
Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 1

Invoking a third party Web service with EGL and Web 2.0

Skill Level: Intermediate
Reginaldo Barosa Executive IT Specialist – IBM Boston

 April, 2010

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 2

 Abstract

A Web service is a software system designed to support interoperable machine-to-machine interaction over a
network. Web services are frequently just Web APIs that can be accessed over a network, such as the
Internet, and executed on a remote system hosting the requested services.

Web 2.0 describes the changing trends in the use of World Wide Web technology and web design that aim to
enhance creativity, communications, secure information sharing, collaboration and functionality of the web.
Web 2.0 lets your company quickly develop mashups, each of which is a combination of software capability
from different sources. For example, you might be developing an application to let travelers reserve rooms in
one or another city. With Web 2.0, the application can provide access to a Google™ map for each hotel and
can include, within the map, a weather forecast for the city. Neither the mapping software nor the forecast
software was created with the other in mind, yet the two kinds of software are usefully integrated in a creative
way.
EGL is converted automatically into JavaScript™. And implements Web 2.0 Because EGL supports Safari,
the generated applications work on the iPhone as well in web browsers like Microsoft® Internet Explorer
versions 6 through 8, Firefox 2 and 3, and Safari 2 and 3

Before you start
Learn what to expect from this tutorial, and how to get the most out of it.
Be sure that you have started the System z Sandbox and that IBM® Rational® Developer for System z is
running under the Windows in the system z Sandbox.

About this series
Walk through this scenario and others online as part of the Assets entry point and the Skills entry point of the

Enterprise Modernization Sandbox for IBM® System z®.

About this tutorial
This tutorial shows you how to create a Rich UI (User Interface) web page that will invoke a Web service built
from another product and deployed outside of your environment using IBM® Rational® Business Developer,
which supports service-oriented architecture (SOA) and Web 2.0.
SOA is a method of organizing applications in modular pieces (called services, including Web services). The
services provide logic to the clients in the form of functions, similar to the way that Enterprise Generation
Language (EGL) libraries make functions available to programs..

Objectives

Demonstrate how to create "state-of -the-art" web interfaces using Rich User Interfaces and Web 2.0 that
invoke a Web service that is deployed somewhere and with any technology that you don’t need to know.
For example the Web service that we will consume here was deployed into CICS and its running in a
mainframe system with z/OS..

Prerequisites
You need to be familiar with basic Web development concepts.

System requirements
The System z Sandbox

Getting started
You must be connected to the system z sandbox and Rational Developer for System z with EGL must be
running with a workspace opened.

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 3

CICS application was modernized into Web service
Since we want to show that the Rich UI client application that you will create is independent on the server
implementation we decided to use an existing COBOL/CICS code that was transformed into Web service and
deployed in our z/OS system located in Texas..

If you are interested in the CICS Services creation to see how this was done, refer to
 IBM Enterprise Modernization for System z: Wrap existing COBOL programs as Web Services with IBM
Rational Developer for System z

This CICS application has many functions but the one the one that you will use does a simple mortgage
calculation.

Figure 1 shows this application interface when using a CICS terminal. The user types the Amount to loan, the
length in years and the Interest Rate. The CICS server application returns the Monthly payment.

Figure 1. CICS application running in 3270 terminals

What you will learn from this tutorial
By completing the exercises in this tutorial, you will learn how to create and test EGL Rich UI components that
will invoke Web Services. When you complete this tutorial your Rich UI Web page will be similar the one
show in the Figure 2, instead of this ugly black screen on Figure 1.

Figure 2. Rich UI component created by EGL

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 4

Sequence of activities
These are the steps that you will perform in this tutorial:

1 Create an EGL Rich UI project that will hold the EGL components
2 Import the WSDL into the EGL Rich UI project and test it
3 Create the Rich UI components.
4 Create the EGL code to consume the Web Service deployed into CICS
5 Complete the EGL Rich UI code to invoke the Web service
6 Test the Rich UI Application
7 Improve the code.

Section 1 - Create an EGL Rich UI project that will hold the EGL
components
This example assumes that Rational Developer for System z with EGL is already started. Also note that you
are operating under VMWARE, which may slow response time.

