

Introduction

- Importance of QC for digital equipment
 - Digital radiology is increasingly coming into use
 - Detectors in digital systems have a large dynamic range
 - High (or too low) doses are hardly noticeable in images
 - For digital equipment QC is essential to avoid unnecessarily high doses and to achieve good image quality

TUDelft

Introduction

- QC of digital equipment compared to conventional equipment
 - For digital radiology part of the QC similar to that for conventional equipment
 - For digital equipment, however, additional equipment standards and test protocols have to be available to the users
 - To investigate the present situation in QC a questionnaire was drafted in the spring of 2005 to be completed by various SENTINEL partners

TUDelft

Introduction

- Questionnaire on equipment and equipment standards for digital radiology
 - the aim of the questionnaire was
 - to collect information on the available or accessible digital equipment
 - the equipment standards, i.e. methods for quality control (QC) used
 - the requirements for equipment
 - the equipment available for performing QC.

TUDelft

Introduction

- The questionnaire was distributed among 10 SENTINEL partners who expressed to have an interest in WP1.2 and particularly in WP1.2.1 on June 1, 2005
- A reminder was sent on August 12, 2005 to those partners that did not respond by then
- SENTINEL partners 2, 8, 11, 12, 13, 14, 15 and 19 responded to the questionnaire
 - specifications were provided for
 - 15 units available for digital fluoroscopy
 - 11 units available for digital imaging (radiography)

Introduction

- · A summary of QC of digital fluoroscopy systems is shown in the next table
 - · Additional tests and the general protocols used are given after the table

Introduction

Partner number	8			14		19
X-RAY TUBE AND GENERATOR						
Tube output and consistency						
Tube voltage accuracy						
Beam quality (HVL)						
Automatic brightness (dose rate) control						
X-ray tube focal spot size						
X-RAY TUBE CONTROL SYSTEM						
X-ray field limitation	у	у	у	у		
Minimum source-to-skin distance						
Image Quality						
Patient Dose						
PATIENT ESD RATE UNDER ABC	у	у		У	у	у
IMAGE II DOSE RATE UNDER ABC	у	у	у	у		
Protective Devices for Occupational Exposure						
February 17, 2006						8
					4	
					τι	Delft

Introduction

- · Additional tests related to digital imaging: field size and distortion
 - Protocols: own protocols, IPEM (IPEMB) 32, 77, IEC 61223-3-1, IEC 60601-3-1, IEC 60336
 - KCARE is mentioned for digital systems

Introduction

- A summary of QC of digital imaging (radiography) systems is shown in the next table
 - Additional tests and the general protocols used are given after the table

TUDelft

У

TUDelft

TUDelft

Introduction

- · Additional tests related to digital imaging:
 - CR: Dark noise, Linearity and system transfer properties, Erasure cycle efficiency, Detector dose indicator, Detector dose indicator calibration, Detector dose consistency, Laser beam function

 - Deam Tunction
 FPD: Dark noise, Linearity and system transfer properties, Image retention, Detector dose consistency
 Linearity, system transfer properties and dark noise, Detector dose indicator monitoring, uniformity, threshold contrast detail detectability, limiting spatial resolution
 Reproducibility of tube voltage, tube current and loading time; tube current linearity; tube current accuracy; Loading time arcuracy
 - accuracy
- Protocols: own protocols, IPEM (IPEMB) 32, 77, IEC 61223-3-1
- KCARE is mentioned for digital systems

TUDelft

Introduction

- Most of the responders restrict the QC to x-ray tube and generator, x-ray tube control system, image quality and patient dose
- Checks on display station and hard copy camera are only made by approximately half of the responders
- For fluoroscopy no additional QC tests for noise, linearity and system transfer properties are mentioned
- For QC methods, reference is made to reports of the Institute of Physics and Engineering in Medicine (IPEM) and its predecessors and of the International Electrotechnical Commission (IEC)

TUDelft

Introduction

- A summary will be given of test methods other than for x-ray tube and generator, x-ray tube control system, image quality and patient dose, according to
 - the Department of Medical Physics & Bioengineering (MPBE) in Dublin QC for fluoroscopy systems
 - MPBE QC for digital fluorography systems (based on image intensifiers)
 - KCARE protocol for QA of computed radiography (CR) systems Draft 8.0 (01/06/2005)
 - KCARE protocol for QA of DDR systems Draft 8.0 (01/06/2005)

