service, which
means that it is available only to applications that reference the current project. For
a dedicated Service, you do not need to create an Interface part as you do for a
Web Service.

Create a Service part
1. In the Project Explorer window, right-click MortgageEGLProject, then click

New → Service.

2. In the New EGL Service Part window, enter the following information:

a. In the EGL source file name field, enter the following name:

MortgageCalculationService

EGL adds the .egl file extension.

b. In the Package field, enter the following name:

services

c. Verify that Create as Web (SOAP) service and Create as Web (REST)
service are cleared. You are creating a dedicated service, which does not
implement an Interface, so make sure that the Implements Interfaces field
is empty.

3. Click Finish. EGL opens the new Service part in the editor.

4. Remove the boilerplate code from the file, leaving only the following lines:

12 Create a mortgage portal with EGL Rich UI

package services;

service MortgageCalculationService

end

5. Add the following function before the end statement:

function amortize(inputData MortgageCalculationResult inOut)
amt MONEY = inputData.loanAmount;
// convert to monthly rate
rate DECIMAL(10, 8) = (1 + inputData.interestRate / 1200);
// convert to months
term INT = (inputData.term * 12);

// calculate monthly payment amount
pmt MONEY = (amt * (rate - 1) * Mathlib.pow(rate, term)) /

(MathLib.pow(rate, term) - 1);
totalInterest MONEY = (pmt * term) - amt;

// update result record
inputData.monthlyPayment = pmt;
inputData.interest = totalInterest;

end

When you paste code from these instructions, the formatting may change. Press
Ctrl+Shift+F to reformat the code. You can change the formatting rules by
clicking Window → Preferences → EGL → Editor → Formatter.

Note:

EGL marks any code errors with a red X in the left margin and a wavy red line
under the error. Move your cursor over the X to see an error message.

Create a mortgage portal with EGL Rich UI 13

Because you have not yet defined a type named MortgageCalculationResult,
EGL cannot create the inputData variable based on that type. When you create
this Record type in the next exercise, EGL will remove the error markers from
the display.

6. Save the file by clicking File → Save or by pressing Ctrl-S.

Related concepts

Introduction to Service parts

Create a Record part

The amortize() function uses a MortgageCalculationResult record. You can define
this record in the same file as the Service.

To create the Record part:

1. Add the following code after the amortize() function in the
MortgageCalculationService.egl file. The Record is a part, so you define it
outside the Service part, that is, after the final end statement in the file:

record MortgageCalculationResult
// user input
loanAmount MONEY;
interestRate DECIMAL(10,8);
term INT;

// calculated fields
monthlyPayment MONEY;
interest MONEY;

end

2. Save the file. EGL should not display any more error markers in the code. If
you see errors in your source file, compare your code to the file contents in
“Finished code for MortgageCalculationService.egl after Lesson 3” on page 65.
As you work through the tutorial, it is possible that you might see red Xs next
to the project or next to one of the folders below it, yet not see any errors in the
file itself.

14 Create a mortgage portal with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/eglce/v1r0/index.jsp?topic=/com.ibm.eglce.developing.doc/topics/pegl_core_service_part_cpt.html

If you encounter this situation, resolve it by clicking Project → Clean. In the
Clean window, click Clean projects selected below and then click
MortgageEGLProject.

Click OK. EGL rebuilds the selected project and the red X is removed from the
Project Explorer view.

3. Close the file by clicking the X next to the file name in the tab at the top of the
editor or by clicking File → Close.

Lesson checkpoint

You learned how to complete the following tasks:

v Create an EGL Service part

v Create an EGL Record part and add it to the source file for the Service

v Check for errors in your code

In the next lesson, you create the user interface for the first application portlet.

Lesson 4: Create the user interface for the calculator

Each portlet on the finished page is controlled by an EGL Rich UI Handler part.

EGL Rich UI follows the Visual Formatting Model of the World Wide Web
Consortium (W3C). This recommendation includes concepts such as containing
boxes, default positioning, and the flow of objects on the page. For more
information, see http://www.w3.org/TR/CSS2/visuren.html.

In this lesson, you build the page without using absolute positioning of the boxes.
With relative positioning, the page can adapt more easily to different screen
resolutions, browsers, fonts, and other factors that affect display.

Create a mortgage portal with EGL Rich UI 15

http://www.w3.org/TR/CSS2/visuren.html

Use the EGL visual editor to drag Rich UI components for the calculator to the
portlet. If you are not familiar with EGL Rich UI, you might want to complete the
Format a Rich UI logon page tutorial.

Create a Rich UI Handler
1. In the MortgageEGLProject folder, right-click the EGLSource folder. Click New →

Rich UI Handler, or click the New Rich UI Handler button on the menu bar.

2. In the New Rich UI Handler part window, enter the following information:

a. For EGL source file name, enter the following name:

MortgageCalculatorHandler

b. For Package, enter the following name:

handlers

c. Click Finish.

The new Handler opens in Design view in the EGL editor. EGL creates the
handlers package for you in the EGLSource folder.

Construct the user interface

The user interface (UI) for the Calculator portlet collects the information required
by the mortgage calculation service:

v The cost of the property

v The interest rate for the loan

v The length of the mortgage

To construct the UI for the calculator:

1. In Design view, go to the Palette view, located by default to the right of the
EGL editor. You should see palettes available for both EGL Widgets and Dojo
Widgets. If you do not see the Dojo Widgets palette, click the Refresh palette
button to the left of the Palette view.

2. Make sure the initial ui Box is selected. Selected objects are surrounded by a
dotted line. Locate the Properties view, in the lower left of the workspace by
default. It shares space with the Outline view, so you might need to click
Properties to see the contents. Enter the following value for the id property:

form

16 Create a mortgage portal with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/eglce/v1r0/index.jsp?topic=/com.ibm.eglce.richui.intro.tutorial.doc/topics/eglce_richui_intro_abstract.html

The cascading style sheet (CSS) that you imported as part of the
MortgageSupport.zip file contains the following entries for form:

#form input {
font-family: verdana, tahoma, sans-serif;

}

#form td {
padding: 4px;

}

The second specification, for a table cell, ensures that the various widgets that
you place in this box will be separated by enough space to make them easy to
read.

3. In the EGL Widgets palette, scroll down until you see the TextLabel widget.
Drag a TextLabel widget onto the Design interface in the EGL editor.

When the entire ui box turns green, you can drop the widget on the interface.

Create a mortgage portal with EGL Rich UI 17

Note the thin yellow area at the top of the screen. If you dragged the widget
there, it would be displayed outside and above the ui box. When you release
the mouse button, the New Variable window opens.

4. In the New Variable window, enter the following name:

amountLabel

5. Click OK.

6. Make sure that the new amountLabel widget is still selected. In the Properties
view, enter the following label name for the text field:

Amount:

18 Create a mortgage portal with EGL Rich UI

7. Drag a TextField widget onto the UI to the right of the label.

8. Give this field the following name:

amountField

9. Click OK.

10. Change the text property of the amountField widget to the following value,
which becomes the default value for the field:

180000

Do not include comma separators or a decimal point.

11. Create a label and field for the mortgage rate:

a. Add another TextLabel widget and assign it the following name:

rateLabel

Because the mainBox widget where you are placing these labels and fields
defaults to two columns, EGL automatically places the rateLabel widget on
a new row.

b. Change the text property of the rateLabel widget to the following label:

Rate:

c. Add a TextField widget with the following name:

rateField

Create a mortgage portal with EGL Rich UI 19

d. Change the text property of the rateField widget to the following value,
which becomes the default value for the field:

5.2

12. Create a label and combo box for the mortgage term:

a. Add a TextLabel widget with the following name:

termLabel

EGL places the widget on a new row.

a. Change the text property to the following label:

Term:

b. Drag a Combo widget onto the line next to the termLabel widget.

c. Give the combo the following name:

termCombo

d. In the Properties view, click the ellipsis (...) next to the values property.
The values window opens.

e. Select Combo and click Remove.

f. Type the following number in the Add field:

5

g. Click Add.

h. Add each of the following numbers, clicking Add after each addition:

10
15
30

The values window should now look like the following image:

20 Create a mortgage portal with EGL Rich UI

i. Click OK.

j. Change the selection property of the termCombo widget to the following
value, which becomes the default value for the field:

4

This number indicates the fourth item in the list, which is the number 30.

13. Create a submit button and bind it to a stub function:

a. Drag another text label onto the UI to create a blank space, and assign the
following name:

blankLabel

b. In the Properties view, clear the text field.

c. Drag a Box widget into the next available position and assign the
following name to the variable.

buttonBox

Use this box to hold your submit button and a graphic that indicates that a
calculation is in process.

d. From the Dojo Widgets palette, drag a Button onto the buttonBox widget.
Use the Dojo button because it is more stylish than the EGL version.

e. Give the button the following name:

calculationButton

f. In the Properties view, change the text property to the following label:

Create a mortgage portal with EGL Rich UI 21

Calculate

g. On the Events tab, select the onClick event in the column on the left. At
the far right end of that row, click the plus sign to add a new function.

h. In the New Event Handler window, enter the following name for the new
function:

calculate

i. Click OK. EGL changes to the Source view and creates a stub function, that
is, a function with no code, at the end of the file.

j. Click Design to return to Design view. The calculate function name is now
displayed next to the onClick event. The function is bound to the button, so
that when you click the Calculate button, EGL calls the calculate()
function. You will add the code for this function later.

14. Add an animated image to indicate calculation in process.

a. Drag an Image widget from the EGL Widgets palette to the buttonBox
widget.

b. Give the image the following name:

processImage

c. In the Properties view, on the Properties page, assign a source for the
image in the src field:

icons/progress3.gif

This is the image you imported from the MortgageSupport.zip archive.

d. Also in the Properties view, expand Appearance. From the list of options
for the visibility field, select hidden. The image remains hidden until the
Calculate button is clicked.

15. Create a field to hold the result of the calculation:

a. Drag a TextLabel to the next row on the screen. Place this label outside the
buttonBox widget.

22 Create a mortgage portal with EGL Rich UI

b. Assign the following name:

paymentLabel

c. In the Properties view, add the following label for the text property:

Payment:

16. Drag a TextField widget to the next position on the screen and assign the
following name:

paymentField

17. Drag an HTML widget to the next position on the screen.

a. Assign the following name:

errorDisplay

This widget creates a text area where you can display error messages.
Error messages are a normal part of processing and often indicate minor
problems like using a comma separator when entering the Amount field.

b. With the new errorDisplay widget selected, open the Properties view and
clear the text property.

c. Click the button next to color.

Create a mortgage portal with EGL Rich UI 23

d. From the Color selection window, click Name format and scroll through
the list of colors until you can click Red.

24 Create a mortgage portal with EGL Rich UI

e. Click OK.

f. Save the file.

The completed interface should look like the following image:

You will develop the rest of the portlet in Source view. Click the Source tab at the
bottom of the editor pane. EGL created the code in the Source tab based on your

Create a mortgage portal with EGL Rich UI 25

actions in the EGL visual editor. The code should match the file contents in
“Finished code for MortgageCalculatorHandler.egl after Lesson 4” on page 66.

Lesson checkpoint

You learned how to perform the following tasks:

v Create a Rich UI Handler

v Use the EGL visual editor to create a user interface

v Use the Properties view to format the interface

v Use CSS to format the interface

In the next lesson, you add code to support the interface that you created in this
lesson.

Lesson 5: Add code for the MortgageCalculatorHandler functions

Add functions in the MortgageCalculatorHandler part to support the user interface
that you constructed in the previous lesson.

In this lesson, you will work exclusively with EGL source code.

The following exercises show the EGL code for each of the functions in
MortgageCalculatorHandler.egl, with brief explanations of how the code works.
Add each function, in order, before the final end statement in the file.

For the moment, ignore the start() function. You will add code in a later lesson so
that this portlet can communicate with other portlets on the page.