Disconnect from z/OS System
When The VMWARE session is started you will be connected to z/OS system and you will see the z/OS
Projects perspective..

1. Because in this tutorial you will not use z/OS, you can disconnect to the z/OS system.
Right click on dallas and select disconnect as shown in Figure 2.

Figure 2. Disconnection from z/OS system

eglfile

Creating the new project
1. To create a new EGL Web project in the Workbench, click File > New > Other (or use Ctrl + N).
2. Type egl in the Wizards field, select EGL Project, as shown in Figure 3 and click Next.

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 5

Figure 3. Select EGL Project wizard

3. Name the project LAB7_RUI, select Rich UI Project , as shown in Figure 4 and click Finish.

Remember that VMWARE will slow you down, be patient until this operation give you another dialog.

Figure 4. Specify project options

4. You need to use other perspective than z/OS projects, ; and if the Confirm Perspective Switch dialog
displays with a message asking if you want to switch to the EGL Rich UI perspective, click Yes, as shown in
Figure .5.

Figure 5. Open Rich UI perspective.

5. Expand the LAB7_RUI > EGLSource folder in the Project Explorer. Notice that two EGL build
descriptor named LAB7_RUI.eglbld and the LAB7_RUI.egldd deployment descriptor was created.

6. Notice also that the wizard automatically create another project named com.ibm.egl.rui_1.0.1.
(it may be already on your workspace)
This second project will be referred by your LAB7_RUI project.
Expand LAB7_RUI project to visualize what has been created as shown in the Figure 6.

Figure 6. LAB7_RUI project created

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 6

Section 2 - Import the WSDL and test it

Import the WSD into the Rich UI project

The CICS Web Service creator must provide the Web Service Definition Language (WSDL) to any client
interest in use it. This WSDL is located in the file C:\EGL_POT\LAB7B \EPSCSMR.wsdl you will need to
import it into your project.
You need to move this WSDL under EGLSource folder.

1. To import the WSDL, expand LAB7_RUI and EGLSource and then right click on EGLSource and
select Import….

Figure 7. Importing the WSDL

2. On the Import dialog type file, select File System and click Next

Figure 8. Using Import File System dialog

3. Navigate to C:\EGL_POT\LAB7B , click on LAB7B (not the whole box), select EPSCSMR.wsdl and
click Finish.

Figure 9. Importing the WSDL File

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 7

4. Expand EGLSource folder to see the file copied there

Figure 10. The imported WSDL is now underEGLSource

Test the WSDL imported to invoke the Web service

Rational developer products provide a nice and easy test facility to invoke Web services from existing WSDL
components.

1 Using the Project Explorer view, right-click on EPSCSMRD.wsdl and select Web Services > Test
with Web Services Explorer

Figure 11. Invoking Web Services Test Explorer

2 Be patient (you are under VMware). After a while, the Web Services Explorer will be launched in a
Web Browser view.
Resize the view to see all areas of the Web Services Explorer. Or you just double-click on the Web
Services Explorer title to display full screen.

Figure 12. Invoking Web Services Test Explorer

3 Click on the link for the EPSCSMRTOperation operation within the Actions section, (alternatively,
you can click on the + sign beside EPSCSMRBinding and expand the view to display the
EPSCSMRTOperation

Figure 13. Invoking Web Services Operation

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 8

4 Be sure that this view is maximized. Just double click on the title.

Figure 14. Maximizing the window

5 Notice that the Actions section is now replaced with information about the EPSCSMRTOperation
operation and the parameters it takes. It also lists the endpoint associated with this request.
Type valid numbers like 300000, 15 , 00 and 5.5 and click Go to invoke the operation.

