

SSttuuddeenntt MMaannuuaall::

33DD GGaammee PPrrooggrraammmmiinngg wwiitthh PPhhrrooggrraamm™™

Sample Middle School Module for

Teaching with Phrogram

Prepared by John Osborne

Windermere Ranch Middle School, San Ramon, CA

Edited by David Witus

The Phrogram Company

2

FOREWORD

The minimum requirements for this Module are that the student has access to a PC with

Phrogram™ installed.

This Student Manual is based upon the electronic book, “Learn to Program with

Phrogram!” published by Addison Wesley Professional and available online at

http://safari.oreilly.com/9780321496836.

John Osborne

Teacher, Advanced Technology

Windemere Ranch Middle School

925-479-7400

josborne@srvusd.net

3

INTRODUCTION

3D game programming sounds like a lot of fun, right? You’re thinking that you’ll be able

to make the next version of Halo.

It’s not a dream. It might be far off but you’re going to be a lot closer after this module.

Whenever you see the symbol �, it means that you have to do something on the

computer or in your binder. Also, all the exercises have to be done.

PRE-TEST

The Pre-Test shows you what you already know and lets you see what you going to

know after you complete this module. It does not count on your grade.

Answer these questions on a separate piece of paper in your binder. You do not have to

repeat the question; just write the number and the answer.

True/False

1. Programming is about frogs

2. Programming will turn you into a frog

3. You are already a frog

4. Games can be created in one class period.

5. Games are more fun in 2D than in 3D.

6. Games can be written in many different languages.

7. Computers use binary, octal, and hexadecimal.

8. Computers like English better than anything else.

9. Algebra is used in introductory computer programming.

10. 3D game programming is too complex for a Middle School student.

RUNNING THE DEMO GAMES

�Start Phrogram by double-clicking on the frog icon on your desktop. Alternatively, you

can go to Start/Programs/Phrogram.

�Open C:\My Documents\My Phrogram Files\Games and Toys (2D).

You’ll see a number of games.

4

�Choose the Asteroids game.

�To run the game, click Code/ Run Program, or hit F5, or click the green triangle at the

top.

If you try some of the others, you’ll see that they are pretty simple, not very challenging,

and only in two-dimensions. Then,

�Navigate to C:\My Documents\My Phrogram Files\Games and Toys (3D).

Experiment with the game found there. It’s definitely better looking. Spend only as

much time as you need to get the idea of how to open and run a Phrogram game.

�In your binder, write the question “What makes this game look like 3D?” and your

answer.

CREATING A NEW PROGRAM

Begin a new program with

�Click File/ New.

Now we get into one of the nitty gritty aspects of programming - details. You have to

give line by line details describing what objects you want to see on the screen and how

you want them to perform. First we have to name our Sprite object. Then, we find a

picture for the Sprite object. Then, we decide where to show the Sprite on the screen.

This is a lot of typing but I’ll save you much of the typing effort so you can concentrate

on learning.

The words “MyNewProgram” will be highlighted in blue.

�Change “MyNewProgram” to “MyUFO.”

�Open the file “MyUFO.txt” using Notepad.

�Copy and paste the source code into Phrogram.

Now look at the instructions and I’ll explain what they do.

Define myUFO As Sprite We tell Phrogram that we are going to have a

Sprite object and would like to call it myUFO.

5

myUFO.Load(“ufo.gif”)

We tell Phrogram to use the “ufo.gif” picture for

the Sprite object

myUFO.MoveTo(60, 60)

We give Phrogram the coordinates for where to

show the picture on the screen.

myUFO.Show() And finally, we tell Phrogram to make the picture

visible.

By the way …

Upper and lower case letters are very important in programming. “M” and a “m” are as

different to a computer as “M” and “g” are. You don’t have to learn the Camel Casing

rules about when to use capital letter but you have to be careful when typing to use the

correct letter.

�Run your program.

What did you see? We did all that work just to have a picture of a flying saucer sitting in

the corner of the screen! Now think about Pocket Tanks and try to imagine how much

programming work went into making it fun to play. That’s why there are so many jobs

available making games and they pay very well.

EXERCISE 1:

Change the line of code that places the UFO on the screen. The screen is 500 by 400

pixels.

. Place the UFO in the bottom right corner.

. Place it in the bottom left corner.

. Display a different UFO. You can look at other pictures in the c:\My

Document\My Phrogram Files\Media\Images folder. Find a different UFO and

use it in your program.