This lesson uses the EGL Model-View-Controller (MVC) framework to manage
errors. These functions are included in the com.ibm.egl.rui plug-in. MVC is a way
of thinking about the various components that are involved in presenting data in a
user interface. At its simplest, the model is a representation of data, such as a data
field, the view is the user interface, and the controller is the mechanism that defines
the relationship between the model and the view. You create an EGL Controller
widget to associate the data in a model with the view, in this case, a screen
element.

Change the Handler code

You must make a few minor changes to the main Handler section. Use the EGL
MVC framework to handle any errors that occur during calculation.

1. In the Design view for MortgageCalculatorHandler.egl, select the errorDisplay
HTML widget. At the bottom of the editor, click the Source tab. The source
editor opens with the cursor at the beginning of the declaration for
errorDisplay.

2. Add the following lines above the errorDisplay declaration:

// use for error messages
error STRING = "";

This string holds any error messages that the Handler receives.

3. Add the following lines below the errorDisplay declaration:

// associate MVC with errorDisplay widget
errorController Controller{@MVC{model = error, view = errorDisplay}};

26 Create a mortgage portal with EGL Rich UI

You are associating the built-in MVC framework with the errorDisplay widget.
You will use this errorController widget in the setError() function later in this
lesson.

4. Below the main declaration for the Handler, declare a variable to represent the
service:

mortService MortgageCalculationService{};

You can use this variable to call the service within the program.

5. Remove the default width and height measurements from the ui Box
declaration. Both fields are initially set to 400 pixels.

6. For a cleaner look, you can delete the comments (lines beginning with "//")
that precede the main Handler declaration. These comments are part of the
boilerplate Handler code that EGL creates.

Add the calculate() function

This function calls two other functions. The first makes the process GIF visible in
order to indicate that the application is working. The second calls the service to
complete the calculation.

To code the function in the EGL editor, paste the following lines to replace the
calculate() stub function that you created in the last lesson:

function calculate(event Event in)
showProcessImage();
calculateMortgage();
end

Note: You do not need to provide arguments for the calculateMortgage()
function. The necessary information is global to the Handler program. Before you
call the service, you will place the necessary information in a record that the
service function uses as an argument.

Add the showProcessImage() function

This function makes the animated processing GIF visible. To code the function in
the EGL editor, paste the following lines before the final end statement:

function showProcessImage()
processImage.visibility = "visible";
end

Note: The visibility property is part of any Image widget.

Create a mortgage portal with EGL Rich UI 27

Add the hideProcessImage() function

Because you have a function to make the processing GIF visible, you now need a
function to make it invisible again. To code the function in the EGL editor, paste
the following lines:

function hideProcessImage()
processImage.visibility = "hidden";

end

Note: The visibility property is part of any Image widget.

Add the calculateMortgage() function

This function calls a service to complete the calculation based on the values
displayed in the UI. To code the function in the EGL editor, paste the following
lines:

function calculateMortgage()
// new copy of the input record
inputRec MortgageCalculationResult{};
// load with values from the ui
inputRec.loanAmount = amountField.text as MONEY;
inputRec.interestRate = rateField.text as DECIMAL(10,8);
inputRec.term = termCombo.values[termCombo.selection] as INT;
call mortService.amortize(inputRec) returning to displayResults

onException handleException;
end

Note:

1. inputRec is a local variable that is based on the MortgageCalculationResult
record in the MortgageCalculationService source file. Passing a record that
contains the necessary parameters is a common way of communicating with a
Web service. The service then places its results in that same record.

2. The EGL as operator casts one type as another. In this case, it converts text
fields to numeric ones.

3. The call statement here is a variation used with services only. It has the
advantage of being asynchronous, so that the UI does not freeze while waiting
for the service to respond.

Add the displayResults() function

This function adds a dollar sign to the result of the calculation, and hides the
processing GIF. To code the function, paste the following lines before the final end
statement:

function displayResults(retResult MortgageCalculationResult in)
paymentField.text = "$" + retResult.monthlyPayment as STRING;
hideProcessImage();

end

Complete the error display code
1. Before the final end statement, add the following functions:

private function setError(err STRING in)
error = err;
errorController.publish();

end

28 Create a mortgage portal with EGL Rich UI

// catch-all exception handler
private function handleException(ae AnyException in)
setError("Error calling service: " :: ae.message);

end

Functions with the private modifier cannot be called outside the current
program. The setError() function uses the errorController widget you created
earlier.

2. Right-click an empty space in the editor. Click Organize imports. EGL adds
import statements for all the undefined symbols that it can. If you see errors in
your source file, compare your code to the file contents in “Finished code for
MortgageCalculatorHandler.egl after Lesson 5” on page 67.

3. After you resolve any errors, save the file.

Test the calculator

You are now ready to test your first portlet.

1. Change to Preview view by clicking the Preview tab at the bottom of the
editor. You can fully test your application in the Preview view, including
services, databases, and the user interface. EGL displays the default values that
you entered when you created the UI.

2. Click Calculate. EGL displays the monthly payment. Because you are using a
local service, the calculation might be too fast for you to see the processing GIF.

3. Change the values for any of the three fields and click Calculate again. The
Payment field changes accordingly.

Lesson checkpoint

You learned how to complete the following tasks:

v Work in source mode in the EGL editor

v Use EGL Model-View-Controller functions

v Call an EGL Service inside a function

In the next lesson, you create a pie chart to compare the total principal to the total
interest for a given calculation.

Create a mortgage portal with EGL Rich UI 29

Lesson 6: Create the CalculationResultsHandler widget

Add a second portlet on the page to hold a pie chart that shows the relative
proportions of principal and interest.

The CalculationResultsHandler does not perform calculations or make service calls.
Instead, it relies on messages from the MortgageCalculatorHandler widget that you
created in the previous lessons. The mechanism that you use to send and receive
messages is the InfoBus library, which is part of the com.ibm.egl.rui plug-in.

To tell EGL that you want to receive messages about specific events, you call the
InfoBus.subscribe() function. To send a message, you call the InfoBus.publish()
function. In this lesson, you add the publish() function to the
MortgageCalculatorHandler widget. Then you add the subscribe() function to a
new Handler, which uses the information to create a pie chart.

Publish the service results
1. In the MortgageCalculatorHandler.egl file, find the displayResults() function

that you created in the previous lesson. Add the following line before the end
statement:

InfoBus.publish("mortgageApplication.mortgageCalculated", retResult);

The function now consists of the following code:

function displayResults(retResult MortgageCalculationResult in)
paymentField.text = "$" + retResult.monthlyPayment as STRING;
hideProcessImage();
InfoBus.publish("mortgageApplication.mortgageCalculated", retResult);

end

This code shows the payment amount in the payment field, hides the
processing image, and publishes the results of the calculation in the retResult
record. The information in that record is available to any widget that subscribes
to the mortgageApplication.mortgageCalculated event.

Note: The names of these events are case-sensitive, so "mortgageApplication" is
a different event than "MortgageApplication".

2. Organize imports to resolve the InfoBus label, then save and close the file.

Related reference

Rich UI Infobus

Create the CalculationResultsHandler widget
1. Create a Rich UI Handler in the handlers package, as you did in “Lesson 4:

Create the user interface for the calculator” on page 15.

a. Give the Handler the following name:

CalculationResultsHandler

b. Place the Handler in the following package:

handlers

The Handler opens in the Design view of the EGL editor.

2. Drag a PieChart widget from the Dojo Widgets palette onto the initial uiBox
widget for the Handler, and give the widget the following name:

interestPieChart

30 Create a mortgage portal with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/eglce/v1r0/index.jsp?topic=/com.ibm.eglce.lr.doc/topics/regl_ui_richui_infobus.html

EGL displays a default pie chart.

3. Change to Source view to complete the rest of the lesson. At the bottom of the
editor, click the Source tab.

4. In the ui Box declaration, reduce the height property of the Box to 300 pixels.
This adjustment creates more space for the other portlets.

5. You need only two PieChartData records. Replace the data field of the
interestPieChart widget with the following code:

data = [
new PieChartData{y=1, text="Principal", color="#99ccbb"},
new PieChartData{y=0, text="Interest", color="#888855"}

]};

The y field contains the amount that is compared to the amounts in the other
PieChartData records. You are setting up an initial display of 100 percent
principal. This display is a placeholder that the application uses until the first
calculation.

6. Set up your communication with the MortgageCalculatorHandler widget by
adding the following line to the start() function:

InfoBus.subscribe("mortgageApplication.mortgageCalculated", displayChart);

This code calls the displayChart() function whenever the specified event
occurs. You added this event to the MortgageCalculatorHandler widget in the
previous exercise.

7. Before the final end statement, add the displayChart() function:

function displayChart(eventName STRING in, dataObject ANY in)
localPieData PieChartData[];
localPieData = interestPieChart.data;
resultRecord MortgageCalculationResult = dataObject as MortgageCalculationResult;

Create a mortgage portal with EGL Rich UI 31

localPieData[1].y = resultRecord.loanAmount;
localPieData[2].y = resultRecord.interest;
interestPieChart.data = localPieData;

end

You receive the data record through the InfoBus subscription, as the dataObject
parameter of the function.

To force the pie chart to refresh, you must set the data array equal to a new
value. Here you create a new array of PieChartData Records and give them
initial values from the interestPieChart widget. Then you update this new array
with values from the incoming MortgageCalculationResult Record type. When
you set the interestPieChart.data array equal to the new array, the pie chart
on the screen is refreshed.

8. Organize your imports and save the file. If you see errors in your source file,
compare your code to the file contents in “Finished code for
CalculationResultsHandler.egl after Lesson 6” on page 69.

Test the pie chart
1. Change to Preview view. EGL displays a default pie chart showing 100%

principal.

2. Close the file.

Lesson checkpoint

You learned how to complete the following tasks:

v Use the InfoBus widget to pass information between portlets

v Create a pie chart widget

In the next lesson, you add the two new portlets to a main portal page.

32 Create a mortgage portal with EGL Rich UI

Lesson 7: Create the main portal

The main page uses the EGL portlet widgets to manage communication between
the parts of the application.

Create the MainHandler widget
1. Create a Rich UI Handler in the handlers package, as you did in “Lesson 4:

Create the user interface for the calculator” on page 15.

a. Give the Handler the following name:

MainHandler

b. Place the Handler in the following package:

handlers

The Handler opens in the Design view of the EGL editor.

2. Code the main handler in Source view. At the bottom of the editor, click the
Source tab.

3. Make the following changes to the declaration of the ui Box:

a. Remove the default width and height measurements.

b. Add a portal widget named mortgagePortal to the children property. You
will declare this widget in the next step.

c. The revised declaration should look like the following line:

ui Box{ columns = 2, children = [mortgagePortal] };

4. Add the following line below the ui Box definition:

mortgagePortal Portal { columns = 2, columnWidths = [300, 650] };

5. Skip a line and add the following code:

calculatorHandler MortgageCalculatorHandler{};
resultsHandler CalculationResultsHandler{};

These lines declare variables that represent the two new widget types that you
created in the previous lessons.

6. Skip a line and add the following code:

calculatorPortlet Portlet{children = [calculatorHandler.ui],
title = "Calculator"};

resultsPortlet Portlet{children = [resultsHandler.ui],
title = "Results", canMove = TRUE, canMinimize = TRUE};

Each new portlet variable is declared with the initial UI for the corresponding
widget.

7. Add the two portlet variables to the main portal in the start() function:

function start()
mortgagePortal.addPortlet(calculatorPortlet, 1);
mortgagePortal.addPortlet(resultsPortlet, 1);

// Subscribe to calculation events
InfoBus.subscribe("mortgageApplication.mortgageCalculated", restorePortlets);

// Initial state is minimized
resultsPortlet.minimize();

end

As you did previously, you subscribe to the mortgageCalculated event in the
MortgageCalculatorHandler widget to trigger an action. In this case, you call
the restorePortlets() function. The main portal minimizes the Results portlet,
which contains the pie chart, until you complete a new calculation.

