
Claret: Using Data Types for Highly Concurrent

Distributed Transactions

Brandon Holt, Irene Zhang, Dan Ports, Mark Oskin, Luis Ceze

University of Washington

{bholt,iyzhang,drkp,oskin,luisceze}@cs.washington.edu

March 7, 2015

Abstract

Out of the many NoSQL databases in use today, some that provide
simple data structures for records, such as Redis and MongoDB, are now
becoming popular. Building applications out of these complex data types
provides a way to communicate intent to the database system without
sacrificing flexibility or committing to a fixed schema. Currently this
capability is leveraged in limited ways, such as to ensure related values
are co-located, or for atomic updates. There are many ways data types can
be used to make databases more efficient that are not yet being exploited.

We explore several ways of leveraging abstract data type (ADT) se-
mantics in databases, focusing primarily on commutativity. Using a Twit-
ter clone as a case study, we show that using commutativity can reduce
transaction abort rates for high-contention, update-heavy workloads that
arise in real social networks. We conclude that ADTs are a good abstrac-
tion for database records, providing a safe and expressive programming
model with ample opportunities for optimization, making databases more
safe and scalable.

1

Using Data Types for Highly Concurrent Distributed Transactions
Claret

Brandon Holt, Irene Zhang, Dan Ports, Mark Oskin, Luis Ceze

{bholt,iyzhang,drkp,oskin,luisceze}@cs.washington.edu

Why NoSQL and eventual consistency?
– Scalable: horizontally scale services to billions of users

– Flexible, ad-hoc data model, no fixed schema

Why not?

– No one understands eventual consistency

– NoSQL databases are blind to programmer intent

Approximate data types
Machine learning and data analytics algorithms use probabilistic data types (hyperloglog, bloom
filter, count min sketch) to make it feasible to compute statistics over extremely large datasets.
For example, HyperLogLog can be used to count the number of distinct elements (approximate
set cardinality).

We propose relaxing an ADT’s semantics in a similar way to permit more concurrency and
therefore improve scalability. Each operation can define an error tolerance, and the ADT’s tracks
the bounds of all in-flight operations and uses them to determine when new operations can be
permitted.

Example: approximate set size in Retwis
Imagine we allow a 5% error tolerance when getting the size of a set. A set encoding who has
retweeted one of my tweets (~0 elements) would have to be precise, but the retweet set for
Ellen’s selfie has 3.4M entries, so we could allow 170k add or remove ops while the

approxSize is in flight. That’s a lot more concurrency, which would allow many of those

transactions to succeed that wouldn’t have before.

CRDTs
One can also implement data types that behave like CRDTs (conflict-free replicated data types)
do in eventual consistency. These could be freely replicated on multiple shards and lazily kept
up to date. Behavior will be more difficult to reason about, but it will be limited to just records of
this type, and if implemented correctly, these records should perform comparable to eventually
consistent systems.

Abstract data types as records
Abstract data types (ADTs) provide an abstraction that helps span the gap between

serializability and eventual consistency. Building apps out of semantically meaningful

ADTs rather than primitive strings and integers is natural, flexible, and optimizable.

ADTs are specialized for particular use cases, providing an expressive interface to

the database. Each data type defines operations available on it. Concurrency control

and replication decisions can be delegated to the data structure as well. Choosing

the most specific ADT for the job maximizes optimization potential. Example:

UniqueIDGenerator rather than Integer.

Commutativity
If two operations commute then they executing them in either order produces the

same result. Commutativity is a property of pairs of operations on an ADT, and is a

function of the operations, their arguments, and the current abstract state. The

complete set of rules for an ADT are its commutativity specification.

Transaction boosting

Leveraging commutativity can reduce transaction aborts. When operations in different

transactions are known to commute, even if they are updates to the same record, the

two transactions can safely execute concurrently.

Combining

When operations are associative and commutative, they can be combined first before

being applied to the data structure itself. This can drastically reduce contention on

hot records (lots of concurrent updates).

Evaluation
We compare concurrency control which employs transaction boosting to allow

concurrent commutative operations against a more traditional system using reader/

writer locks (so read-only operations can be concurrent, but only one updating

operation in flight).

Commutativity Specification for Set

method: commutes with: when:

add(x): void add(y) ∀x,y

remove(x): void remove(y) ∀x,y

add(y) x ≠ y

size(): int add(x) x ∈ Set

remove(x) x ∉ Set

contains(x): bool add(y) x ≠ y ∨ y ∈ Set

remove(y) x ≠ y ∨ y ∉ Set

size() ∀x

50% read
50% update

90% read
10% update

0

10

20

30

40

0

10

20

30

40

U
n
ifo

rm
Z

ip
f: 0

.6

4 8 16 32 48 64 4 8 16 32 48 64

Concurrent clients

T
h
ro

u
g
h
p
u
t
(k

/s
e
c
)

Concurrency
control:

commutative

reader/writer

Raw Operation Mix: Set

Random set operations (add/remove/size/

getRandom) over 10,000 keys either uniformly

distributed or a skewed Zipfian distribution.