. Save your program as Exercise1.

6

ADDING SOUND AND MOVING THE UFO

OK, let’s make this thing a little more like a game. First, let’s add the sound of a UFO

using the command. Then let’s add some commands to move the UFO around the

screen.

�Begin a new program.

�Change “MyNewProgram” to “MyUFO2.”

�Open the file “MyUFO2.txt” using Notepad.

�Copy and paste the source code into Phrogram.

�Run your program.

What did you see? The UFO should have moved down the screen without you having to

change the program each time. Now look at the new instructions and I’ll explain what

they do.

PlaySound(“eerie.wav”) We tell Phrogram to play a sound file. Can you tell

me the name of the file?

Define ufoY As Integer We tell Phrogram that we want ufoY to be a

number. Remember, we have to tell the computer

everything.

For ufoY = 51 to 150

 Delay(49)

 myUFO.MoveTo(50,ufoY)

Next

This is called a loop. We’ll talk more about loops

later. We want the computer to keep doing

something while looping. The something is

“Delay(49) and “myUFO.MoveTo(50,ufoY)”.

The Delay(49) command tells the computer not to

do anything for 49 milliseconds (not a very long

time to us but an eternity to a computer).

The myUFO.MoveTo(50,ufoY) does what you did

earlier in Exercise 1. The first time, it says

myUFO.MoveTo(50,51). The next time, it says

myUFO.MoveTo(50,52), and so on until it gets to

myUFO.MoveTo(50,150).

7

PROGRAMMING CONCEPTS

Computers are actually pretty dumb. They only have the ability to add and subtract.

Through very clever engineering, they have been made powerful enough to understand

your commands in a structured language.

In the old days (only a few decades ago!), most people who programmed computers did

so with machine language, a very difficult task but necessary to write an operating

system. COBOL was used by the application programmers. COBOL is pretty much gone.

Today, there are many programming languages but you probably hear of Visual Basic, C,

and Java the most. Phrogram is very similar to Visual Basic. It is somewhat like Java too,

so once you master Phrogram, you will be able to more quickly learn those languages. C

is closer to machine language and has been replaced by later versions C++ and C#.

Look for the word “Main” on the second line of the program you just created. This is the

start of a method. We’ll learn more about methods much later. For now, think of Main

as a great big road sign saying START HERE!

EXERCISE 2

Pretend that you are a computer. Ask your partner to program you to open your Binder

using the following commands. If your partner gives you a command you do not

understand, do nothing.

• Move whole right arm forward one inch

• Move whole left arm forward one inch

• Move whole right arm backward one inch

• Move whole left arm backward one inch

• Raise whole right arm one inch

• Raise whole left arm one inch

• Raise left hand one inch

• Raise right hand one inch

• Lower whole right arm one inch

• Lower whole left arm one inch

• Lower left hand one inch

8

• Lower right hand one inch

• Right hand grasp

• Left hand grasp

DEBUGGING YOUR PROGRAMS

For most programmers, programs rarely work on the first try. Typically, you finish

writing your code and you get what are known as “compilation” errors – the code will

not “compile” into something that can be understood by computers at the binary “byte”

level – the level of 1’s and 0’s that computers ultimately understand.

How to find and fix compilation errors is not that easy to teach or to understand right

away. You will gradually develop this skill with practice. Your ability to “debug” your

programs – find the problems and fix them - is essential to your ability to becoming

good at programming.

Most experienced programmers write the code in their program one step at a time,

making only one small change, testing it, then moving on to the next small change, and

so on, until they complete the project. If your program doesn’t work after you change it,

it will be easier to resolve the problem if you haven’t made a few more – or a lot more

changes – since the change you made that caused the problem. Remember this when

you move on to larger game projects. In this class, you’ll be learning one thing and then

testing it. That’s why you started with showing a UFO that did not do much. When you

finish this module, you’ll have a fun game you can run on any computer.

EXERCISE 3

1. On line 8 of your MyUFO2, change the line myUFO.Show() to myUFO.Show.

You are removing the (). Run your program. Find the error message. Use it to

find and fix the program.

2. Open the file Exercise3.txt. Copy and paste the code into a new program. Run

the program. Use the error messages to find and fix the errors. When you are

asked to save it, name the program Exercise3.