Create a mortgage portal with EGL Rich UI 33

8. Add the following function to manage the layout of the portlets:

function restorePortlets(eventName STRING in, dataObject ANY in)
if(resultsPortlet.isMinimized())
resultsPortlet.restore();
end

end

The restore() function is automatically available for any variable that is based
on the portlet type.

9. Organize your imports and save the file. If you see errors in your source file,
compare your code to the file contents in “Finished code for MainHandler.egl
after Lesson 7” on page 69.

Test the portal

Test the main portal to make sure that the results Portlet receives changes from the
Calculation portlet.

1. At the bottom of the editor, click Preview. EGL displays the main portal and
the two subsidiary portlets.

2. Click Calculate. The animated GIF that indicates that processing is in progress
is displayed. When the calculation finishes, the pie chart is displayed.

34 Create a mortgage portal with EGL Rich UI

3. Change any of the calculation values and click Calculate again. The pie chart
reflects changes in the proportion of principal to interest.

4. Close the file.

Lesson checkpoint

You learned how to complete the following tasks:

v Create a portal widget

v Add the portlets that you created in previous lessons to the portal

In the next lesson, you add a portlet to record the calculations you perform.

Lesson 8: Add a calculation history portlet

Create a table where you can click a row to display a previous calculation.

Create a mortgage portal with EGL Rich UI 35

In this lesson, you use the DojoGrid widget to create a table. Although the Grid
widget is available in the Dojo Widgets palette, no properties are accessible in the
Design view, so you code the widget in Source view.

Create the History portlet
1. Create a Rich UI Handler in the handlers package, as you did in “Lesson 4:

Create the user interface for the calculator” on page 15.

a. Give the Handler the following name:

CalculationHistoryHandler

b. Place the Handler in the following package:

handlers

The Handler opens in the Design view of the EGL editor.

2. Code the calculation history Handler in Source view. At the bottom of the
editor, click the Source tab.

3. Make the following changes to the declaration of the ui Box:

a. Remove the default width and height measurements.

b. Add a grid widget named historyGrid to the children property. You will
declare this widget in the next step.

c. The revised declaration should look like the following line:

ui Box{ columns = 2, children = [historyGrid] };

4. Add the following declaration below the ui Box declaration:

historyGrid DojoGrid { behaviors = [addSelectionListener],
headerBehaviors = [],
columns = [
new DojoGridColumn { displayName = "Principal", name = "loanAmount", width = 60 },
new DojoGridColumn { displayName = "Rate", name = "interestRate", width = 60 },
new DojoGridColumn { displayName = "Years", name = "term", width = 60 },
new DojoGridColumn { displayName = "Payment", name = "monthlyPayment", width = 60 }] };

A DojoGrid is a table with interactive capabilities. Note the
addSelectionListener behavior. This code refers to a function that triggers an
event when you click a row in the table. You will add that function later in
this lesson.

5. Skip a line and add the following code:

// array to store calculation results
historyResults MortgageCalculationResult[0];

This code declares an array of the same Record type that you used in the
other portlets to store the results of your calculations. This array stores each
set of results after it is calculated.

6. Add the following code to the stub of the start() function:

// Subscribe to calculation events so history table (grid) can be updated
InfoBus.subscribe("mortgageApplication.mortgageCalculated", addResultRecord);

As before, you use InfoBus to notify the program when there is a new
calculation. EGL responds by calling the addResultRecord() function.

7. Add the addResultRecord() function below the start() function:

// Update grid to show latest mortgage calculation
function addResultRecord(eventName STRING in, dataObject ANY in)
resultRecord MortgageCalculationResult = dataObject as MortgageCalculationResult;

36 Create a mortgage portal with EGL Rich UI

historyResults.appendElement(resultRecord);

historyGrid.data = historyResults as ANY[];
end

As you did previously, you cast the incoming dataObject as a
MortgageCalculationResult record. You append the new results to the array,
and then replace the entire data field in the table widget. As you have seen
before, replacing the data field causes the widget to refresh.

8. Add the following two functions to manage the selection of a calculation:

// Adds a listener to each cell
function addSelectionListener(grid DojoGrid in, cell Widget in,

row ANY in, rowNumber INT in, column DojoGridColumn in)
cell.setAttribute("row", rowNumber);
cell.onClick ::= cellClicked;
end

// Publish event to InfoBus when previous calculation is selected
function cellClicked(e Event in)
try
row int = e.widget.getAttribute("row") as INT;
InfoBus.publish("mortgageApplication.mortgageResultSelected", historyResults[row]);

onException(ex AnyException)
end
end

The Grid widget calls the addSelectionListener() function for each cell it
creates. This function saves the row number as a free-form attribute of the cell,
to be read later. The function also specifies a second function, cellClicked(),
that is called when the user clicks the cell. The cellClicked() function reads
the saved row number and then uses the InfoBus to publish the
MortgageCalculationResult record associated with row.

9. Organize your imports and save the file. If you see errors in your source file,
compare your code to the file contents in “Finished code for
CalculationHistoryHandler.egl after Lesson 8” on page 70.

10. Close the file.

Lesson checkpoint

You learned how to complete the following tasks:

v Create a portlet that contains a DojoGrid table

v Use the behaviors of the table to trigger an event when a cell is clicked

v Add a results record after an InfoBus alert

In the next lesson, you add this portlet to the main portal.

Lesson 9: Add the calculation history portlet to the main portal

To add the new portlet to your page, you must change the Results portlet and the
main portal.

Change the Results portlet

As of the end of the previous lesson, the CalculationResultsHandler widget
checks for only a single event, mortgageApplication.mortgageCalculated. Now
you also want to redisplay the pie chart when a row in the History portlet is

Create a mortgage portal with EGL Rich UI 37

selected. That action generates the mortgageApplication.mortgageResultSelected
event. You can use the asterisk wildcard character (*) to represent either event.

1. In the EGL editor, open the CalculationResultsHandler.egl file and switch to
Source view.

2. In the start() function, find the following line:

InfoBus.subscribe("mortgageApplication.mortgageCalculated", displayChart);

3. Replace the specific event name with a wildcard character:

InfoBus.subscribe("mortgageApplication.*", displayChart);

EGL now calls the displayChart() function whenever an event that begins with
mortgageApplication. is published to the InfoBus.

4. Save and close the file.

Change the main portal

Add lines for the History portlet that are similar to the lines for the other two
portlets:

1. In the EGL editor, open the MainHandler.egl file and click the Source tab.

2. Immediately below the resultsHandler declaration, add a similar declaration
for historyHandler:

historyHandler CalculationHistoryHandler{};

3. Immediately below the resultsPortlet declaration, add a similar declaration
for historyPortlet:

historyPortlet Portlet{children = [historyHandler.ui],
title = "History", canMove = TRUE, canMinimize = TRUE};

4. In the start() function, below the existing calls to addPortlet(), add the new
portlet to the portal:

mortgagePortal.addPortlet(historyPortlet, 1);

5. As you did with the resultsPortlet, set the historyPortlet as initially
minimized:

historyPortlet.minimize();

6. Add code for the historyPortlet to the end of restorePortlets() function:

if(historyPortlet.isMinimized())
historyPortlet.restore();
end

7. Save the file. If you see errors in your source file, compare your code to the file
contents in “Finished code for MainHandler.egl after Lesson 9” on page 71.

Test the portal

Test the main portal to make sure that the new History portlet is displayed and
works correctly.

1. At the bottom of the editor, click Preview. EGL displays the main portal and
the three subsidiary portlets.

2. Click Calculate. The animated GIF that indicates that processing is in progress
is displayed. When the calculation finishes, the pie chart and history are
displayed.

38 Create a mortgage portal with EGL Rich UI

3. Change the Term of the mortgage to 5 years and click Calculate again. A
second row is added to the history list.

4. Click a cell in the first row of the history list.

Create a mortgage portal with EGL Rich UI 39

5. The pie chart displays the values for the selected row from the history list.

40 Create a mortgage portal with EGL Rich UI

Lesson checkpoint

You learned how to complete the following tasks:

v Subscribe to multiple events

v Create and update a portlet widget that contains a table

In the next lesson, you add a portlet that displays a map of mortgage companies in
your area.

Create a mortgage portal with EGL Rich UI 41

Lesson 10: Create the UI for the Map portlet

Create a portlet where you can enter a zip code and see a list of nearby mortgage
companies and a map. Click the name of a company, and the map displays the
location of the company.

This lesson relies on capabilities from two external Web sites:

v The Yahoo! Local Search Service provides information about businesses in a
specific zip code

v The Google Maps API provides a map that you can imbed in a portlet to show
an address

Each program requires a key, which you can obtain online. To get the keys, you
must have accounts with both Google and Yahoo!. If you do not have accounts,
you can easily create them for free. The Google key is only necessary if you deploy
the application to a live server. You can use a dummy key for testing.

Get a Yahoo! application ID

The Local Search Service is part of the Yahoo! developer network. To use it, you
must obtain a Yahoo! application ID:

1. Browse to the following location:

http://developer.yahoo.com/search/local/V3/localSearch.html

2. In the upper right corner, click Get an App ID.

3. On the login page, enter your Yahoo! ID and password and click Sign In. If
you do not have a Yahoo! ID, click Sign up for Yahoo! and complete the form.
You can complete this process for free.

4. On the Yahoo! Developer Registration page, complete all the fields that are
marked with asterisks:

a. Click Generic. This tutorial does not require user authentication.

b. For Developer/Company Name, enter the name associated with your
Yahoo! ID.

c. For Product Name, enter the following name:

Mortgage Tutorial

d. For Contact email, you can use the email address that is associated with
your Yahoo! account (yahoo_id@yahoo.com).

e. For the Description of the application, enter the following description:

Mortgage Tutorial

42 Create a mortgage portal with EGL Rich UI

5. Click Continue. Yahoo! displays your 68-character application ID. Highlight
this ID and press Ctrl+C to copy it into your copy buffer.

6. Paste the ID into a text file in a location where you can easily find it, such as
your Desktop. In the file, note that the ID is the Yahoo! key.

Get a Google Maps key

If you plan to display the map on a live Web site, the Google Maps API requires a
key. If you are only interested in completing this tutorial, you can skip this exercise
and use the API without a key.
To get a Google Maps key:

1. Browse to the following location:

http://www.google.com/apis/maps/signup.html

2. In the upper right corner of the page, click the Sign in link. If you have a
Google account, enter your sign-in credentials. If you do not have an account,
click Create an account now and complete the free registration process.

3. At the bottom of the Sign Up for the Google Maps API page, complete the
following fields:

a. Select I have read and agree with the terms and conditions.

b. If you plan to use the Google key on a live Web site, enter the URL for that
site in the My web site URL field.

c. Click Generate API key. Google displays a page with your 84-character key
and several code snippets. Note the snippet with the heading "JavaScript
Maps API Example". This tutorial provides the JavaScript file that uses this
snippet: WebContent/utils/GoogleMap.js. However, when you create your
own application, you would use this code to create your own JavaScript.

4. Copy this key and paste it in the same file as your Yahoo! application ID. Make
a note in the file that this is the Google key.

Create the Local Search Interface

When you use an external Web service, you create an Interface part to give EGL
necessary information about the service. The Interface contains function prototypes,
consisting of the function name and parameters for all the functions in the service,
but not the function code. The Interface might also include any Record definitions
that you use in calls to the service.
This is an unusual Interface because the getSearchResults() function prototype
serves as an alias for an HTTP request. The uriTemplate property contains the URI
for this request, with variables enclosed in braces.
More information about using the Local Search Interface is available on the Yahoo!
site at the following location:

http://developer.yahoo.com/search/local/V3/localSearch.html

1. Create a new Interface part by right-clicking MortgageEGLProject and clicking
New → Interface.

2. In the New EGL Interface Part window, complete the following fields:

a. For EGL source file name, enter the following name:

IYahooLocalService

b. For Package, enter the following name:

interfaces

c. Click Finish.