Leveraging commutativity is more important on

update-heavy workloads, provided they commute

with each other. It is even more important for

skewed workloads where some keys are hit much

more often, leading to high contention.

Case study: Twitter clone

We also evaluate on a Twitter-like app, Retwis, using a realistic synthetic graph (Kronecker), and
workload generated by a simple user model (new user, follow, new post, repost, load timeline).

Building an app: Twitter

The diagram above shows a sketch of the Twitter clone, Retwis, used in our evaluation. The social graph is

composed of Dict records holding user data, and Sets tracking each user’s followers. We sketch the code for

performing a retweet and reading a user’s timeline. Two retweet transactions commute with each other.

Reading the timeline, however, which reads the exact size of the set, doesn’t commute and must abort.

However, if the "retweet count" can be approximated, then the transaction succeeds.

Transaction 4 (timeline-approx)

Set:approxSize("1003:retweeters")

.

Brandon Holt @holtbg

At #EuroSys right now!

   •••

EuroSys
2015

EuroSys 2015 @EuroSys2015

Present your early-stage work as a poster at
EuroSys. One-page proposals are due on March
10th. eurosys2015.labri.fr/calls/posters/

   •••16 9

Ellen DeGeneres @TheEllenShow

If only Bradley's arm was longer. Best photo
ever. #oscars

   •••2M3.4M

user:53 > name: "Brandon Holt"

username: "holtbg"

post:1003 >

author: 92

content: "If only Bradley's arm was

longer. Best photo ever. #oscars"

1003:retweeters >

44

3

93

201
17

def retweet(postID, userID)

 Set:add("#{postID}:retweeters", userID)

 followers = Set:range("#{userID}:followers", 0, -1)

 for fID in followers

 SortedSet:add("#{fID}:timeline", now(), postID)

 end

end

def timeline(userId,limit)

 posts = SortedSet:range("#{userId}:timeline", 0, limit)

 for postID in posts

 postInfo = Dict:get("post:#{postID}")

 retweetCount = Set:size("#{postID}:retweeters")

 out < "#{postInfo} #{retweetCount}"

 end

end

Transaction 1 (retweet)

Set:add("1003:retweeters", 53)

Set:range("53:followers", 0, -1)

.

Transaction 2 (retweet)

Set:add("1003:retweeters", 89)

Set:range("89:followers", 0, -1)

.

commute

doesn't commuteTransaction 3 (timeline)

Set:size("1003:retweeters")

.

doesn't commute

0 0 00.0

0.1

0.2

follow newuser post repost timeline

Transaction type

a
v
g
 r

e
tr

ie
s
 /

 t
x
n

a

a

a

commutative: approx

commutative: precise

reader/writer

●

●

●

●

●

●

●●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●

read−heavy repost−heavy

0

1

2

3

500 1000 1500 2000 2500 500 1000 1500 2000 2500

Throughput

A
ve

ra
g
e
 l
a
te

n
c
y
 (

m
s
)

● ●boosting (commutative) reader/writer locks

Modeling viral behavior

The read-heavy workload models

typical behavior (majority content

consumption); repost-heavy simulates

the load when popular posts are

reposted more often, causing them to

go viral. During these bursts of high

contention, taking advantage of

commutativity is essential.

0.1

0.2

0.4

0.6

0.8

1.0

1 10 100 1000

reposts (log scale)

C
D

F
 (

lo
g
 s

c
a

le
)

0.1

0.5

1.0

1 10 100 1000

followers / user (log scale)

C
D

F
 (

lo
g
 s

c
a
le

)

2.1

50% users have

<100 followers

40% reposted  

< 20 times

a few reposted by

over 1000 users

(out of 4000)
almost all contention in this

workload eliminated by

commutativity

approxSize eliminates last

few conflicts in timeline txns 

(see diagram above)

throughput drop

during viral event  

(high contention)

trad. concurrency

control does fine

with reads

Shard 0 Shard 1 Shard 2 Shard 3

user:3

user:22

user:89
user:7

retweeters:33 retweeters:33 retweeters:33 retweeters:33

template< class T >  

class Set { 

 Interval<int> size(float error); // [value, value+size()*error)  

 Probabilistic<int> size(float error); // hyperloglog 

 Probabilistic<bool> contains(T o); // bloom filter 

 Inconsistent<T> random(); // racy read 

};  

add("reposts:54", 32)

add("reposts:54", 42)

add("reposts:54", 32)

add("reposts:54", 21)

add("reposts:54", 17)

add("reposts:54", 89)

retweeters:1003 >

44

39

10

01

99

add("reposts:54", [32,42])

add("reposts:54", [21,17,89])

Combining: merge commutative
& associative operations together
(in parallel) and apply them in
bulk to the contended record.