Figure 15. Typing values to test the Service

6 Resize the Status section and you should see results as shown in Figure 18.
 Click on Source to see the SOAP Envelopes

Figure 16. Web Service results

7 Resize again and you will see the XML SOAP envelopes with the input and output messages as
seen in Figure 17:

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 9

Figure 17. SOAP Envelope

8 After you are done testing, close the web browser using (Ctrl + Shift + F4).

9 Reset the Enterprise Service Perspective: Window > Reset perspective

Section 3 - Create the Rich UI components

1 You will now create the EGL code that will invoke the Web Services. Right click on EGLSource and
select New > Rich UI Handler amount

Figure 18. Starting Rich UI handler

2 Type handlers as Package nam e and MortgageCalculatorHandler as EGL source file

nam e and click Finish .
Figure 19. Creating EGL Rich UI handler

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 10

3 The EGL Rich UI editor will open with a blank page.
Expand EGLSource and handlers package to see the MortgageCalculatorHandler.egl code created.

Figure 20. The EGL handler is created

4 Click on the tab Source to see the EGL code generated . Note that the type RUIhandler is the EGL
code where you will add the Rich UI controls and if desired the business logic or web services invocations.

Figure 21. Source tab shows the EGL code

Understanding how browsers handle a Rich UI application
The internal data areas used by the browser are represented as an inverted tree.
The tree is composed of a root -- named document -- and a set of elements, which are units of
information. The top most element that is available to you is named body. The elements
subordinate to body are specific to your application.
A set of rules describes both the tree and how to access the data that the tree represents. That
set of rules is called the Document Object Model (DOM). We refer to the tree as the DOM tree.
Refer to the Rational Developer for System z help for better explanation and examples of these
definitions.

Using the Design surface to create a DOM tree
When you drag a widget from the palette to the Design surface, the areas that can receive the
widget are called potential drop locations, and the color of those areas is yellow by default.
When you hover over a potential drop location, the area is called a selected drop location, and
the color of that area is green by default. You can customize the colors in the Workbench

preferences.

When you first drag a widget to the Design surface, the entire surface is a selected drop location,
and the effect of the drop is to declare the widget and to identify it as the first element in the Rich
UI handler's initialUI property. That property accepts an array of widgets at development time.

The array is ultimately used to create a DOM tree, which is a runtime data structure.
Specifically, the elements in the Rich UI handler's initialUI array become children of the document
element, with the order of initialUI array elements at development time equivalent to the order of
sibling DOM elements at run time.

When you drag another widget to the Design surface, you have the following choices:
 1. You can place the widget adjacent to the initially placed widget. The effect on your source
code is to declare the second widget and to identify it as another element in the initialUI array.
Your placement of the new widget is either before or after the first widget and indicates where the
widget is placed in the array.
2. If the initially placed widget was a container—for example, a box—you can place the second
widget inside the first. The effect on your source code is to add an element to the children

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 11

property of the container. The effect is ultimately to add a child element to the DOM tree;
specifically, to add a child element to the element that represents the container.
Your subsequent work continues to build the DOM tree. You can repeatedly perform drag-and-
drop operations, with the placement of a widget determining what array is affected and where the
widget is placed in the array. The drag-and-drop operation is an alternative to writing a widget
declaration and array assignment in the code itself, whether in the Source tab of the Rich UI
editor or in the EGL editor.

5 You will now add some Rich UI controls to the blank page.
Click on Design tab and using the mouse, drag and drop Box on top of the screen
Hold the mouse button one and drag it at the top of the screen

Figure 22. Drag and drop a Box widget

To drag and drop: click on desired Widgets, hold the mouse button one and drag it at the top of the screen..

6 The New Variable window will pop up. Type mainBox and click OK. It is a good practice to start giving
names to the widgets to be created now, this way you can easily identify those in the EGL code that you will
see soon..

Figure 23. Adding a name to a Variable

A Rich UI box widget defines a box that embeds other widgets that you will create.

7 Note that a doted area is created. You will add the controls inside of this area.

Figure 24. Doted area indicating Box widget created

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 12

8 Click on the Source tab and you will see the EGL generated code. Please spend few minutes to
understand this code.
Some points to note:
- initialUI specifies which widgets are children of the initial, DOM tree document element.
- onConstructionFunction specifies the on-construction EGL function, which is a handler function that is
invoked when the handler starts running.