3. Replace the contents of the file with the following code:

Create a mortgage portal with EGL Rich UI 43

package interfaces;

interface YahooLocalService
function getSearchResults(appId string in, zipCode string in) returns(ResultSet)

{@GetRest{uriTemplate = "http://local.yahooapis.com/LocalSearchService/V3/
localSearch?appid={appId}&query=mortgage&zip={zipcode}&results=8",
responseFormat = XML}};

end

After you have pasted the code, remove the newlines and tabs within the
function prototype. This declaration must appear on a single line, with no
spaces in the URI.

The function places the incoming parameters into a URI to call the service on
the Yahoo! site. In addition to your Yahoo! ID and the zip code to look up, the
URI also provides the keyword "mortgage" to use in the search and specifies a
maximum of 8 results.

This is only one example of calling a service from EGL. Others have multiple
function calls, and may handle the connection to the service through the EGL
deployment descriptor file (for more information about the EGL deployment
descriptor, see “Lesson 14: Deploy and test the mortgage application” on page
55).

4. Save the file.

Related reference

Interface part

Add records to the Interface file

The Interface requires three Record definitions. These Record definitions match the
XML response that the Yahoo! service returns. You can see samples of this XML at
http://developer.yahoo.com/search/local/V3/localSearch.html. The XML uses tags
like "<Title>" that you convert into Record fields.
Because a Record is a part, place these definitions after the end statement for the
Interface part.

1. Create the ResultSet Record by pasting the following code at the end of the
IYahooLocalService.egl file:

record ResultSet{@XMLRootElement{name = "ResultSet", namespace = "urn:yahoo:lcl"}}
totalResultsAvailable STRING{@xmlelement { namespace = "urn:yahoo:lcl"}};
results Result[]{@XMLElement{name = "Result", namespace = "urn:yahoo:lcl"}};

end

The ResultSet Record includes an array of Result type Records. You create that
Record type in the next step.

2. Create the Result Record by pasting the following code at the end of the file:

record Result
Title STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
Address STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
City STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
State STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
Latitude STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
Longitude STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
rating Rating{@xmlElement{namespace = "urn:yahoo:lcl"}};

end

The Result Record includes a variable based on a Rating type Record. You
create that Record type in the next step.

3. Create the Rating Record by pasting the following code at the end of the file:

44 Create a mortgage portal with EGL Rich UI

http://publib.boulder.ibm.com/infocenter/eglce/v1r0/index.jsp?topic=/com.ibm.eglce.lr.doc/topics/regl_core_interface_part.html

record Rating
AverageRating STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
end

4. Save the file. If you see errors in your source file, compare your code to the file
contents in “Finished code for IYahooLocalService.egl after Lesson 10” on page
72.

5. Close the file.

Create the GoogleMap externalType

A type is like a blueprint. It contains information that you can use to create a
variable that you can use in a program. It is an abstraction. A STRING, a Record,
and a Service are all examples of types in EGL.
You can also use blueprints from outside EGL to create variables in an EGL
program. One example is the GoogleMap widget, which is a map that you can
embed in your Web page. You use the EGL externalType definition to give EGL
the information it needs about such an outside blueprint.
The GoogleMap external type works with the GoogleMap.js file that is included in
the MortgageSupport.zip file that you downloaded in Lesson 2.

1. Create a new EGL source file to hold the external type:

a. Select MortgageEGLProject in the Project Explorer view and click the New
EGL Source File icon.

b. Give the file the following name:

GoogleMap

c. Place the file in the following package:

widgets

2. Replace the boilerplate contents of the file with the following code:

package widgets;

ExternalType GoogleMap extends Widget type JavaScriptObject {
relativePath = "utils",
javaScriptName = "GoogleMap"

}
function showAddress(address String in, description string in);

width STRING{@JavaScriptProperty{setMethod="setWidth", getMethod="getWidth"}};
height STRING{@JavaScriptProperty{setMethod="setHeight", getMethod="getHeight"}};

end

In terms of how the file is used, this externalType definition is similar to the
Interface part you created earlier. It includes a function prototype and two
fields.

3. Save and close the file.

Related reference

ExternalType part

Create a mortgage portal with EGL Rich UI 45

http://publib.boulder.ibm.com/infocenter/eglce/v1r0/index.jsp?topic=/com.ibm.eglce.lr.doc/topics/regl_core_external_type_part.html

Create the UI for the MapLocatorHandler widget

In the following instructions, as in any complex sequence of changes to a source
file, remember to save the file periodically. To create the MapLocatorHandler
widget:

1. Create a Rich UI Handler in the handlers package, as you did in “Lesson 4:
Create the user interface for the calculator” on page 15.

a. Give the Handler the following name:

MapLocatorHandler

b. Place the Handler in the following package:

handlers

The Handler opens in the Design view of the EGL editor.

2. Highlight the ui Box and make the following changes in the Properties view:

a. Change the columns property to 1.

b. Change the id property to form. This setting assigns styles from the style
sheet for your application, WebContent/css/MortgageEGLProject.css.

3. Create a line of introductory text:

a. Drag a TextLabel widget from the EGL Widgets Palette to the ui Box and
give it the following name:

introLabel

b. In the Properties view, change the text property to the following phrase:

Search for local mortgage businesses

4. Create a box for zip code entry:

a. Drag a Box widget into the next position and assign the following name:

formBox

b. In the Properties view, change the columns property to 3.

5. Create a label for the zip code input field:

a. Drag a TextLabel widget into the new Box and assign the following name:

zipLabel

b. In the Properties view, change the text property to the following text:

Zip code:

6. Create a text field where the customer can enter a zip code:

a. Drag a TextField widget into the next position in the formBox widget and
assign the following name:

zipField

b. In the Properties view, add the following value in the text field, which
becomes the default value for the field:

10001

This value represents the zip code for midtown Manhattan.

c. Click the Events tab and click the row for the onKeyDown event. Click the
plus sign to add a function for the event.

d. In the New Event Handler window, enter the following name for the new
function:

checkForEnter

e. Click OK. EGL switches to Source view and displays the stub
checkForEnter() function.

46 Create a mortgage portal with EGL Rich UI

f. Click Design to return to Design view. The checkForEnter function name is
now displayed next to the onKeyDown event. The function is bound to the
zipField field. You will add the code for this function later.

7. Add a button to initiate the search for the specified zip code:

a. Drag a Button widget from the Dojo Widgets Palette to the third position in
the formBox Box. This button is actually a DojoButton and has the correct
type in the source code. Assign the following name:

zipButton

b. In the Properties view, make sure that you are on the Events page. Click the
row for the onClick event. Click the plus sign to add a function for the
event.

c. In the New Event Handler window, enter the following name for the new
function:

buttonClicked

d. Click OK. EGL switches to Source view and displays the stub
buttonClicked() function.

e. Click Design to return to Design view. The buttonClicked function name is
now displayed next to the onClick event. The function is bound to the
zipButton button. You will add the code for this function later.

f. Click the Properties tab to switch back to the Properties page. Change the
text property for the button to the following name:

Search

8. Drag a Box widget from the EGL Widgets palette into the next position after the
formBox Box and give it the following name:

mapBox

9. Create a box to contain the list of mortgage companies.

a. Drag a second box onto the new mapBox Box and give it the following
name:

listingBox

b. In the Properties view, set the columns property to 1. Expand the Position
category and change the width property to 120.

You are finished working in EGL visual editor. In the next lesson, you will add
source code to complete the portlet. Your editor pane looks like the following
image:

Create a mortgage portal with EGL Rich UI 47

If you click the Source tab, you can see code that the EGL visual editor created.
This code matches the code in “Finished code for MapLocatorHandler.egl after
Lesson 10” on page 73.

Lesson checkpoint

You learned how to complete the following tasks:

v Obtain keys from Yahoo! and Google to use their services

v Create an Interface and Record definitions for the Local Search service

v Create an externalType for the GoogleMaps widget

v Create a user interface for the Map portlet

In the next lesson, you add source code to complete the portlet.

Lesson 11: Create the source code for the Map portlet

Connect the service and the external widget to the user interface you created in the
previous lesson.

Finish the source code for MapLocatorHandler.egl
1. Make sure that the MapLocatorHandler.egl file is open in the EGL editor. If

you are in Design view, click the Source tab.

2. In the Handler declaration, change the height property of the ui Box to 450.
This setting provides adequate space for the GoogleMap widget that you
declare later.

3. Add a blank line below the Handler declaration, and then add the following
line:

const YAHOO_APP_ID STRING = "app_id";

where app_id is the 68-character application ID you obtained from Yahoo! in
the previous lesson. This ID must be surrounded by quotation marks.

4. On the next line, declare a variable to represent the Yahoo! lookup service:

lookupService YahooLocalService{@restbinding};

The @restbinding property indicates that EGL must look for binding
information under the heading "YahooLocalService" in the deployment
descriptor file. You will learn about the deployment descriptor file in “Lesson
14: Deploy and test the mortgage application” on page 55.

5. In the MapBox declaration, add a widget named localMap to the children
property. The result looks like the following code:

48 Create a mortgage portal with EGL Rich UI

MapBox Box{ padding=8,
children = [listingBox, localMap] };

6. After the listingBox declaration, declare the localMap widget:

localMap GoogleMap{width = 500, height = 350};

7. Complete the start() function:

function start()
search(); // show search results
end

The initial display shows results for the default zip code.

8. Complete the checkForEnter() function:

function checkForEnter(event Event in)
if(event.ch == 13)
search();
end

end

9. Complete the buttonClicked() function:

function buttonClicked(event Event in)
search();
end

10. Add the search() function:

function search()
listingBox.setChildren([new Image{src = "icons/progress3.gif"}]);
localMap.showAddress(zipField.text, ""); // default map (no address)
// Call remote Yahoo Service and pass zip code
call lookupService.getSearchResults(YAHOO_APP_ID, zipField.text)

returning to showResults onException displayError;
end

The setChildren() function provides a shorthand way to display a progress
GIF, as you did in the Calculator portlet. When you use the setChildren()
function again later to display the search results in the same Box widget, those
results replace the progress image.

The second field of the localMap.showAddress() function is used for an
address. For the initial display, you do not provide an address.

11. Add the displayError() function that is specified in the search() function:

function displayError(ex AnyException in)
DialogLibrary.showError("Yahoo Service", "Cannot invoke Yahoo Local Service: "

+ ex.message, null);
end

The DialogLibrary is part of the com.ibm.egl.rui.dialog plug-in that you
added to your workspace in Lesson 2, along with the portlet plug-in. It
provides basic message functions for your Web page.

12. Add the showResults() function that is specified in the search() function:

function showResults(retResult ResultSet in)
linkListing HyperLink[0];
for(i INT from 1 to retResult.results.getSize() by 1)
newLink HyperLink{text = retResult.results[i].title, href = "#"};
newLink.setAttribute("address", retResult.results[i].Address + ", "

+ retResult.results[i].city + ", "
+ retResult.results [i].state);

newLink.setAttribute("title", retResult.results[i].Title);
newLink.onClick ::= mapAddress;
linkListing.appendElement(newLink);

end
listingBox.setChildren(linkListing);
end

Create a mortgage portal with EGL Rich UI 49

Your call to the service returns an array of mortgage company addresses. The
showResults() function reads through that array and creates a new array of
business names in the form of hyperlinks, with a maximum of 8, to prevent
overflowing the screen. The links point to the current page; all you need is the
ability to register an onClick event for each name. That onClick event triggers
the mapAddress() function, which you create in the next step.