TUDelft

MPBE QC for fluoroscopy systems

- Set-up for the use of Leeds test objects
 - 1 mm Cu present? _
 - Manual/automatic screening at _____kVp (calibrated at 70 kV)
 - SID: ____ [> 75 cm]
 - Grid Removed ? _____
 - Added filtration: _____
 - Tube Current: _
 - II entrance exposure rate: _____ [Normally: 0.2 1.0 mGy/sec]

TUDelft

MPBE QC for fluoroscopy systems

Leeds test object (TO) bisected field used to measure video wave form parameters, TO.E1

MPBE QC for fluoroscopy systems

- Specification of performance for video voltage output
 - Normal Values (within 10 %):
 - + Max V₀: 0.6 1.0 V, some systems: 0.3 V; V_{sl} : 0.3 0.4 V;

TUDelft

TUDelft

• V_B : 0.05 - 0.15 V; V_x : < 0.15 V_0 ; V_y : \leq 0.5 V_0

MPBE QC for fluoroscopy systems

MPBE QC for fluoroscopy systems

- Set-up: as above and Grid removed ? _
- Requirements
 - Grey scale steps visible: _____
 - Black and White discs visible: ____
 - Monitor adjustment: _____

<text><text><figure><text>

MPBE QC for fluoroscopy systems

MPBE QC for fluoroscopy systems

Radiation Field size:

- Place a large cassette over image intensifier and measure radiation field size vs imaged field size to ensure that radiation field does not extend beyond Image Intensifier.
- Specification of performance:
- Radiation field size diameter/Image field size diameter should be in range 1.0 1.1.

fuDelft

OPENDED COLOR OF LOCOS OF SUSTEMENTSet with a state of the intervence o

MPBE QC for fluoroscopy systems

Pulsed screening

- Pulse Duration: _____
- Pulse Interval:
- II entrance Air-Kerma per pulse: _
- Patient entrance Air-Kerma per pulse:
- Repeat above tests for pulsed fluoroscopy as required

February 17, 2006

MPBE QC for digital fluorography

- Set-up for Leeds DSF Test Objects: 75 kVp Selected ? _____ Grid Removed ? _____ mA: _____
 - mm Cu filter at tube ? ______ Additional Filtration ?
- - Tests should be carried out at exposure levels within the range recommended by the manufacturer. Television system operation :

- Gain:
- Exposure Rate: _

TUDelft

MPBE QC for digital fluorography

- <u>Jig Test Object:</u> Set-up: •
- Red/white lines aligned. Take mask image. Then rotate upper part by 180° to align white/white lines.
- Operating Headroom
- Viewing Conditions:
- "Console" Contrast:
- "Console" Brightness:
- Display Gain:
- Post Processing
- Density Profile Obtained ?
- Hard copy Image ? ____
- ____(4% each) No. of steps visible:
- Video peak level (100-4n)% _____ 0/6

TUDelft

MPBE QC for digital fluorography

• Analyse density profile of both step wedges after log. and linear subtraction.

The images may be used to check:

- · Display monitor contrast and brightness settings and grey scale reproducibility.
- · Compatibility and stability of hard-copy imager contrast and brightness settings.
- Effects of film processing.

MPBE QC for digital fluorography Low Contrast Square

- Viewing Conditions:
- "Console" Contrast:
- "Console" Brightness:
- Display Gain:
- Post Processing :
- Density Profile Obtained ? _
- Hard copy Image ? _____
- SNR: _

TUDelft

MPBE OC for digital fluorography • Quadrant Test Object (TO.Q3) · Set-up: Place the quadrant detail plate on top of the quadrant filter plate and align peripheral markers. Take mask image and then replace upper detail plate with blank plate (TO.blank).