Figure 25. The EGL code generated

9 Notice that you can combine the EGL Rich UI editor and the EGL editor. This way at any visual change
you will see the EGL code generated. This complements the features in the Rich UI editor by opening a single
file in both the EGL Rich UI editor and the EGL editor.
Right click on MortgageCalculatorHandler.egl and select EGL Editor .

Figure 26. Opening the code with EGL Editor

10 Click on the Design tab of the first EGL Rich UI editor view and drag and drop the second EGL editor
view under this Design view (Click and hold the title). Now you will have the MortgageCalculatorHandler.egl
displayed in two ways as shown below.
At the top is the Design tab of the Rich UI editor, along with a palette that lists the available Widget types.
At the bottom is the EGL editor. Your work in either editor affects the same file and is reflected in the content
displayed in the other editor.

Figure 27. The second editor is opened

11 You will now start to add more EGL widgets.
Drag a TextLabel and drop it inside the box created before (mainBox) . Note that a picture shows the

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 13

location of this control and the green color indicates where this widget will be added. It is important that the

green color is showing inside the mainBox .

Figure 28. Drag and drop a TextLabel widget

12 For the New Variable dialog, type amountLabel as name and click OK. You will change the text later.
Notice in the MortgageCalculatorHandler.egl that amountLabel is created as a child of mainBox as shown
below

Figure 29. EGL code generated

13 You will need now a widget that will be an entry field.
Drag the widget TextField and drop inside the mainBox as shown below. Again be sure that the green color
is inside the Box and notice the picture displayed.

Figure 30. Drag and drop a TextField

14 Type amountField as Variable name and click OK. This will be the field where the user will type the
amount to be calculated.

Figure 31. Naming the variable

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 14

Note that in the MortgageCalculatorHandler.egl editor the amountField is added as a child of mainBox also.
At this point you have created one label and one field You will need to repeat this for the second operand.

15 Drag a TextLabel and drop it inside the box (mainBox) after the amountField just created above. Again
it is important that the green color is showing inside the mainBox

Figure 32. Dragging and dropping a TextLabel

16 Type interestRateLabel as name and click OK. Notice in the MortgageCalculatorHandler.egl
interestRateLabel is created as a child of mainBox as shown below
You will need now another entry field widget. Drag the widget TextField and drop inside the mainBox. Again
be sure that the green color is inside the mainBox and note the picture displayed.

Figure 33. Drag and drop a TextField

17 Type interestRateField as Variable name and click OK As you did it before, it is a best practice to
name widgets that the EGL code will use.
Note that in the MortgageCalculatorHandler.egl editor the interestRateField is also added as a child of
mainBox..
At this point you have created two labels and two fields. After this drop the picture will be as shown below.
Notice that you have all widgets in one unique row. Its now time to start changing the Widgets properties.

Figure 34. Controls created

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 15

18 You will now change the properties of each widget created.
Select the mainBox (you will see a doted line when it is selected) and using the properties type 2 as columns,
since you want to have two columns of widgets.
You want that each column includes both the TextLabel and the TextField.
To add a background color, click on the button near the backgroundColor click on Name format, select a
color like AntiqueWhite, press OK and then press enter.

Save the code using Ctrl + S. The final result is shown in Figure 35.

Tip: If you are not interested in drag drop the components and prefer to type the code, go to the step 20 and
we provide a file with all code you could copy/paste.

Figure 35. Changing mainBox properties

Take few minutes to understand the EGL code that is being displayed at each change you make it. If you are
an experienced EGL Rich UI developer you could just type the code and verify the controls created.

19 You still need to change the two TextLabel.
Click on the first TextLabel and using the properties change the text to Amount: and press enter.
Repeat this for the second label and change the TextLabel to Rate:
The result is shown below.
If you do a mistake, you can use the undo (Edit > undo) to return the previous state.
Use Ctrl + S to save what you have done so far.
Note the EGL code that was generated.