13. Add the mapAddress() function specified in the showResults() function:

function mapAddress(e Event in)
// Show the address on the map when the link is clicked
businessAddress STRING = e.widget.getAttribute("address") as STRING;
businessName STRING = e.widget.getAttribute("title") as STRING;
localMap.showAddress(businessAddress, "" + businessName + "");

end

14. Organize your imports by pressing Ctrl+Shift+O, and save the file. If you see
errors in your source file, compare your code to the file contents in “Finished
code for MapLocatorHandler.egl after Lesson 11” on page 73.

Test the new portlet

Because this portlet works independently, you can test it separately.

1. Make sure to save the file, and then click Preview. EGL displays the entry form
with the zip code 10001 selected. A list of mortgage companies is displayed
down the left side of the screen. On the right is a map of New York City.

If the page does not display properly, make sure that the GoogleMap.js file is in
the WebContent/utils directory for your project.

50 Create a mortgage portal with EGL Rich UI

2. Click any of the names in the left column. The map displays an indicator that
shows the location of the business.

3. Enter a different zip code and click Search. The map displays a new location.

4. Close the file.

Lesson checkpoint

You learned how to complete the following tasks:

v Create and use a variable that is based on the Local Search service

v Create and use a variable that is based on the GoogleMaps widget

In the next lesson, you add the Map portlet to the main portal.

Lesson 12: Add the Map portlet to the main portal

To add the new portlet to your page, you must change the main portal.

Change the main portal

Add lines for the Map portlet that are similar to the lines for the other three
portlets:

1. In the EGL editor, open the MainHandler.egl file and click the Source tab.

2. Immediately below the historyHandler declaration, add a similar declaration
for mapHandler:

mapHandler MapLocatorHandler{};

3. Immediately below the historyPortlet declaration, add a similar declaration
for mapPortlet:

mapPortlet Portlet{children = [mapHandler.ui],
title = "Map", canMove = FALSE, canMinimize = TRUE};

4. In the start() function, below the existing calls to addPortlet(), add the new
portlet to the portal:

mortgagePortal.addPortlet(mapPortlet, 2);

In this case, you are adding the Map portlet to the second, wider column.

5. Save the file. If you see errors in your source file, compare your code to the file
contents in “Finished code for MainHandler.egl after Lesson 12” on page 75.

Test the portal

Test the main portal to make sure that the new Map portlet is displayed and that
all portlets work correctly.

1. At the bottom of the editor, click Preview. EGL displays the main portal and
the four subsidiary portlets.

2. Calculate at least two different mortgages and enter a five-digit U.S. zip code in
the Map portlet.

Create a mortgage portal with EGL Rich UI 51

3. Close the file.

Lesson checkpoint

There were no new tasks in this lesson.

In the next lesson, you add a portlet to display a map of mortgage companies for a
specific area.

Lesson 13: Install Apache Tomcat

Use the Apache Tomcat open source Web server to display the generated version
of your Web page.

Download and install the server

You can download and install the Tomcat Web server in the EGL workbench. If
you have the Tomcat server on your system, you still must create a copy of the
server for EGL to use.

To install and configure the server:

1. Locate the Servers view, which is by default at the lower right of the
workbench. Right-click the empty space and click New → Server.

52 Create a mortgage portal with EGL Rich UI

2. In the Define a New Server window, expand Apache and click Tomcat v6.0
Server. Accept the default values for the other fields. Click Next.

3. In the Tomcat Server window, click Download and Install. If the Tomcat server
is already installed, click Browse and find the installation directory for the
server, and then go to step 4 on page 54

Create a mortgage portal with EGL Rich UI 53

Accept the terms of the license agreement. Browse to a directory for the
application files, such as C:\Program Files\Apache. While it completes the
installation, EGL displays the Define a New Server window again, this time
with the installation directory specified. Progress is shown at the bottom right
of the workbench.

4. When the installation is completed, click Finish.

5. Start the server by clicking the green circle with the white triangle at the top of
the Server view.

Lesson checkpoint

In this lesson, you completed the following tasks:

v Downloaded the Apache Tomcat Web server, if necessary

v Installed Tomcat in your workspace

54 Create a mortgage portal with EGL Rich UI

In the next lesson, you deploy the application to the Tomcat server and run it
there.

Lesson 14: Deploy and test the mortgage application

During the deployment process, EGL creates HTML files and server-specific code
to match your target environment.

Deployment is a two stage process:

1. Deploy your Handlers to a Web project

2. Deploy the Web project to a Web server, which in this case is the Apache
Tomcat server you installed in the previous lesson

After you deploy the application, you can run it on the server rather than in
Preview view.

Edit the deployment descriptor

EGL automatically creates a deployment descriptor file for each EGLSource folder.
The deployment descriptor file manages the deployment process.

To edit the deployment descriptor:

1. In the EGLSource folder, double-click the MortgageEGLProject.egldd file. The
EGL deployment descriptor opens in the editor. Because you created the
various Handler parts with the wizard, EGL automatically added them to the
list of Rich UI Handlers to deploy.

2. Because you are using a dedicated service, you do not need to add any
information to the Service Client Bindings section. The list is empty.

3. Next to the Target Name field, click New. The Dynamic Web Project wizard
opens.

Create a mortgage portal with EGL Rich UI 55

4. For the Project Name, enter the following name:

MortgageWeb

Any Web project is acceptable. You are creating a simple one for the purposes
of the tutorial.

5. Click Finish. EGL redisplays the deployment descriptor and creates the Web
project.

6. Save and close the deployment descriptor.

Deploy the Rich UI application

After you edit the deployment descriptor, the deployment process is automatic:

1. In the EGLSource folder, right-click the MortgageEGLProject.egldd file.

2. Click Deploy EGL Descriptor. The deployment process is automatic. At the
end of the process, the Tomcat server might show a "Restart" status.

3. Restart the server by clicking the white arrow in the green circle in the upper

right of the Servers window . Alternatively, you can right-click the server
name and click Restart. When the server has restarted, the status is
"Synchronized."

Run the generated code
1. In the MortgageWeb/WebContent folder, find the generated HTML version of the

MainHandler page. The name of the file is MainHandler-en_US.html.

2. Right-click the file name and click Run As → Run on Server

56 Create a mortgage portal with EGL Rich UI

The Run On Server window opens.

3. In the Run On Server window, select the Tomcat 6.0 Server and click Always
use this server when running this project. Click Finish.

Create a mortgage portal with EGL Rich UI 57

4. If you see a page not found error (404), see if the server is showing a Restart
status. If so, restart the server and refresh the page.
The page opens.

5. Test the application by calculating mortgages that are based on different rates,
amounts, and terms. Verify that clicking a row in the History portlet displays
the appropriate information in the Results portlet. Change the zip code in the
Map Portlet and make sure the links cause the map to update.

58 Create a mortgage portal with EGL Rich UI

Lesson checkpoint

You learned how to complete the following tasks:

v Edit a deployment descriptor to deploy a Rich UI handler

v Run the application on the Web server

In the next lesson, which is optional, you use the EGL MVC framework to improve
the user interface for the Calculator portlet.

Lesson 15: (Optional) Use validating forms in the Calculation portlet

Replace the simplified code in MortgageCalculatorHandler.egl with code that uses
the EGL Model-View-Controller (MVC) framework.

You can use EGL Rich UI to define a form for gathering input from a user. Each
field in the form can contain a label, a widget for displaying the value, and if
necessary, a set of validation routines to verify the user input, You can use the
ValidatingForm type to provide basic error checking and formatting tasks. Use a
form that is based on this type to replace the Amount, Rate, and Term fields and
labels in your original version of the Calculation portlet. Use a second form to
replace the Payment field.

Edit the Calculation portlet
1. Open MortgageCalculatorHandler.egl in Source view.

2. In the ui Box declaration, change the value of the columns property to 1.

3. In the ui Box declaration, replace the following widgets with a new structure
named inputForm:

v amountLabel

v amountField

v rateLabel

v rateField

v termLabel

v termCombo

At this point, the ui Box declaration looks like the following line:

ui Box{ columns = 1, children = [inputForm, blankLabel, buttonBox, paymentLabel,
paymentField, errorDisplay], id = "form" };

Be sure to keep the id property set to "form" so that the UI does not look
crowded.

4. On the same line, remove the blankLabel variable. You will add it to the
buttonBox widget later.

5. On the same line, replace the paymentLabel and paymentField variables with
a new variable named paymentForm. The finished ui Box declaration looks like
the following line:

ui Box{ columns = 1, children = [inputForm, buttonBox, paymentForm, errorDisplay], id = "form"

6. Instead of setting default values individually, create a variable that is based on
the MortgageCalculationResult record to hold the default values, and add it
below the :

inputRec MortgageCalculationResult{
loanAmount = 180000,
interestRate = 5.2,

Create a mortgage portal with EGL Rich UI 59

term = 30,
monthlyPayment = 0,
interest = 0

};

7. Create the inputForm variable and define the fields within it:

inputForm ValidatingForm{width=530, entries = [
new FormField{displayName="Amount:", controller=amountController},
new FormField{displayName="Rate:", controller=rateController},
new FormField{displayName="Term:", controller=termController}

]};

The validating form is part of the MVC framework. You can specify functions
for a validating form to screen the user input.

8. Create the controllers that you referred to in the inputForm declaration.

a. Create the amountController variable:

amountController Controller{@MVC{model = inputRec.loanAmount, view = amountField}};
amountField TextField{};

You create two associations here, as you did in the errorController widget
“Lesson 5: Add code for the MortgageCalculatorHandler functions” on
page 26. The storage area (the "model") for the amount is the loanAmount
field in the inputRec record. The display area (the "view") is a TextField
widget, just like you used in the original version of this portlet.

b. Create the rateController variable:

rateController Controller{
formatters ::= formatRate, unformatters ::= unformatRate,
@MVC{model = inputRec.interestRate, view = rateField}

};
rateField TextField{};

This code is essentially the same as the code for the amountController
variable, except that you also specify two functions:

v formatRate(), which adds a percent sign before you display the rate

v unformatRate(), which strips the percent sign before you store the rate
in the record

You will add these functions later in this lesson.

c. Create the termController variable:

termController Controller{
retrieveModelHelper = getTermModel,
retrieveViewHelper = getTermCombo,
publishHelper = setTermCombo,
commitHelper = setTermModel,
@MVC{model = inputRec.term, view = termCombo}};

const TERM_VALUES String[] = ["5","10","15","30"];
termCombo Combo{ values = TERM_VALUES, selection = 4 };

Again, you create an association with a model and a view, and you specify
function calls for formatting. You will create the get and set functions later
in this lesson.

9. Delete the declarations for the following variables:

v amountLabel

v amountField

v rateLabel

v rateField

60 Create a mortgage portal with EGL Rich UI

v termLabel

v termCombo

Your code now looks like the following image:

10. Add the blankLabel widget to the children property of the buttonBox widget:

buttonBox Box{ padding=8,
children = [blankLabel, calculationButton, processImage] };

11. Remove the existing paymentLabel and paymentField declarations and replace
them with the following code:

paymentField TextLabel{};
paymentController Controller{@MVC{model = inputRec.monthlyPayment, view = paymentField}};
paymentForm ValidatingForm{width=530, entries = [

new FormField{displayName = "Payment:", controller = paymentController}
]
};

In the previous form, you used TextField widgets for the view. Here, you use
a TextLabel widget because the field is used for output only; the user is not
permitted to change this information.

12. Change the start() function to initially hide the payment form:

function start()
hidePaymentForm();
end

Create a mortgage portal with EGL Rich UI 61

13. After the functions that show and hide the process image, add functions to
show and hide the payment form:

function showPaymentForm()
paymentForm.visibility = "visible";

end

function hidePaymentForm()
paymentForm.visibility = "hidden";

end

14. In the calculateMortgage() function, delete all the lines except the last one,
the call statement. You do not need to create the inputRec record because it is
now a global variable.