- Viewing Conditions:
- "Console" Contrast:
- "Console" Brightness:
- Display Gain: _
- Post Processing :
- Hard copy Image ? _____

TUDelft

MPBE QC for digital fluorography					
Record No. of details visible in each quadrant. (Clockwise, Quadrant 1 : Top Right)					
Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4					
Repeat for different conditions (Gain, frame-integration, Exp. / frame, cont./bright.):					
Setting Quadrant 1 Quadrant 2 Quadrant 3 Quadrant 4					
February 17, 2006 39					
f UDelft					

MPBE QC for digital fluorography

Dalmation Test Object (TO.D3)

- Set-un:
- Test object to remain in a fixed position for mask and subtracted images.
- Viewing Conditions:
- "Console" Contrast: _____ "Console" Brightness: _
- Display Gain:
- Post Processing used for display:
- Hard copy Image ?
- Contrast dependent misregistration:
- 83% X-ray Contrast:
- 46% X-ray Contrast: 13% X-ray Contrast:

TUDelft

KCARE protocol for QA of CR systems List of equipment for commissioning tests Tape measure Adhesive tape 1.0 mm Copper filtration (>10 x 10 cm) 1.5 mm Copper filtration (>10 x 10 cm)- for Agfa only 0.5 mm Copper and 1mm Aluminium filtration (>10 x 10 cm) for Kodak only TO20 threshold contrast test object Resolution test object (e.g. Huttner 18) M1 geometry test object or lead ruler Contact mesh Ionisation chamber Small lead or Copper block (~5 x 5 cm) Steel ruler **TU**Delft

- 1.1 Dark Noise
- Purpose: To assess the level of noise inherent in the system
- a) Erase an image plate and without making an exposure read it using the following parameters:
 - Agfa: S=800, examination type 'System Diagnosis', processing – 'Flat Field'
 - Fuji: Readout mode 'Fixed', S = 10000, L = 1
 - Kodak: Mode 'pattern'
 - Konica: Readout mode Fix

February 17, 2006

TUDelft

b) Examine the images visually for uniformity and record the detector dose indicator value for Agfa (SAL – at centre of plate) and Kodak (Exposure Index). c) Record a mean pixel value using region of interest analysis (for systems not offering ROI analysis see appendix for details of how to measure a mean pixel

KCARE protocol for QA of CR systems

value).d) If possible either archive or print the image for future reference.

TUDelft

KCARE protocol for QA of CR systems KCARE

Tolerance

- For Agfa and Fuji systems a uniform artefact free image should be expected.
- Kodak systems add a collector profile to the image to compensate for non uniform collection efficiency across the place. This results in series of bands appearing across the image.
- Agfa systems should have an SAL < 100.
- For Fuji the pixel value should be <280.
- For Kodak the EI value should be <80 for GP plates and <380 for GP plates.
- For Konica a pixel value >3975 should be expected.

- 1.3 Linearity and System transfer properties
- *Purpose:* To establish the relationship between receptor dose and pixel value (for correction in tests 1.4 and 1.7). Also to establish that the indicated exposure (calculated from the detector dose indicator) responds linearly to increases in dose.
- a) Place a 24 x 30 cm cassette on the table at ~1.50m (as described for test 1.2). Set the field to just cover the cassette. Mark the corners of the cassette on the table with transpore, so that the cassette can be easily repositioned.
- b) Expose a plate at 70kVp with 1.0mm copper at the tube head to deliver a dose of order 1μ Gy as measured in test 1.2
- c) After a minimal fixed time delay (e.g.1 to 5 mins), read the plate as described below.
- Agfa: S=200, system diagnosis/flat field processing
- Kodak: Pattern mode body part.
- Fuji: semi-auto, L=1 or 2
- Konica: QC S-value, E and F processing turned off

TUDelft

KCARE protocol for QA of CR systems

d) Record the detector dose indicator value.

- Agfa: SAL (draw a region of interest covering at least 10000 pixels at the centre of the image)
- Kodak: Exposure index (EI)
- Fuji: Linearity mode (S=200)
- Konica: Fix mode
- e) Record a pixel value from the centre of the image.
- For Agfa systems the SAL values obtained from ROI analysis on the review workstation should be used.
- For Fuji, Konica and Kodak systems the images should be transferred to reporting workstations to use ROI analysis tools if available.

KCARE protocol for QA of CR systems

- f) Repeat for doses of order 4μ Gy, 12μ Gy and 50μ Gy.
- g) Plot a graph of pixel value versus receptor dose using a graph plotting package (e.g. Microsoft excel). Obtain the equation of the trend-line for this graph (i.e. the pixel value as a function of receptor dose) This equation is the system transfer properties (STP) equation and is used for making corrections in tests 1.4 and 1.7. An equation of the form

dose = f(pixel value)

· where f is some arbitrary function is required

KCARE protocol for QA of CR systems Tolerance:

For all images the ratio, k, of indicated exposure to exposure should not differ by greater than ±10% from the mean k value. The trend-line plotted in excel should have an R² fit value > 0.95. There is no tolerance for the system transfer properties (STP) equation. However the pixel value to dose relationship should be a simple relationship (e.g. log, linear or square root). For systems evaluated by KCARE the following has been found.