3. Run the Exercise3 program. Where did the UFO go? There was no error

message. Write this question “How would you know something was wrong?”

in your binder and write your answer.

9

VARIABLES, LOOPS, AND KEYWORDS

In the MyUFO2 program, you used a variable (ufoY) and a loop (For … Next). Variables

hold values. Any time you want to keep score, you will need variables. Loops are a great

way to save typing. Imagine having to type over 100 lines of code to move the UFO from

50,50 to 50,150. Let’s use loops to make the UFO go up as well as down.

�Open the file while.txt.

�Copy and paste the code into a new program.

�Name the program While.

�Run your program.

Whoops! Why did you get a syntax error message? It turns out that programming

languages reserve a few words for themselves. They have special meaning and we

cannot use them for our names. These are called keywords. Keywords show up in blue

on the screen.

�Write in your binder how many keywords you can see in the program

Use MyWhile as a program name and your program should run. The UFO goes down to

50 , 150; then it goes back up to 50 , 50. The keywords While and End While give you

another way of doing loops. You’re telling Phrogram to do something while a condition

exists. In this program, the condition is when ufoY is greater than 50, keep doing

something. The something is the same as before with one important addition. We

reduced the value of ufoY by 1 each time the loop runs. After 100 loops, ufoY will be

back to 50. The condition no longer exists and the While loop stops.

�Open the file while2.txt.

�Copy and paste the code into a new program.

�Name the program MyWhile2.

�Run your program.

This program added another variable ufoX to use for the x-axis coordinate. It added 1 to

ufoX until ufoX reached 150. This caused the UFO to move to the right.

10

EXERCISE 4

1. Change your MyWhile2 program to move the UFO all the way across

the screen, but not off of it. Save your program as Exercise4.

2. Change your MyWhile2 program to move the UFO all the way down

the screen, but not off of it.

3. Add a loop to move the UFO back to the top after it reaches the

bottom right of the screen. Save your program.

METHODS

Methods provide a way to take a set of program steps and combine them into a larger

step, so you can reuse subsets of your program without copying and pasting. So far, we

have only used one method. By creating methods, you avoid creating a lot of duplicate

code. This makes your program smaller and easier to maintain. This saves you a lot of

tedious typing.

�Open the file methods.txt.

�Copy all the code.

�In Phrogram, do Edit/ Select All.

�Paste the code into Phrogram replacing everything.

�Run your program.

Look at the Main method. It’s a lot shorter now. We added another method to the

program to do all the work of moving the UFO. We’ll use this technique later to handle

the game player’s keyboard instructions to move the UFO.

SIZE OF SCREEN

Phrogram can tell us the size of the screen. This is important when the game player

wants to make the screen bigger without having to call us in to change the program.

There are two built-in methods we can use: ScreenWidth() and ScreenHeight().

�Open the file screensize.txt.

�Copy and paste the code into the Main method.

11

�Name the program ScreenSize.

�Run your program.

It did not do anything, right? We have to learn one more thing before we can use it.

IF

What is the biggest word in the word? The answer is if. In our lives, if lets us make

choices. To a computer, if gives the ability to do so many things that are impossible

without it.

�Open the file if.txt.

�Copy all the code.

�In Phrogram, do Edit/ Select All.

�Paste the code into Phrogram replacing everything.

�Run your program.

Whoa! Now we’re getting somewhere. The UFO bounces around the screen just like it

was supposed to all along. And we owe it all to if. If lets us make a decision,

“if the UFO is at right edge of the screen, then make it go left,” or “if the UFO is at

bottom edge of the screen, then make it go up.”

When you talk, you might say if the time is greater than the end of the period then leave

for the next class otherwise stay here. In Phrogram, If statements are coded almost the

same way. We use “>” for greater than. We use a variable for the time and the end of

the class. We use “else” for “otherwise.”

 If time > EndOfClassPeriod Then

 Leave for next class

 Else

 Stay here

 End If

Also, note that every If needs an End If just like every Method needs an End Method and

every Program needs an End Program.

12

We added a couple of other things to the program that we can use later. We added two

variables Xaxis and MoveX into Xaxis. Phrogram does not let us write “Add MoveX to

Xaxis.” Instead, we write “Xaxis = Xaxis + MoveX.”

We also multiplied a variable. In this case, we multiplied MoveX times a minus 1. This

changes the variable to a negative number. Now each time we add MoveX, we’re adding

a negative number.