15. In the calculateMortgage() function, the call statement now becomes part of
the following code for the function:

function calculateMortgage()
if (inputForm.isValid())
inputForm.commit();
inputForm.publish();
call mortService.amortize(inputRec) returning to displayResults

onException handleException;
else
hideProcessImage();
end

end

16. In the displayResults() function, replace the first line, which begins with
"paymentField.text", with the following lines:

inputRec.monthlyPayment = retResult.monthlyPayment;
paymentForm.publish();

The paymentField widget is tied to the inputRec.monthlyPayment field
through the paymentController MVC controller. After you change the
inputRec field and publish the form, the field is automatically updated.

17. Also in the displayResults() function, add the following function call after
the hideProcessImage() call:

showPaymentForm();

This function makes the form, and therefore the payment field, visible.

18. Before the final end statement in the handler, add the formatting functions.

a. The formatRate() function adds a percent sign to the rate amount. The
formatRate() function removes the percent sign.

function formatRate(input string in) returns(string)
return(input+ "%");

end

function unformatRate(input string in) returns(string)
len int = strlib.characterLen(input);
if (input[len:len] == "%")
return(input[1:len-1]);
end
return(input);

end

b. The setTermCombo() function reads a number in STRING form and
matches it to a value from the termCombo widget:

function setTermCombo(value STRING in)
// Set the term combo box to the index corresponding by the value of the selected term
for (i int from 1 to TERM_VALUES.getSize() by 1)
if(TERM_VALUES[i] == value)
termCombo.selection = i;

62 Create a mortgage portal with EGL Rich UI

exit for;
end
end

end

c. The getTermCombo() function returns the currently selected term in
STRING form:

function getTermCombo() returns(STRING)
// Return the selected index of the term combo box
return (termCombo.selection);

end

d. The setTermModel() function validates and stores the index of a term
value:

function setTermModel(value string in)
// value represents the index in the combo
if(value >= 1 && value <= TERM_VALUES.getSize())
inputRec.term = TERM_VALUES[value as int];

end
end

e. The getTermModel() function returns the current value of the term in
STRING form:

function getTermModel() returns(STRING)
// returns the term value
return(TERM_VALUES[termCombo.selection]);

end

19. Organize your imports and save the file. If you see errors in your source file,
compare your code to the file contents in “Finished code for
MortgageCalculatorHandler.egl after Lesson 15” on page 76.

Test the portlet
1. Click the Source tab at the bottom of the editor pane. The interface is displayed

with the default values.

2. Click Calculate. The payment form is displayed.

Create a mortgage portal with EGL Rich UI 63

3. Change any of the input fields and recalculate. You can see a number of
differences from the previous version of the portlet:

v The amount is formatted with the appropriate currency symbol, separator,
and decimal. This happens automatically because MVC associates the field
with the loanAmount field of the inputRec record, and you declared
loanAmount as a MONEY type.

v The rate is formatted with a percent sign. This happens in the formatRate()
function.

v You can use a currency symbol, percent sign, separator, or decimal in your
input. These characters would have caused an error in the previous version.

v The payment form is not visible until you perform a calculation.

v The payment field is formatted as currency because it is associated with a
MONEY type field in the inputRec record.

v You cannot overwrite the payment amount.

4. Close the file.

Test the portal in Preview view
1. In the EGLSource/handlers directory, open the MainHandler.egl file and click

the Preview tab. The new Calculate portlet is displayed.

2. Click Calculate.

3. Change any of the values and click Calculate again. The Results and History
portlets function just as they did before.

4. Close the file.

Redeploy and test

Because you changed one of the deployed files, you must redeploy the project.

1. In the EGLSource directory, right-click the EGL deployment descriptor file,
MortgageEGLProject.egldd, and then click Deploy EGL Descriptor. The
deployment process is automatic.

2. In the MortgageWeb/WebContent directory, right-click the MainHandler-
en_US.html file and click Run As → Run on Server. As before, you might need
to restart the server and refresh the page.

3. Verify that the new version of the portlet is displayed, and that everything
functions correctly.

64 Create a mortgage portal with EGL Rich UI

Lesson checkpoint

You learned how to complete the following tasks:

v Use the EGL MVC framework to improve the Calculator interface

v Redeploy the application to reflect program changes

You have completed the tutorial.

Summary

You have completed the Create a mortgage portal with EGL Rich UI tutorial.

In addition to explaining the basic steps required to create a portal page, this
tutorial provided opportunities to practice the following skills:

v Designing your work on paper before coding

v Creating and deploying a service

v Creating a Rich UI Web page by writing source code in the EGL editor

v Using a service and a widget from an external provider

Lessons learned

You completed the following tasks:

v Plan the application and design the interface

v Import a custom widget to manage portlets

v Write a service to calculate mortgage payments

v Create a portlet to request input for the calculation service and display the
results

v Create a pie chart to compare total principal to total interest

v Pass data between portlets by using the InfoBus widget

v Create a table that lists all calculations

v Create a portlet to find mortgage businesses

v Create a Rich UI portal page to contain the individual portlets

v Install and configure the Apache Tomcat Web server

v Deploy the Web page to the server and test the application

v Replace the Calculation portlet with a version that uses validating forms

Additional resources

EGL Rich UI follows the Visual Formatting Model of the World Wide Web
Consortium (W3C). For more information, see the W3C site at
http://www.w3.org/TR/CSS2/visuren.html.

Finished code for MortgageCalculationService.egl after Lesson 3

The following code is the complete text of the MortgageCalculationService.egl
file at the end of Lesson 3. The code includes tabs, comments, and blank lines. If
you see errors in your source file, compare your code with this version.

package services;

service MortgageCalculationService

Create a mortgage portal with EGL Rich UI 65

http://www.w3.org/TR/CSS2/visuren.html

function amortize(inputData MortgageCalculationResult inOut)
amt MONEY = inputData.loanAmount;
// convert to monthly rate
rate DECIMAL(10, 8) = (1 + inputData.interestRate / 1200);
// convert to months
term INT = (inputData.term * 12);

// calculate monthly payment amount
pmt MONEY = (amt * (rate - 1) * Mathlib.pow(rate, term)) /

(MathLib.pow(rate, term) - 1);
totalInterest MONEY = (pmt * term) - amt;

// update result record
inputData.monthlyPayment = pmt;
inputData.interest = totalInterest;

end
end

record MortgageCalculationResult
// user input
loanAmount MONEY;
interestRate DECIMAL(10,8);
term INT;

// calculated fields
monthlyPayment MONEY;
interest MONEY;
end

Related tasks

“Lesson 3: Create the mortgage calculation Service” on page 11
Create a dedicated service to calculate monthly payments.

Finished code for MortgageCalculatorHandler.egl after Lesson 4

The following code is the complete text of the MortgageCalculatorHandler.egl file
after Lesson 4. The code includes tabs, comments, and blank lines. This code was
created by the EGL visual editor. If you see errors in your source file, compare
your code with this version.

package handlers;

// RUI Handler

import com.ibm.egl.rui.widgets.Box;
import com.ibm.egl.rui.widgets.TextLabel;
import com.ibm.egl.rui.widgets.TextField;
import com.ibm.egl.rui.widgets.Combo;
import dojo.widgets.DojoButton;
import com.ibm.egl.rui.widgets.Image;
import com.ibm.egl.rui.widgets.HTML;

//
//
handler MortgageCalculatorHandler type RUIhandler {initialUI = [ui],onConstructionFunction = start,

ui Box{ columns = 2, width = "400", height = "400", children = [amountLabel, amountField, rateLabel,
id = "form" };
amountLabel TextLabel{ text = "Amount:" };
amountField TextField{
text = "180000"

};
rateLabel TextLabel{ text = "Rate:" };
rateField TextField{
text = "5.2"

};

66 Create a mortgage portal with EGL Rich UI

termLabel TextLabel{ text = "Term:" };
termCombo Combo{ values = ["5","10","15","30"],
selection = 4 };
blankLabel TextLabel{};
buttonBox Box{ padding=8,
children = [calculationButton, processImage] };
calculationButton DojoButton{ text = "Calculate", onClick ::= calculate };
processImage Image{
src = "icons/progress3.gif",
visibility = "hidden"
};
paymentLabel TextLabel{ text = "Payment:" };
paymentField TextField{};
errorDisplay HTML{
color = "Red"
};

function start()
end

function calculate(event Event in)

end
end

Related tasks

“Lesson 4: Create the user interface for the calculator” on page 15
Each portlet on the finished page is controlled by an EGL Rich UI Handler part.

Finished code for MortgageCalculatorHandler.egl after Lesson 5

The following code is the complete text of the MortgageCalculatorHandler.egl file
after Lesson 5. The code includes tabs, comments, and blank lines. If you see errors
in your source file, compare your code with this version.

package handlers;

import com.ibm.egl.rui.mvc.Controller;
import com.ibm.egl.rui.mvc.MVC;
import com.ibm.egl.rui.widgets.Box;
import com.ibm.egl.rui.widgets.Combo;
import com.ibm.egl.rui.widgets.HTML;
import com.ibm.egl.rui.widgets.Image;
import com.ibm.egl.rui.widgets.TextField;
import com.ibm.egl.rui.widgets.TextLabel;
import egl.ui.rui.Event;
import dojo.widgets.DojoButton;
import services.MortgageCalculationResult;
import services.MortgageCalculationService;

handler MortgageCalculatorHandler type RUIhandler {initialUI = [ui],onConstructionFunction = start,

mortService MortgageCalculationService{};
ui Box{ columns = 2, children = [amountLabel, amountField, rateLabel, rateField, termLabel, termCombo,
amountLabel TextLabel{ text = "Amount:" };
amountField TextField{
text = "180000"
};
rateLabel TextLabel{ text = "Rate:" };
rateField TextField{
text = "5.2"
};
termLabel TextLabel{ text = "Term:" };
termCombo Combo{ values = ["5","10","15","30"],
selection = 4 };
blankLabel TextLabel{};

Create a mortgage portal with EGL Rich UI 67

buttonBox Box{ padding=8,
children = [calculationButton, processImage] };
calculationButton DojoButton{ text = "Calculate", onClick ::= calculate };
processImage Image{
src = "icons/progress3.gif",
visibility = "hidden"

};
paymentLabel TextLabel{ text = "Payment:",
class = "spacer" };
paymentField TextField{};
// use for error messages
error STRING = "";
errorDisplay HTML{ color = "Red" };
// associate MVC with errorDisplay widget
errorController Controller{@MVC{model = error, view = errorDisplay}};

function start()
end

function calculate(event Event in)
showProcessImage();
calculateMortgage();

end

function showProcessImage()
processImage.visibility = "visible";

end

function hideProcessImage()
processImage.visibility = "hidden";

end

function calculateMortgage()
// new copy of the input record
inputRec MortgageCalculationResult{};
// load with values from the ui
inputRec.loanAmount = amountField.text as MONEY;
inputRec.interestRate = rateField.text as DECIMAL(10,8);
inputRec.term = termCombo.values[termCombo.selection] as INT;
call mortService.amortize(inputRec) returning to displayResults

onException handleException;
end

function displayResults(retResult MortgageCalculationResult in)
paymentField.text = "$" + retResult.monthlyPayment as STRING;
hideProcessImage();

end

private function setError(err STRING in)
error = err;
errorController.publish();

end

// catch-all exception handler
private function handleException(ae AnyException in)
setError("Error calling service: " :: ae.message);

end
end

Related tasks

“Lesson 5: Add code for the MortgageCalculatorHandler functions” on page 26
Add functions in the MortgageCalculatorHandler part to support the user
interface that you constructed in the previous lesson.

