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Abstract

Out of the many NoSQL databases in use today, some that provide
simple data structures for records, such as Redis and MongoDB, are now
becoming popular. Building applications out of these complex data types
provides a way to communicate intent to the database system without
sacrificing flexibility or committing to a fixed schema. Currently this
capability is leveraged in limited ways, such as to ensure related values
are co-located, or for atomic updates. There are many ways data types can
be used to make databases more efficient that are not yet being exploited.

We explore several ways of leveraging abstract data type (ADT) se-
mantics in databases, focusing primarily on commutativity. Using a Twit-
ter clone as a case study, we show that using commutativity can reduce
transaction abort rates for high-contention, update-heavy workloads that
arise in real social networks. We conclude that ADTs are a good abstrac-
tion for database records, providing a safe and expressive programming
model with ample opportunities for optimization, making databases more
safe and scalable.
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Why NoSQL and eventual consistency? 
– Scalable: horizontally scale services to billions of users 

– Flexible, ad-hoc data model, no fixed schema 

Why not? 

– No one understands eventual consistency 

– NoSQL databases are blind to programmer intent 

Approximate data types 
Machine learning and data analytics algorithms use probabilistic data types (hyperloglog, bloom 
filter, count min sketch) to make it feasible to compute statistics over extremely large datasets. 
For example, HyperLogLog can be used to count the number of distinct elements (approximate 
set cardinality). 

We propose relaxing an ADT’s semantics in a similar way to permit more concurrency and 
therefore improve scalability. Each operation can define an error tolerance, and the ADT’s tracks 
the bounds of all in-flight operations and uses them to determine when new operations can be 
permitted. 

Example: approximate set size in Retwis 
Imagine we allow a 5% error tolerance when getting the size of a set. A set encoding who has 
retweeted one of my tweets (~0 elements) would have to be precise, but the retweet set for 
Ellen’s selfie has 3.4M entries, so we could allow 170k add or remove ops while the 

approxSize is in flight. That’s a lot more concurrency, which would allow many of those 

transactions to succeed that wouldn’t have before. 

CRDTs 
One can also implement data types that behave like CRDTs (conflict-free replicated data types) 
do in eventual consistency. These could be freely replicated on multiple shards and lazily kept 
up to date. Behavior will be more difficult to reason about, but it will be limited to just records of 
this type, and if implemented correctly, these records should perform comparable to eventually 
consistent systems.

Abstract data types as records 
Abstract data types (ADTs) provide an abstraction that helps span the gap between 

serializability and eventual consistency. Building apps out of semantically meaningful 

ADTs rather than primitive strings and integers is natural, flexible, and optimizable. 

ADTs are specialized for particular use cases, providing an expressive interface to 

the database. Each data type defines operations available on it. Concurrency control 

and replication decisions can be delegated to the data structure as well. Choosing 

the most specific ADT for the job maximizes optimization potential. Example: 

UniqueIDGenerator rather than Integer.

Commutativity 
If two operations commute then they executing them in either order produces the 

same result. Commutativity is a property of pairs of operations on an ADT, and is a 

function of the operations, their arguments, and the current abstract state. The 

complete set of rules for an ADT are its commutativity specification. 

Transaction boosting 

Leveraging commutativity can reduce transaction aborts. When operations in different 

transactions are known to commute, even if they are updates to the same record, the 

two transactions can safely execute concurrently. 

Combining 

When operations are associative and commutative, they can be combined first before 

being applied to the data structure itself. This can drastically reduce contention on 

hot records (lots of concurrent updates).

Evaluation 
We compare concurrency control which employs transaction boosting to allow 

concurrent commutative operations against a more traditional system using reader/

writer locks (so read-only operations can be concurrent, but only one updating 

operation in flight).

Commutativity Specification for Set

method: commutes with: when:

add(x): void add(y) ∀x,y

remove(x): void remove(y) ∀x,y

add(y) x ≠ y

size(): int add(x) x ∈ Set

remove(x) x ∉ Set

contains(x): bool add(y) x ≠ y ∨ y ∈ Set

remove(y) x ≠ y ∨ y ∉ Set

size() ∀x
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Random set operations (add/remove/size/

getRandom) over 10,000 keys either uniformly 

distributed or a skewed Zipfian distribution. 

Leveraging commutativity is more important on 

update-heavy workloads, provided they commute 

with each other. It is even more important for 

skewed workloads where some keys are hit much 

more often, leading to high contention.

Case study: Twitter clone 

We also evaluate on a Twitter-like app, Retwis, using a realistic synthetic graph (Kronecker), and 
workload generated by a simple user model (new user, follow, new post, repost, load timeline).

Building an app: Twitter

The diagram above shows a sketch of the Twitter clone, Retwis, used in our evaluation. The social graph is 

composed of Dict records holding user data, and Sets tracking each user’s followers. We sketch the code for 

performing a retweet and reading a user’s timeline. Two retweet transactions commute with each other. 

Reading the timeline, however, which reads the exact size of the set, doesn’t commute and must abort. 

However, if the "retweet count" can be approximated, then the transaction succeeds.

Transaction 4 (timeline-approx)

Set:approxSize("1003:retweeters")

.
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author:  92
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def retweet(postID, userID)

  Set:add("#{postID}:retweeters", userID)

  followers = Set:range("#{userID}:followers", 0, -1)

  for fID in followers

    SortedSet:add("#{fID}:timeline", now(), postID)

  end

end

def timeline(userId,limit)

  posts = SortedSet:range("#{userId}:timeline", 0, limit)

  for postID in posts

    postInfo = Dict:get("post:#{postID}")

    retweetCount = Set:size("#{postID}:retweeters")

    out < "#{postInfo} #{retweetCount}"

  end

end

Transaction 1 (retweet)

Set:add("1003:retweeters", 53)

Set:range("53:followers", 0, -1)

.

Transaction 2 (retweet)

Set:add("1003:retweeters", 89)

Set:range("89:followers", 0, -1)

.

commute

doesn't commuteTransaction 3 (timeline)

Set:size("1003:retweeters")

.

doesn't commute
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Modeling viral behavior

The read-heavy workload models 

typical behavior (majority content 

consumption); repost-heavy simulates 

the load when popular posts are 

reposted more often, causing them to 

go viral. During these bursts of high 

contention, taking advantage of 

commutativity is essential.
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50% users have 

<100 followers

40% reposted  

< 20 times

a few reposted by 

over 1000 users 

(out of 4000)
almost all contention in this 

workload eliminated by 

commutativity

approxSize eliminates last 

few conflicts in timeline txns 

(see diagram above)

throughput drop 

during viral event  

(high contention)

trad. concurrency 

control does fine 

with reads

Shard 0 Shard 1 Shard 2 Shard 3

user:3

user:22

user:89
user:7

retweeters:33 retweeters:33 retweeters:33 retweeters:33

template< class T >  

class Set { 

  Interval<int>       size(float error); // [ value, value+size()*error )  

  Probabilistic<int>  size(float error); // hyperloglog 

  Probabilistic<bool> contains(T o);     // bloom filter 

  Inconsistent<T>     random();          // racy read 

};  

add("reposts:54", 32)

add("reposts:54", 42)

add("reposts:54", 32)

add("reposts:54", 21)

add("reposts:54", 17)

add("reposts:54", 89)

retweeters:1003 >

44

39

10

01

99

add("reposts:54", [32,42])

add("reposts:54", [21,17,89])

Combining: merge commutative 
& associative operations together 
(in parallel) and apply them in 
bulk to the contended record.