Figure 36. Change text of interestRateLabel

20 You still need to add the labels, fields and one button. You may add those widgets via drag/drop and
changing the properties or typing the EGL code.
It is your choice to make it typing or via drag drop. In this case Always be sure that the green color is under
(inside) the mainBox and check the picture displayed to help on this

To make this coding task easy, we provided a file under folder
C:\EGL_POT\LAB7B\MortgageCalculator_Controls_only.egl that you could copy and paste to your egl
code.
But if you will build the presentation layer using drag and drop, you must name the widgets as shown below:

Widget type Variable Name Text name

TextLabel termLabel Term:

TextField termField none

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 16

TextLabel TextLabel (default) (erase TextLabel)

Button calculateButton Calculate

TextLabel paymentLabel Payment:

TextLabel paymentField (erase TextLabel)

Use Ctrl + S to save what you have done so far

21 The final design after adding all the controls will be as shown below.
Figure 37. All widgets created

At this point the presentation layer is complete, you must now create the code to invoke the CICS Service and
associate it with the button when clicked.

Section 4 - Create the EGL code to consume the Web Service
deployed into CICS

1 You will create the EGL code that will consume the Web Services.
 Expand LAB7_RUI, EGLSource, right click on EPCSMR.wsdl and select EGL Services Create EGL
Client Interface…
Figure 38. Creating EGL Client Interface

2 Click Next> and be sure that Create Web Services Client Bindings is selected.
Figure 39. New EGL Interface dialog

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 17

3 Accept all defaults and click Next>. Notice the EGL package name (files.target) that will be created. Also
the EGL source name will be EPSCSMR.

Figure 40. New EGL Interface creation

4 Again accept all defaults and click Finish.

Figure 41. EGL Client Binding to the Web Service

5 The EGL interface code will be generated and edited.

Figure 42. EGL Interface generated

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 18

Section 5 Complete the EGL Rich UI code to invoke the Web
service

Here you will create the code that will invoke the CICS Service and associate it with the button widget.

1 You need to create an event when the button is clicked to invoke the CICS Service and populate the
field. This event will trigger the EGL function that performs this logic.
Using the MortgageCalculatorHandler.egl Rich UI Editor and Design tab, click button Calculate and be sure
that the dotted marks are around the calculateButton and NOT the mainBox as shown below.

Figure 43. Selecting the button widget

2 Having the Calculate button selected, go to the Properties view click on Events tab, select onClick and

click the plus sign button
Type onClick as Function name and click OK.
This function will be executed when the button is clicked.

 Figure 44. Adding an event to the button

3 Save the EGL code generated using Ctrl + S. Figure below shows part of the EGL code generated.
Note that the onClick event will execute the function onClick.
Also remember that when you resize your views the command Window > Reset perspective > OK will
return the perspective to the default.

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 19

Figure 45. Function onClick generated is associated with even onClick

4 The hardest part is complete. Note that all could be done just by typing EGL code and this is probably
what skilled EGL developers will do. But the drag and drop capabilities provide a nice way to learn EGL Rich
UI coding.
You can test the widgets control created. Click the Preview tab.

5 At this point you will work with EGL code since you don’t need any visual components. So you can close
the second EGL editor and click on the Source Tab

6 When button is clicked you need to invoke the CICS Service. An EGL variable must be defined to bind to
this service.
Under function onClick type a variable named cicsService and use Ctrl + Space to find
EPSCSMRPortType and type the property {@BindService} as seen below.
Remember to use Ctrl + Space as code assist. It will make your life easier..

Figure 46. Defining a variable that binds to the Web Service

7 You now will define the input message.
 With the cursor on the end of the line press enter to add a blank line.
Type input and Ctrl + Space and DF you will see the input message there, select it

Figure 47. Definition a variable that maps to the input message

8 All data typed in the Rich UI field must now be assigned to the input message, this will be done now.
For example, if you want to get the value type in the field amountField you would code
amountField.text.