68 Create a mortgage portal with EGL Rich UI

Finished code for CalculationResultsHandler.egl after Lesson 6

The following code is the complete text of the CalculationResultsHandler.egl file
after Lesson 6. The code includes tabs, comments, and blank lines. If you see errors
in your source file, compare your code with this version.

package handlers;

import com.ibm.egl.rui.infobus.InfoBus;
import com.ibm.egl.rui.widgets.Box;
import egl.ui.color;
import dojo.widgets.DojoPieChart;
import dojo.widgets.PieChartData;
import services.MortgageCalculationResult;

handler CalculationResultsHandler type RUIhandler {initialUI = [ui],onConstructionFunction = start,

ui Box{ columns = 2, width = "400", height = "300", children = [interestPieChart] };
interestPieChart DojoPieChart{

radius = 100,
width = "300",
height = "300",
labelOffSet = 50,
fontColor = "white",
data = [
new PieChartData{y=1, text="Principal", color="#99ccbb"},
new PieChartData{y=0, text="Interest", color="#888855"}

]};

function start()
InfoBus.subscribe("mortgageApplication.mortgageCalculated", displayChart);

end

function displayChart(eventName STRING in, dataObject ANY in)
localPieData PieChartData[];
localPieData = interestPieChart.data;
resultRecord MortgageCalculationResult = dataObject as MortgageCalculationResult;

localPieData[1].y = resultRecord.loanAmount;
localPieData[2].y = resultRecord.interest;
interestPieChart.data = localPieData;

end
end

Related tasks

“Lesson 6: Create the CalculationResultsHandler widget” on page 30
Add a second portlet on the page to hold a pie chart that shows the relative
proportions of principal and interest.

Finished code for MainHandler.egl after Lesson 7

The following code is the complete text of the MainHandler.egl file after Lesson 7.
The code includes tabs, comments, and blank lines. If you see errors in your source
file, compare your code with this version.

package handlers;

import com.ibm.egl.rui.infobus.InfoBus;
import com.ibm.egl.rui.widgets.Box;
import com.ibm.egl.rui.widgets.portal.Portal;
import com.ibm.egl.rui.widgets.portal.Portlet;
import egl.ui.columns;

handler MainHandler type RUIhandler {initialUI = [ui],onConstructionFunction = start, cssFile="css/MortgageEGLProject.css"}

ui Box{ columns = 2, children = [mortgagePortal] };

Create a mortgage portal with EGL Rich UI 69

mortgagePortal Portal { columns = 2, columnWidths = [300, 650] };

calculatorHandler MortgageCalculatorHandler{};
resultsHandler CalculationResultsHandler{};

calculatorPortlet Portlet{children = [calculatorHandler.ui], title = "Calculator"};
resultsPortlet Portlet{children = [resultsHandler.ui],

title = "Results", canMove = TRUE, canMinimize = TRUE};

function start()
mortgagePortal.addPortlet(calculatorPortlet, 1);
mortgagePortal.addPortlet(resultsPortlet, 1);

// Subscribe to calculation events
InfoBus.subscribe("mortgageApplication.mortgageCalculated", restorePortlets);

// Initial state is minimized
resultsPortlet.minimize();

end

function restorePortlets(eventName STRING in, dataObject ANY in)
if(resultsPortlet.isMinimized())
resultsPortlet.restore();

end
end
end

Related tasks

“Lesson 7: Create the main portal” on page 33
The main page uses the EGL portlet widgets to manage communication
between the parts of the application.

Finished code for CalculationHistoryHandler.egl after Lesson 8

The following code is the complete text of the CalculationHistoryHandler.egl file
after Lesson 8. The code includes tabs, comments, and blank lines. If you see errors
in your source file, compare your code with this version.

package handlers;

import com.ibm.egl.rui.infobus.InfoBus;
import com.ibm.egl.rui.widgets.Box;
import egl.ui.columns;
import egl.ui.displayname;
import egl.ui.rui.Event;
import egl.ui.rui.Widget;
import dojo.widgets.DojoGrid;
import dojo.widgets.DojoGridColumn;
import services.MortgageCalculationResult;

handler CalculationHistoryHandler type RUIhandler {initialUI = [ui],onConstructionFunction = start,

ui Box{ columns = 2, children = [historyGrid] };
historyGrid DojoGrid { behaviors = [addSelectionListener],
headerBehaviors = [],
columns = [
new DojoGridColumn { displayName = "Principal", name = "loanAmount", width = 60 },
new DojoGridColumn { displayName = "Rate", name = "interestRate", width = 60 },
new DojoGridColumn { displayName = "Years", name = "term", width = 60 },
new DojoGridColumn { displayName = "Payment", name = "monthlyPayment", width = 60 }] };

// array to store calculation results
historyResults MortgageCalculationResult[0];

function start()
// Subscribe to calculation events so history table (grid) can be updated

70 Create a mortgage portal with EGL Rich UI

InfoBus.subscribe("mortgageApplication.mortgageCalculated", addResultRecord);
end

// Update grid to show latest mortgage calculation
function addResultRecord(eventName STRING in, dataObject ANY in)
resultRecord MortgageCalculationResult = dataObject as MortgageCalculationResult;
historyResults.appendElement(resultRecord);

historyGrid.data = historyResults as ANY[];
end

// Adds a listener to each cell
function addSelectionListener(grid DojoGrid in, cell Widget in,

row ANY in, rowNumber INT in, column DojoGridColumn in)
cell.setAttribute("row", rowNumber);
cell.onClick ::= cellClicked;

end

// Publish event to InfoBus when previous calculation is selected
function cellClicked(e Event in)
try
row int = e.widget.getAttribute("row") as INT;
InfoBus.publish("mortgageApplication.mortgageResultSelected", historyResults[row]);

onException(ex AnyException)
end

end
end

Related tasks

“Lesson 8: Add a calculation history portlet” on page 35
Create a table where you can click a row to display a previous calculation.

Finished code for MainHandler.egl after Lesson 9

The following code is the complete text of the MainHandler.egl file at the end of
Lesson 9. The code includes tabs, comments, and blank lines. If you see errors in
your source file, compare your code with this version.

package handlers;

import com.ibm.egl.rui.infobus.InfoBus;
import com.ibm.egl.rui.widgets.Box;
import com.ibm.egl.rui.widgets.portal.Portal;
import com.ibm.egl.rui.widgets.portal.Portlet;
import egl.ui.columns;

handler MainHandler type RUIhandler {initialUI = [ui],onConstructionFunction = start, cssFile="css/MortgageEGLProject.css"}

ui Box{ columns = 2, children = [mortgagePortal] };
mortgagePortal Portal { columns = 2, columnWidths = [300, 650] };

calculatorHandler MortgageCalculatorHandler{};
resultsHandler CalculationResultsHandler{};
historyHandler CalculationHistoryHandler{};

calculatorPortlet Portlet{children = [calculatorHandler.ui], title = "Calculator"};
resultsPortlet Portlet{children = [resultsHandler.ui],

title = "Results", canMove = TRUE, canMinimize = TRUE};
historyPortlet Portlet{children = [historyHandler.ui],

title = "History", canMove = TRUE, canMinimize = TRUE};

function start()
mortgagePortal.addPortlet(calculatorPortlet, 1);
mortgagePortal.addPortlet(resultsPortlet, 1);
mortgagePortal.addPortlet(historyPortlet, 1);

Create a mortgage portal with EGL Rich UI 71

// Subscribe to calculation events
InfoBus.subscribe("mortgageApplication.mortgageCalculated", restorePortlets);

// Initial state is minimized
resultsPortlet.minimize();
historyPortlet.minimize();

end

function restorePortlets(eventName STRING in, dataObject any in)
if(resultsPortlet.isMinimized())
resultsPortlet.restore();

end
if(historyPortlet.isMinimized())
historyPortlet.restore();

end
end
end

Related tasks

“Lesson 9: Add the calculation history portlet to the main portal” on page 37
To add the new portlet to your page, you must change the Results portlet and
the main portal.

Finished code for IYahooLocalService.egl after Lesson 10

The following code is the complete text of the IYahooLocalService.egl file at the
end of Lesson 10. The code includes tabs, comments, and blank lines. If you see
errors in your source file, compare your code with this version.

package interfaces;

interface YahooLocalService
function getSearchResults(appId string in, zipCode string in) returns(ResultSet){@GetRest{uriTemplate
end

record ResultSet{@XMLRootElement{name = "ResultSet", namespace = "urn:yahoo:lcl"}}
totalResultsAvailable STRING{@xmlelement { namespace = "urn:yahoo:lcl"}};
results Result[]{@XMLElement{name = "Result", namespace = "urn:yahoo:lcl"}};
end

record Result
Title STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
Address STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
City STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
State STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
Latitude STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
Longitude STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
rating Rating{@xmlElement{namespace = "urn:yahoo:lcl"}};
end

record Rating
AverageRating STRING{@xmlElement{namespace = "urn:yahoo:lcl"}};
end

Related tasks

“Lesson 10: Create the UI for the Map portlet” on page 42
Create a portlet where you can enter a zip code and see a list of nearby
mortgage companies and a map. Click the name of a company, and the map
displays the location of the company.

72 Create a mortgage portal with EGL Rich UI

Finished code for MapLocatorHandler.egl after Lesson 10

The following code is the complete text of the MapLocatorHandler.egl file at the
end of Lesson 10. The code includes tabs, comments, and blank lines. For the most
part, this code was created by the EGL visual editor. If you see errors in your
source file, compare your code with this version.

package handlers;

// RUI Handler

import com.ibm.egl.rui.widgets.Box;
import com.ibm.egl.rui.widgets.TextLabel;
import com.ibm.egl.rui.widgets.TextField;
import dojo.widgets.DojoButton;

//
//
handler MapLocatorHandler type RUIhandler {initialUI = [ui],onConstructionFunction = start, cssFile="css/MortgageEGLProject.css"}

ui Box{ columns = 1, width = "400", height = "400", children = [introLabel, formBox, mapBox],
id = "form" };
introLabel TextLabel{ text = "Search for local mortgage businesses" };
formBox Box{ padding=8,
columns = 3,
children = [zipLabel, zipField, zipButton] };
zipLabel TextLabel{ text = "Zip code:" };
zipField TextField{
text = "10001", onKeyDown ::= checkForEnter

};
zipButton DojoButton{ text = "Search", onClick ::= buttonClicked };
mapBox Box{ padding=8,
children = [listingBox] };
listingBox Box{ padding=8,
columns = 1,
width = "120" };

function start()
end

function checkForEnter(event Event in)

end

function buttonClicked(event Event in)

end
end

Related tasks

“Lesson 10: Create the UI for the Map portlet” on page 42
Create a portlet where you can enter a zip code and see a list of nearby
mortgage companies and a map. Click the name of a company, and the map
displays the location of the company.