Manufacturer	
Agfa	
Fuji	
Kodak	
Konica	
For the Aafa system	

- STP Relationship Souare root ³ Logarithmic Logarithmic Logarithmic
- * For the Agfa system there is a square root relationship between SAL values and dose. The relationship between raw data pixel values and dose however was logarithmic for systems evaluated by KCARE

TUDelft

TUDelft

KCARE protocol for QA of CR systems 1.4 Erasure cycle efficiency

- Purpose: To test that minimal residual signal (ghosting) remains on a plate after readout and erasure.
- a) Position a plate on the table at ~1.5 m. Set a 10 cm x 10 cm field and position a piece of attenuating material (e.g. Copper or lead) at the centre of the CR plate. Expose at 80kVp, 25mAs with no filtration.
- b) Read the plate (the readout parameters are not important).
- c) Re-expose the plate with a 9 cm x 9 cm field centred on the same point on the plate with no attenuating material in place, using 80kVp, 0.5mAs and no filtration.
- d) Read the plate using the following parameters

Agfa: S=200, exam.type - 'System Diagnosis', proces. - 'Flat Field' Kodak: Mode - 'Pattern'

Fuji: Readout mode - 'Semi Auto', L = 1 or 2

Konica: Semi fix, g=1

TUDelft

KCARE protocol for QA of CR systems

- e) Set a very narrow window and adjust the level. Visually inspect the image for any remnant of the previous image (look for both the attenuating material and the position of the collimators). If a remnant is visible, use region of interest analysis to quantify the difference in pixel value between the ghosted and unghosted areas.
 - For Agfa systems the SAL values obtained from ROI analysis on the review workstation should be used.
 - For Fuji, Konica and Kodak systems the images should be transferred to reporting workstations to use ROI analysis tools if available.
- The ROI values should be used to calculate indicated receptor doses using the STP equation established in test 1.3

Tolerance

- If no evidence of ghosting is found from visual inspection of the images then the test is passed and there is no need to perform ROI analysis.
- There should be <1% (remedial) difference between the STP corrected pixel values in the ghosted region and the surrounding areas.
- A suspension level of <5% is set.

KCARE protocol for QA of CR systems 1.5 Detector dose indicator calibration

Purpose: To assess the accuracy of the plate exposure values calculated using exposure indicators.

a) Position a b) Expose the and filtration lis	24×30 plate on the table as e plate to a known dose of ~ sted below (use mAs found in	described for test 10 μ Gy using the kVp n test 1.2).
CR system	Filtration	Tube Voltage
		(kVp)
Agfa	1.5mm Cu	75
Kodak	0.5mm Cu +1mm Al	80
Konica	info not known	not known
Fuji	none	80
February 17, 2006		56

KCARE protocol for QA of CR systems

- c) Read the plate out as described below
- Agfa: no delay between exposure and readout, S=200, system diagnosis/flat field processing and linear sensitometry.
- Kodak: A 15 minute delay between exposure and readout, readout on Pattern mode body part
- Fuji: A 10 minute delay between exposure and readout, readout using semi-auto, L=1 or 2
- Konica: Details of the Konica calibration protocol are not available
- d) Record the detector dose indicator, and calculate the indicated exposure using the equations given below.
- For Agfa systems the indicated exposure, E_{Aafa} , in μ Gy, for a 200 speed readout is given by (1)
 - $E_{Aqfa} = 5.90 \times 10^{-6} \times SAL^2$

TUDelft

TUDelft

KCARE protocol for QA of CR systems

- For Kodak systems the indicated exposure, E_{Kodak} , in μ Gy, is given
- $E_{Kodak} = 8.7 \times 10^{n}$, where n = (EI-2000)/1000(2)
- + For Fuji systems the indicated exposure, E_{fuji} , in μ Gy, is given by E_{full} = 1740/S (3)
- For Konica systems the equation linking to dose and S value is not available
- e) Repeat twice and take a mean value of the indicated exposures.