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 20

 Using the Ctrl + Space code the input message variable as seen below. Note that the .text is not working in
the code assist for now, but everything else is. You also maybe copy/paste this code from
C:\EGL_POT\LAB7B\MortgageCalculator_Complete.egl if you are in a hurry. But understand that you are
just moving the values to the input message variable.

input DFHCOMMAREA {epspcom_number_of_months = 0,
 epspcom_number_of_years = termField.text,
 epspcom_principle_data = amountField.text,
 epspcom_quoted_interest_rate = interestRateField.text,
 epspcom_year_month_ind = "y"};

9 To invoke the web service you will define a call statement.
 With the cursor on the end of the line press enter to add a blank line.
Type call and use Ctrl + space
Type a dot (.) after the cicsService and you will see the possible values (just one operation) as seen below

Figure 48. Using call statement to invoke a Web Service

10 The output message of the CICS Service is defined as the parameter of displayResults_cics function.
Again the code assist may help you to create the code. The complete call to the CICS Web Service and the
functions with the data returned and possible exception is shown below.
This code can be found at: C:\EGL_POT\LAB7B\MortgageCalculator_Complete.egl feel free to
copy/paste.
Use Ctrl + S to save the code

Figure 49. Coding the functions when service is executed with success or not

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 21

Section 6 Testing the Rich UI Application .

Now you can test the EGL Rich UI code.

1 Click on Preview tab and type three valid numeric fields, like 450000, 5.5 and 15 and click Calculate.
You should have the results below

Figure 50. Executing the code

Note that you are invoking CICS Services from a browser client and no Application Servers are in place. This
is all done by JavaScript™ using a supported browser. Cool isn’t it?

Section 7 improving your code

You can see that this logic needs lots of improvement however you don’t have time here to work on that. Try
it: if you type a data that EGL code cannot transform into valid numeric data the Rich UI execution will fail.
Try typing some letters there.. You will see the EGL error when trying to translate the values to smallint or
decimal . When you have time you may add more logic on this code to avoid this problem.

One interesting aspect of Rich UI code (that in fact is a JavaScript capability) is the fact that you can have
many events for the widgets that you create.

For example you could add and event associated with the fields that would verify if there is no exceptions
when the focus is lost or when this field is changed. Using the Rational developer for System z with EGL and
the Help page make a search on onFocusLost and you will have the description of the many events that might
be used here.

Also EGL provides some service classes that may help to test the EGL Services code.
For example the “ tools.ServiceMonitor{}; “

When a service is invoked, it will be shown in the service monitor. We will also indicate if the service
succeeded or failed. You can see this monitor on the code below.
Other nice capability is the fact that we can dynamically change the controls. For example, while the web
service is being called we can indicate this changing the button content and disabling it. You also can see this
in the code below.

1 This is an improved coding. The red rectangle indicates the new code added. See the monitor tools
implemented as well the button being changed dynamically. You can find this code at
C:\EGL_POT\LAB7B\MortgageCalculator_Complete_and_Improved.egl .
Note that if you copy/paste you will need to fix some errors due missing code.. You will do later.
Tips:
1. EGL adds the import statements when you have the code in the EGL Build Path. But in case you
copied/paste the improved solution you may need to add this. The easiest way is using the EGL editor type
Ctrl+Shift+O to execute the Organize Imports.

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 22

Figure 51. Complete EGL code

2 Verify the LAB7_RUI project properties.

Right click on LAB7_RUI and select Properties. As shown in the Figure 52, be sure that your project is
pointing to the project that has the service monitor. Also remember that you may need to add the EGL import
statements on your code.
Figure 52. Defining EGL Build Path properties for the project

3 Click on Preview tab and test the code again..

Figure 53. Execution in Preview mode

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 23

4 Click in the green icon and see some data being transmitted and received to CICS .
Figure 54. Data being transmitted

Note: In case the preview does not work, close the egl editor , right click on MortgageCalculatorHandler.egl
and select Open with > EGL Rich UI Editor > click Preview Tab.

(Optional) Improving service call exception handler

EGL refers to program errors as exceptions. An exception can occur when an EGL-generated program
performs any of the following actions:

• Accesses a file, queue, or database

• Calls another program or service

• Invokes a function

• Performs an assignment, comparison, or calculation
You can choose which exceptions you want to handle, by type, or handle all exceptions with the same code.
To handle an exception means that you do not allow the current program to terminate, but provide special
processing for the error.
The mechanism that EGL uses to handle errors is the try block. Any statement that throws an exception inside
a try block causes the program to look for a matching onException block within that same try block. If an
onException block exists that references the exception thrown, control passes to the code within that block.
If a service call ends due to an error, you get a ServiceInvocationException. This record includes the following
additional fields:

• source : EGL, NATIVE, or WEB, depending on the type of service invocation.