Finished code for MapLocatorHandler.egl after Lesson 11

The following code is the complete text of the MapLocatorHandler.egl file at the
end of Lesson 11. The code includes tabs, comments, and blank lines. If you see
errors in your source file, compare your code with this version.

package handlers;

import com.ibm.egl.rui.widgets.Box;
import com.ibm.egl.rui.widgets.HyperLink;

Create a mortgage portal with EGL Rich UI 73

import com.ibm.egl.rui.widgets.Image;
import com.ibm.egl.rui.widgets.TextField;
import com.ibm.egl.rui.widgets.TextLabel;
import com.ibm.egl.rui.widgets.dialog.DialogLibrary;
import egl.core.restbinding;
import egl.ui.rui.Event;
import dojo.widgets.DojoButton;
import interfaces.ResultSet;
import interfaces.YahooLocalService;
import widgets.GoogleMap;

handler MapLocatorHandler type RUIhandler {initialUI = [ui],onConstructionFunction = start, cssFile="css/MortgageEGLProject.css"}

const YAHOO_APP_ID STRING = "app_id";
lookupService YahooLocalService{@restbinding};

ui Box{ columns = 1, width = "400", height = "450", children = [introLabel, formBox, mapBox],
id = "form" };
introLabel TextLabel{ text = "Search for local mortgage businesses" };
formBox Box{ padding=8,
children = [zipLabel, zipField, zipButton],
columns = 3 };
zipLabel TextLabel{ text = "Zip code:" };
zipField TextField{
text = "10001", onKeyDown ::= checkForEnter
};
zipButton DojoButton{ text = "Search", onClick ::= buttonClicked };
mapBox Box{ padding=8,
children = [listingBox, localMap] };
listingBox Box{ padding=8,
columns = 1,
width = "120" };
localMap GoogleMap { width = 500, height = 350 };

function start()
search(); // show search results
end

function checkForEnter(event Event in)
if(event.ch == 13)
search();
end

end

function buttonClicked(event Event in)
search();
end

function search()
listingBox.setChildren([new Image{src = "icons/progress3.gif"}]);
localMap.showAddress(zipField.text, ""); // default map (no address)
// Call remote Yahoo Service and pass zip code
call lookupService.getSearchResults(YAHOO_APP_ID, zipField.text)
returning to showResults onException displayError;

end

function displayError(ex AnyException in)
DialogLibrary.showError("Yahoo Service", "Cannot invoke Yahoo Local Service: " + ex.message, null);
end

function showResults(retResult ResultSet in)
linkListing HyperLink[0];
for(i INT from 1 to retResult.results.getSize() by 1)
newLink HyperLink{text = retResult.results[i].title, href = "#"};
newLink.setAttribute("address", retResult.results[i].Address + ", "

+ retResult.results[i].city + ", "
+ retResult.results [i].state);

74 Create a mortgage portal with EGL Rich UI

newLink.setAttribute("title", retResult.results[i].Title);
newLink.onClick ::= mapAddress;
linkListing.appendElement(newLink);

end
listingBox.setChildren(linkListing);

end

function mapAddress(e Event in)
// Show the address on the map when the link is clicked
businessAddress STRING = e.widget.getAttribute("address") as STRING;
businessName STRING = e.widget.getAttribute("title") as STRING;
localMap.showAddress(businessAddress, "" + businessName + "");
end

end

Related tasks

“Lesson 11: Create the source code for the Map portlet” on page 48
Connect the service and the external widget to the user interface you created in
the previous lesson.

Finished code for MainHandler.egl after Lesson 12

The following code is the complete text of the MainHandler.egl file at the end of
Lesson 12. The code includes tabs, comments, and blank lines. If you see errors in
your source file, compare your code with this version.

package handlers;

import com.ibm.egl.rui.infobus.InfoBus;
import com.ibm.egl.rui.widgets.Box;
import com.ibm.egl.rui.widgets.portal.Portal;
import com.ibm.egl.rui.widgets.portal.Portlet;
import egl.ui.columns;

handler MainHandler type RUIhandler {initialUI = [ui],onConstructionFunction = start, cssFile="css/MortgageEGLProject.css"}

ui Box{ columns = 1, children = [mortgagePortal]};
mortgagePortal Portal {columns = 2, columnWidths = [300, 650]};

calculatorHandler MortgageCalculatorHandler{};
resultsHandler CalculationResultsHandler{};
historyHandler CalculationHistoryHandler{};
mapHandler MapLocatorHandler{};

calculatorPortlet Portlet{children = [calculatorHandler.ui], title = "Calculator"};
resultsPortlet Portlet{children = [resultsHandler.ui],

title = "Results", canMove = TRUE, canMinimize = TRUE};
historyPortlet Portlet{children = [historyHandler.ui],

title = "History", canMove = TRUE, canMinimize = TRUE};
mapPortlet Portlet{children = [mapHandler.ui],

title = "Map", canMove = false, canMinimize = true };

function start()
mortgagePortal.addPortlet(calculatorPortlet, 1);
mortgagePortal.addPortlet(resultsPortlet, 1);
mortgagePortal.addPortlet(historyPortlet, 1);
mortgagePortal.addPortlet(mapPortlet, 2);

// Subscribe to calculation events
InfoBus.subscribe("mortgageApplication.mortgageCalculated", restorePortlets);

// Initial state is minimized
resultsPortlet.minimize();
historyPortlet.minimize();
end

Create a mortgage portal with EGL Rich UI 75

function restorePortlets(eventName STRING in, dataObject any in)
if(resultsPortlet.isMinimized())
resultsPortlet.restore();

end
if(historyPortlet.isMinimized())
historyPortlet.restore();

end
end
end

Related tasks

“Lesson 12: Add the Map portlet to the main portal” on page 51
To add the new portlet to your page, you must change the main portal.

Finished code for MortgageCalculatorHandler.egl after Lesson 15

The following code is the complete text of the MortgageCalculatorHandler.egl file
after Lesson 15. The code includes tabs, comments, and blank lines. If you see
errors in your source file, compare your code with this version.

package handlers;

import com.ibm.egl.rui.infobus.InfoBus;
import com.ibm.egl.rui.mvc.Controller;
import com.ibm.egl.rui.mvc.FormField;
import com.ibm.egl.rui.mvc.MVC;
import com.ibm.egl.rui.mvc.ValidatingForm;
import com.ibm.egl.rui.widgets.Box;
import com.ibm.egl.rui.widgets.Combo;
import com.ibm.egl.rui.widgets.HTML;
import com.ibm.egl.rui.widgets.Image;
import com.ibm.egl.rui.widgets.TextField;
import com.ibm.egl.rui.widgets.TextLabel;
import egl.ui.displayname;
import egl.ui.rui.Event;
import dojo.widgets.DojoButton;
import services.MortgageCalculationResult;
import services.MortgageCalculationService;

handler MortgageCalculatorHandler type RUIhandler {initialUI = [ui],onConstructionFunction = start,

mortService MortgageCalculationService{};
ui Box{ columns = 1, children = [inputForm, buttonBox, paymentForm, errorDisplay], id = "form" };

inputRec MortgageCalculationResult{
loanAmount = 180000,
interestRate = 5.2,
term = 30,
monthlyPayment = 0,
interest = 0

};

inputForm ValidatingForm{width=530, entries = [
new FormField{displayName="Amount:", controller=amountController},
new FormField{displayName="Rate:", controller=rateController},
new FormField{displayName="Term:", controller=termController}

]};

amountController Controller{@MVC{model = inputRec.loanAmount, view = amountField}};
amountField TextField{};
rateController Controller{
formatters ::= formatRate, unformatters ::= unformatRate,
@MVC{model = inputRec.interestRate, view = rateField}

};
rateField TextField{};
termController Controller{

76 Create a mortgage portal with EGL Rich UI

retrieveModelHelper = getTermModel,
retrieveViewHelper = getTermCombo,
publishHelper = setTermCombo,
commitHelper = setTermModel,
@MVC{model = inputRec.term, view = termCombo}};

const TERM_VALUES String[] = ["5","10","15","30"];
termCombo Combo{ values = TERM_VALUES, selection = 4 };

blankLabel TextLabel{};
buttonBox Box{ padding=8,
children = [blankLabel, calculationButton, processImage] };
calculationButton DojoButton{ text = "Calculate", onClick ::= calculate };
processImage Image{
src = "icons/progress3.gif",
visibility = "hidden"

};
paymentField TextLabel{};
paymentController Controller{@MVC{model = inputRec.monthlyPayment, view = paymentField}};
paymentForm ValidatingForm{width=530, entries = [

new FormField{displayName = "Payment:", controller = paymentController}
]

};

// use for error messages
error STRING = "";
errorDisplay HTML{
color = "Red"

};
// associate MVC with errorDisplay widget
errorController Controller{@MVC{model = error, view = errorDisplay}};

function start()
hidePaymentForm();

end

function calculate(e Event in)
showProcessImage();
calculateMortgage();

end

function showProcessImage()
processImage.visibility = "visible";

end

function hideProcessImage()
processImage.visibility = "hidden";

end

function showPaymentForm()
paymentForm.visibility = "visible";

end

function hidePaymentForm()
paymentForm.visibility = "hidden";

end

function calculateMortgage()
if (inputForm.isValid())
inputForm.commit();
inputForm.publish();
call mortService.amortize(inputRec) returning to displayResults

onException handleException;
else
hideProcessImage();

end
end

Create a mortgage portal with EGL Rich UI 77

function displayResults(retResult MortgageCalculationResult in)
inputRec.monthlyPayment = retResult.monthlyPayment;
paymentForm.publish();
hideProcessImage();
showPaymentForm();
InfoBus.publish("mortgageApplication.mortgageCalculated", retResult);

end

private function setError(err STRING in)
error = err;
errorController.publish();

end

// catch-all exception handler
private function handleException(ae AnyException in)
setError("Error calling service: " :: ae.message);

end

function formatRate(input string in) returns(string)
return(input+ "%");

end

function unformatRate(input string in) returns(string)
len int = strlib.characterLen(input);
if (input[len:len] == "%")
return(input[1:len-1]);

end
return(input);

end

function setTermCombo(value STRING in)
// Set the term combo box to the index corresponding by the value of the selected term
for (i int from 1 to TERM_VALUES.getSize() by 1)
if(TERM_VALUES[i] == value)
termCombo.selection = i;
exit for;
end

end
end

function getTermCombo() returns(STRING)
// Return the selected index of the term combo box
return (termCombo.selection);

end

function setTermModel(value string in)
// value represents the index in the combo
if(value >= 1 && value <= TERM_VALUES.getSize())
inputRec.term = TERM_VALUES[value as int];

end
end

function getTermModel() returns(STRING)
// returns the term value
return(TERM_VALUES[termCombo.selection]);

end
end

Related tasks

“Lesson 15: (Optional) Use validating forms in the Calculation portlet” on page
59
Replace the simplified code in MortgageCalculatorHandler.egl with code that
uses the EGL Model-View-Controller (MVC) framework.

78 Create a mortgage portal with EGL Rich UI

Notices

© Copyright IBM Corporation 2000, 2010.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

Create a mortgage portal with EGL Rich UI 79

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software
3600 Steeles Avenue East
Markham, ON
Canada L3R 9Z7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

Trademark acknowledgments

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.

80 Create a mortgage portal with EGL Rich UI

A current list of IBM trademarks is available on the Web at www.ibm.com/legal/
copytrade.shtml.

Create a mortgage portal with EGL Rich UI 81

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

82 Create a mortgage portal with EGL Rich UI

Index

A
Apache Tomcat

installing 52
applications

running from generated code 56

C
calculate() 27
calculateMortgage() 28
CalculationHistoryHandler

overview 36
CalculationHistoryHandler.egl

source code 70
CalculationResultsHandler.egl

source code 69

D
deployment descriptor, EGL

editing 55
displayResults() 28
Dojo Widget library

overview 5

E
expenseGrid

overview 30

G
generatable parts

overview 11
generated code

running 56

H
Handler, EGL Rich UI

definition 5
hideProcessImage() 28

I
IYahooLocalService.egl

source code
lesson 9 72

M
MainHandler

overview 33
MainHandler.egl

source code
lesson 12 75
lesson 7 69
lesson 9 71

MapLocatorHandler
overview 42

MapLocatorHandler.egl
source code

lesson 10 73
lesson 11 73

MortgageCalculationService.egl
source code

Lesson 3 65
MortgageCalculatorHandler.egl

source code
lesson 15 76
lesson 4 66
lesson 5 67

MVC
forms 59

P
packages

creating 7
parts

overview 11
portal widget

importing 7
portals

definitions 1
portlet

definitions 1

Project Interchange File
overview 3

projects
creating 7

R
Record parts

creating 14
REST protocols

definitions 1
Rich UI Handler

definition 5
Rich UI Handler partparts

creating 16
Rich UI Handlers

deploying 55

S
Service parts

creating 12
overview 11

showProcessImage() 27
sketch

UI 4
SOAP protocols

definitions 1

T
Tomcat Web server

installing 52
tutorials

Format logon page 3

W
widgets

overview 5

83