It takes a little getting used to but once you get used to it, it will be hard to think any

other way. It will also give you a head start in Algebra.

EXERCISE 5

1. Make the program run twice as long as it does now.

2. When the Xaxis gets to 150 make the UFO skip 150 pixels to the right.

3. When MoveX is negative, make the UFO skip 150 pixels to the left.

KEYBOARD CONTROLS

All games have keyboard controls, so let’s get started.

�Open the file keyboard1.txt.

�Copy all the code.

�In Phrogram, do Edit/ Select All.

�Paste the code into Phrogram replacing everything.

�Run your program.

So, we see that we can capture the keyboard with the IsKeyDown() method. Inside the ()

and between quotes, place the key you want to capture.

EXERCISE 6

1. Change the keyboard1 program to use the “a” key for left, the “s” key for

right, the “w” key for up, and the “z” key for down. Name it exercise6.

2. Change the exercise6 program to move the UFO back to 50,50 when

escape has been entered.

13

3. Change the exercise6 program to move the UFO twice as fast/slow when

the Page Up/ Page Down keys are pressed.

PROGRAM PRACTICES

Until now, we have been “hard coding” numbers into our program. Good programming

practices call for using a variable in place of a number.

�Open the file keyboard2.txt.

�Copy all the code.

�In Phrogram, do Edit/ Select All.

�Paste the code into Phrogram replacing everything.

�Run your program.

Does it do anything different than keyboard1? Now, if you had to do exercise 6 all you

would to do is add the following code:

Define Faster As Integer = 3

If IsKeyDown("PageUp") Then

MoveX = Faster + MoveX

End If

If IsKeyDown("PageDown") Then

MoveX = MoveX - Faster

End If

EXERCISE 7

1. Add the code above to the keyboard3 program. Name it exercise7.

2. Change the program to move the UFO three times as fast/ slow when the

Page Up/Page Down keys are pressed.

3. Change the program to move the UFO ten times as fast/ slow when the

Page Up/Page Down keys are pressed.

Now, we’re going to take advantage of methods.

14

�Open the file keyboard3.txt.
1

�Copy all the code.

�In Phrogram, do Edit/ Select All.

�Paste the code into Phrogram replacing everything.

�Run your program.

The program works exactly like it did before. Look at the Main method. By reading the

code and comments, you know what the program was designed to do. The difference is

in the organization of the code.

Comments are made by starting the line with //. Phrogram will turn all characters green

to tell you that everything on this line is a comment.

Maintenance of source code is one of the biggest costs in program development. It is

hard to analyze a program and predict what it was designed to do. It is extremely hard

to make changes to a program developed by someone else unless they did a good job

with comments and organization. If they have, you do not have to wade through line

after line of code to try to guess what the programmer was thinking. When you want to

make a change, you can make it in one place instead looking at every line.

�Write this question and your answer in your binder. What could go wrong with

relying on comments?

�Open the file keyboard5.txt.

�Copy all the code.

�In Phrogram, do Edit/ Select All.

�Paste the code into Phrogram replacing everything.

�Read the comments and Run the program.

1
 c

15

�Write this question and your answer in your binder. What was wrong with this

program?

EXERCISE 8

1. Open the exercise5 program you created. Re-organize the code into at

least one additional method. Save it as exercise8.

2. Modify the exercise8 program with comments.

3. Use variables in place of hard-coded numbers in the exercise8 program.

4. Ask the Teacher to review your program. He will look for plentiful

comments, no hard-coded numbers, and a streamlined Main method.

UFO PONG

This is it. We’ll complete a game of pong.

�Open the file ufopong.txt.

�Copy all the code.

�In Phrogram, do Edit/ Select All.

�Paste the code into Phrogram replacing everything.

�Run the program.

Look at the source code and notice the organization. There are several new instructions

in this program that you’ll want to learn how to use.

Instruction Comment

Alert A nice way to display a message on the screen.

myUFO.UnLoad()

We’ve used Load, now let’s use UnLoad. The UFO is

going to start from the middle of the screen and when

it runs off the edge, we UnLoad it and Load it in the

middle.

LeftScoreDisplay.Load

(LeftScoreValue +

This is a handy way to build a file name. For the first

point, LeftScoreValue will equal 1 so the file name will

16

".gif") be 1.gif. Look in the images folder and you’ll see files

for 0 through 9.

ClearBackground(Black

)
Paints screen the color specified.