• detail1 : f the source field is set to WEB, the value here is the "FaultCode" value of the SOAP fault. If
the source is set to EGL or NATIVE, the detail1 field is blank.

• detail2 f the source field is set to WEB, the value here is the "SOAPActor" value of the SOAP fault. If
the source is set to EGL or NATIVE, the detail2 field is blank.

• detail3 f the source field is set to WEB, the value here is the "Diagnostic" value of the SOAP fault. If the
source is set to EGL or NATIVE, the detail3 field is blank.

1 To have better information about the service call on our code we can improve the exception
handler adding the code below:
Figure 55. Call exception handler improved

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 24

1 In a situation where the connection is broken, you would have the error below..
Figure 56. Exception handler when connection is broken

You can find this code exported as Project Interchange File at
C:\EGL_POT\LAB7B\solution\lab7B_solution_with_better_error_handling.zip
select all projects. Use Project > Clean > Clean the LAB7_RUI project if necessary.

(Optional) Add a nice graphic widget to your code

2 Check LAB7_RUI project properties and be sure that your project is pointing to the project that has the
service monitor. Also remember that you may need to add the EGL import statements on your code

Figure 57. Project EGL Build Path properties

3 Edit your code and add the EGL code as shown below in the red rectangle

Figure 58. Code to define a new Box widget

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 25

4 And
Figure 59. Code to invoke a Pie Chart widget

5 Click on Preview tab and add some valid data, you will see the new widget in action.
Figure 60. Source tab shows the EGL code

6 A complete project Interchange file can be found at:
C:\EGL_POT\LAB7B\ lab7B_solution_with_graphic_better_error_handling.zip

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 26

Solution location

If you could not complete the tutorial, do not get frustrated. If you missed one step or selected a bad choice in
any of the wizards, you would have problems.

In that case, you can load the solution to your workspace by selecting File > Import > Project Interchange
and using the solution located at
C:\EGL_POT\LAB7B\ lab7B_solution_with_graphic_better_error_handling.zip.

Select all projects as show in Figure 61 and click Finish.
For the tests you need to deploy the EAR file as seen in Section 6..

Figure 61 Importing the solution.

Invoking a third party Web service with EGL and Web 2.0

© 2010 IBM Corporation 27

Resources

Learn
Get more information about EGL visiting EGL Café

Find out more about IBM Enterprise Modernization Solutions.

Learn more about IBM Rational Developer for System z.

Watch a demo of Rational Developer for System z.

Read Unleash the power of mainframe assets into SOA.

Visit the Rational page on developerWorks to find technical resources and learn about best practices for the
Rational Software Delivery Platform.

Subscribe to The Rational Edge weekly newsletter.
Subscribe to the IBM® developerWorks® newsletter, a weekly update on the best of developerWorks tutorials,
articles, downloads, community activities, Web casts and events.

Browse the technology bookstore for books on these and other technical topics.

Get products and technologies

Get an evaluation version of Rational Developer for System z.

Download trial versions of other IBM Rational software.

Download these IBM product evaluation versions and get your hands on application development tools and
middleware products from DB2®, Lotus®, Tivoli®, and WebSphere®.

Discuss

Join the Architecture forum on developerWorks to get connected with others and take advantage of their
expertise and experience to get you tips that can help you as a developer or architect to use the principles of
service-oriented architecture (SOA).

Check out developerWorks blogs. and get involved in the developerWorks community.

About the author

Reginaldo W. Barosa is an IBM Certified Application Development Specialist. He provides sales
support, helping customers with enterprise transformation solutions and development tools, such as IBM
WebSphere Developer for System z. Before joining IBM US, Reginaldo worked for 27 years in IBM Brazil. He
has co-authored IBM Redbooks and has written books, as well as other articles for IBM developerWorks. He
holds a degree in electrical engineering from Instituto Mauá de Tecnologia, Sao Paulo, Brazil.