Tolerance

The indicated and measured exposure should agree within 20%.

TUDelft

KCARE protocol for QA of CR systems 1.6 Detector dose indicator consistency

- *Purpose:* To assess the variation of sensitivity between plates, and set a baseline for monitoring system sensitivity for future QA testing
- a) Place a 24 x 30 cm CR cassette on the couch and set up as described for test 1.2/1.3 (see figure 1) and with 1.0mm Cu filtration.
- b) Expose the plate at 70kVp to give a known dose of ${\sim}10~\mu\text{Gy}.$ The dose to the plate calculated from inverse square law corrected ion chamber measurements should be recorded (see test 1.2)
- c) Read the plate as described for test 1.5.
- d) Record the detector dose indicator, and calculate the indicated exposure using equations 1-3. Repeat twice for the same plate.

TUDelft

KCARE protocol for QA of CR systems

e) Calculate the indicated exposure using equations given in test 1.5

of Repeat this test for all plates for acceptance testing(mainting only one exposure to each plate). It is helpful at this point to identify a plate that has a detector dose indicator in the middle of the range for future QA.

Tolerance

- The variation in the calculated indicated exposures should not differ by greater than 20% between plates
- The measurements repeated on the same plate should be used to lay down a baseline for future OA tests.
- All images should be inspected for gross artefacts

1.7 Uniformity

- Purpose: To assess the uniformity of the recorded signal from a uniformly exposed plate. A non-uniform response could affect clinical image quality.
- a) Expose a plate as described for test 1.6 but with half the mAs.
- b) Rotate the plate through 180o about the vertical axis and reexpose using the same parameters (this should largely cancel out the non uniformities due to the anode heal affect).
- c) Read the plate as described for test 1.3.
- d) Visually inspect all images obtained in test 1.3, 1.5 and 1.6 for uniformity and artefacts. Likely artefacts include dust on the plate or readout optics, and scratches on plates

TUDelft

, 2006			

KCARE protocol for QA of CR systems

- e) The uniformity of the image obtained in 1.7b should be assessed using region of interest analysis (ROI) if available, to measure the mean pixel values in positions a-e, as indicated in figure 2 below (i.e.at the centre of the image, and at the centre of each of the four quadrants of the image). The size of ROI should be of order 10000 pixels.
 - For Agfa systems the SAL values obtained from ROI analysis on the review workstation should be used.
 - For Fuji, Konica and Kodak systems the images should be transferred
 - to reporting workstations to use ROI analysis tools if available.
- f) The five values obtained from ROI analysis should be used to calculate five indicated receptor dose values using the STP equation obtained in test 1.3

TUDelft

TUDelft

KCARE protocol for QA of CR systems
ab
Fig. 2 Positions of the ROI's for uniformity tests
 f) The five values obtained from ROI analysis should be used to calculate five indicated receptor dose values using the STP equation obtained in test 1.3
February 17, 2006 63
T UDelft

KCARE protocol for QA of CR systems Tolerance • The images should not have obvious artefacts.

 The ratio of the standard deviation of the 5 STP corrected ROI values to their mean (the coefficient of variation) should be less than 10%

KCARE protocol for QA of CR systems 1.8 Scaling errors

- Purpose: To assess the accuracy of software distance indicators and check for distortion.
- a) Position the Leeds TO.M1 test object directly on the centre of a CR cassette at > 150 FDD.
- b) Expose at 50-60 kVp with no filtration and 10mAs.

N.B. A lead ruler could be used in place of the M1 test object. If so 2 exposures should be made with the ruler placed in first the scan direction then the subscan direction.

• c) Read out plate using processing as for test 1.3.

KCARE protocol for QA of CR systems

d) Using the distance measuring software tools measure the dimensions (x and y) of five central squares in both fast and slow scan directions. Calculate the aspect ratio x/y.

- For Agfa systems the review workstation software can be used.
- For Fuji, Kodak and Konica systems the images should be transferred to the reporting workstation to use distance measuring software tools if available. If images are reported from film then they should be printed at full size. Distances can then be measured with a ruler.

e) Reposition the test object over the edge of the plate as indicated in figure 3 and repeat steps b and c

TUDelft

1.9 Blurring

- *Purpose:* To test for any localised distortion or blurring of the image.
- a) With the contact mesh in placed on the cassette at >150cm FDD, expose at 50-60 kVp, fine focus, with no filtration and 10mAs. Read the plate as described for test 1.3.
- b) Visually inspect the image for distortions. If distortion occurs clean the plate and repeat.
- c) Repeat for at least two other plates.
- d) Repeat with a fine mesh if available.
- Repeat what a finite mesh if available. *Tolerance:* No blurring should be present. If blurring is present on all plates this suggests the reader is at fault, whilst imperfections in individual plates may also lead to blurring. If blurring remains on a region of a plate after cleaning it should not be used clinically.