If … And The If statement can have multiple conditions.

If

myUFO.Intersects(LeftPa

ddle) Then

Uses the property, Intersects, to tell us if the UFO is in

the same space as LeftPaddle.

Spend a little more time looking at the code and learning how it works. This is an

excellent way to learn how to write code. New programmers are frequently assigned to

study existing code before being given their own assignment.

17

POST TEST

Write the number of the question and your answer in your binder. Do not answer on this

page.

True/ False

1. You have to give line by line details.

2. 3D uses shading and lighting to give the impression of 3D.

3. Programming is too hard for the average Middle School student.

4. The instruction Define myUFO As Sprite will display a UFO on the screen.

5. The instruction myUFO.Load(“ufo.gif”) will display a UFO on the screen.

6. While … Next While is an example of a loop.

7. For … Next is an example of a loop.

8. Variables are used to hold the score in a game.

9. Comments are a lot of extra work that won’t help me.

10. There is a Method in every program.

11. Machine language is a lot easier to program.

Fill in the blank

12. To display the UFO near the middle of the screen, use the instruction

myUFO.MoveTo(_____, ______).

13. My programs rarely work on the ______ try.

14. Comments are created by starting a line with ______.

15. How many complex programming languages can you name _________________,

_____________, _______________. ________________, __________________.

16. Every program has a _______ Method.

17. Program, Method, If, and While all require a _________________________.

18. If moveX < 0 __________ moveX = moveX * -1.

19. To get the screen size, use ScreenWidth() and ___________________.

18

20. The computer reserves certain words to itself. These are called ___________.

21. Game Programming has____ jobs.

22. To add 1 to moveX, ___________ = ____________ + __________.

Answer with a complete sentence.

23. What is wrong with relying on comments in an existing program?

24. Why are there so many jobs in game programming?

25. Why is maintenance such a big expense?

26. What is the advantage of using hard-coded number instead of variables?

27. Extra Credit: How does the computer understand complex programming

languages like Visual Basic, Java, C++, or C#?

28. Extra credit: Why are we fascinated with games?

19

 Phrogram

Samples & Exercises

20

While2
Define myUFO As Sprite

myUFO.Load("ufo.gif")

myUFO.MoveTo(60,60)

myUFO.Show()

PlaySound("eerie.wav")

Define ufoY As Integer

Define ufoX As Integer

For ufoY = 51 To 250

Delay (49)

myUFO.MoveTo(60, ufoY)

Next

ufoX = 50

PlaySound("eerie.wav")

While ufoX < 150

Delay (49)

myUFO.MoveTo(ufoX, ufoY)

ufoX = ufoX + 1

End While

21

Keyboard 1

Program Keyboard1

Method Main()

Define myUFO As Sprite

Define xAxis As Integer = 290

Define Yaxis As Integer = 225

myUFO.Load("ufo.gif")

myUFO.MoveTo(Xaxis, Yaxis)

myUFO.Show()

While Not IsKeyDown("Escape")

Delay(10)

If IsKeyDown("Right") Then

Xaxis = Xaxis + 3

End If

If IsKeyDown("Left") Then

Xaxis = Xaxis - 3

End If

If IsKeyDown("Up") Then

Yaxis = Yaxis - 2

End If

If IsKeyDown("Down") Then

Yaxis = Yaxis + 2

End If

myUFO.MoveTo(Xaxis, Yaxis)

End While

End Method

End Program

22

Keyboard 2

Program Keyboard2

Method Main()

Define myUFO As Sprite

Define xAxis As Integer = 290

Define Yaxis As Integer = 225

Define MoveX As Integer = 3

Define MoveY As Integer = 2

Define Xstart As Integer = 50

Define Ystart As Integer = 50

myUFO.Load("ufo.gif")

myUFO.MoveTo(Xaxis, Yaxis)

myUFO.Show()

While Not IsKeyDown("Escape")

Delay(10)

If IsKeyDown("Right") Then

Xaxis = Xaxis + MoveX

End If

If IsKeyDown("Left") Then

Xaxis = Xaxis - MoveX

End If

If IsKeyDown("Up") Then

Yaxis = Yaxis - MoveY

End If

If IsKeyDown("Down") Then

Yaxis = Yaxis + MoveY

End If

myUFO.MoveTo(Xaxis, Yaxis)

End While

myUFO.MoveTo(Xstart, Ystart)