TUDelft

TUDelft

- 1.12 Laser beam function
 Purpose: To assess laser beam scanline integrity and jitter
 a) Place a steel ruler slightly angled to the subscan direction on a large cassette.
- cassette.
 b) Expose at ~70 kVp, 150cm FSD and an mAs to deliver an incident exposure of ~50,40, Read the plate as described for test 1.3
 c) Using the software magnify the image x10. This will usually require the image to be viewed from a reporting monitor. Select a narrow window width such that the image appears largely polarised to black or white. This should allow the edge to be easily differentiated from the background. Laser beam jitter can be evaluated by examining the edge of the ruler on the image.

Tolerance

- The edge should be continuous across the full length of the image. Stair step characteristics should be uniform across the length of the image. Image.
- Regions of over or undershoot of the scan lines indicate a timer or laser beam modulation problem.

KCARE protocol for QA of CR systems 1.13 Moiré Patterns

- *Purpose:* To test for the presence of Moiré pattern artefacts caused by grids.
- a) Place a CR cassette in the bucky such that the scan lines are vertical to the gridlines. The cassette should be 1.5m from the focus, and the collimation should cover the whole plate.
- b) Expose at 70 kVp using the AEC with 1.0 mm of copper in the beam, and the grid in place.
- c) Read the plate as described for test 1.3.
- d) Visually inspect the image for Moiré line pattern artefacts.
- e) Repeat with the CR cassette positioned in the bucky such that the scan lines are horizontal to the gridlines.
- f) Repeat for all buckies and grids that may be used with the CR system, including any grids used in mobile radiography.

KCARE protocol for QA of CR systems Tolerance

- No Moiré patterns should be visible.
- If Moiré patterns are visible with a particular grid, it should not be used with the CR plates.
- The cause of Moire patterns may be the failure of the motion of moving grids or insufficient grid density

TUDelft

KCARE protocol for QA of CR systems

Annual QA tests

- The following routine QA tests should be performed approximately annually
- 1.2 Dosimetry (only for 4μGy and 10μGy with 70kVp and 1.0mmCu)
- 1.4 Erasure cycle efficiency
- 1.6 Detector dose indicator consistency/sensitivity (for 1 plate of each size)
- 1.7 Uniformity
- 1.8 Scaling errors
- 1.9 Blurring
- 1.10 Limiting resolution (45° only)
- 1.11 TCDD (only 4µGy).

TUDelft

TUDelft

KCARE protocol for QA of DDR systems

Except for test 1.5 (detector dose indicator calibration) the tests for DDR are quite similar to those for CR

∞ ³³ **Ť**UDelft

QC measurements: hard copy device

 SMPTE test generator on monitor (Agfa laser printer Drystar 2000)

no

- 5 % visible in 0 %?
- 95 % visible in 100 %? yes
- homogeneity
 - edges not fully printed, but homogeneity for DIGRAD phantom okay
- all line pairs visible

hard copy device assessment

- SMPTE test generator requirements
 - 5 % visible in 0 %?
 - 95 % visible in 100 %? Yes

yes

- all line pairs visible
- 5 % not visible in 0 %

Conclusions

- There is quite a number of QC tests available, even when disregarding conventional tests, dose and image quality
- To be able to perform QC test the number of test and the frequency of testing has to be restricted
- A complete protocol should include the name of the test, purpose, measurement method, requirements (tolerances) and test frequency
- Requirements (tolerances) and test frequencies are not always
 available
- It would also be useful to have an indication on the test duration

February 17, 2006

TUDelft

fuDelft

Conclusions

- Image quality of paediatric system worse than chest radiology system
- Dose of paediatric system high rather insensitive image receptor system
- Image quality of chest radiology system similar to average in Dutch survey
- Dose of chest system rather low compared to Dutch survey and small compared to EC reference doses

TUDelft