End Method

End Program

23

Keyboard 3

Program Keyboard3

Method Main()

Define myUFO As Sprite

Define xAxis As Integer = 290

Define Yaxis As Integer = 225

Define MoveX As Integer = 3

Define MoveY As Integer = 2

Define Faster As Integer = 3

Define Xstart As Integer = 50

Define Ystart As Integer = 50

myUFO.Load("ufo.gif")

myUFO.MoveTo(Xaxis, Yaxis)

myUFO.Show()

While Not IsKeyDown("Escape")

If IsKeyDown("PageUp") Then

MoveX = Faster + MoveX

End If

If IsKeyDown("PageDown") Then

MoveX = MoveX - Faster

End If

Delay(10)

If IsKeyDown("Right") Then

Xaxis = Xaxis + MoveX

End If

If IsKeyDown("Left") Then

Xaxis = Xaxis - MoveX

End If

If IsKeyDown("Up") Then

Yaxis = Yaxis - MoveY

End If

If IsKeyDown("Down") Then

Yaxis = Yaxis + MoveY

End If

myUFO.MoveTo(Xaxis, Yaxis)

End While

myUFO.MoveTo(Xstart, Ystart)

End Method

End Program

24

Keyboard4

Program UsingMethods

Define myUFO As Sprite

Define xAxis As Integer = 290

Define Yaxis As Integer = 225

Define MoveX As Integer = 3

Define MoveY As Integer = 2

Define Faster As Integer = 3

Define Xstart As Integer = 50

Define Ystart As Integer = 50

Method Main()

 SetUpTheScreen()

// the player can stop the game by hitting the Esc key

 While Not IsKeyDown("Escape")

// let the player move the UFO with the arrow keys or speed

it up/ slow it down with the Page Up/ Page Down keys

 HandleKeys()

// move the UFO to the next position

 MoveTheUFO()

 End While

// Player hit escape. Move the UFO back to its docking

location

 myUFO.MoveTo(Xstart, Ystart)

End Method

Method SetUpTheScreen()

 myUFO.Load("ufo.gif")

 myUFO.MoveTo(Xaxis, Yaxis)

 myUFO.Show()

End Method

Method HandleKeys()

 If IsKeyDown("PageUp") Then

 MoveX = Faster + MoveX

 End If

 If IsKeyDown("PageDown") Then

 MoveX = MoveX - Faster

 End If

 Delay(10)

 If IsKeyDown("Right") Then

 Xaxis = Xaxis + MoveX

 End If

 If IsKeyDown("Left") Then

 Xaxis = Xaxis - MoveX

 End If

 If IsKeyDown("Up") Then

 Yaxis = Yaxis - MoveY

 End If

 If IsKeyDown("Down") Then

 Yaxis = Yaxis + MoveY

 End If

End Method

 Method MoveTheUFO()

25

 myUFO.MoveTo(Xaxis, Yaxis)

 End Method

End Program

26

If

Program IfQuestion

Method Main()

Define Xaxis As Integer = 0

Define Yaxis As Integer = 0

Define MoveX As Integer = 3

Define MoveY As Integer = 2

Define count As Integer

Define RightEdgeofScreen As Integer

RightEdgeofScreen = ScreenWidth() - 65

Define BottomEdgeOfScreen As Integer

BottomEdgeOfScreen = ScreenHeight() - 35

Define myUFO As Sprite

myUFO.Load("ufo.gif")

myUFO.MoveTo(Xaxis, Yaxis)

myUFO.Show()

For count = 1 to 1000

Delay (10)

Xaxis = Xaxis + MoveX

Yaxis = Yaxis + MoveY

myUFO.MoveTo(Xaxis, Yaxis)

If Xaxis > RightEdgeofScreen Then

MoveX = MoveX * -1

Else

If Xaxis < 0 Then

MoveX = MoveX * -1

End If

End If

If Yaxis > BottomEdgeofScreen Then

MoveY = MoveY * -1

Else

If Yaxis < 0 Then

MoveY = MoveY * -1

End If

End If

Next

End Method

End Program

27

Exercise 3

Define myUFO As Sprite

myUFO.Load("ufo.gif")

myUFO.MoveTo(60,60)

myUFO.Show()

PlaySound(eerie.wav)

Define ufoY As Integer

For ufoY = 551 to 1250

Delay 49

myUFO.MoveTo(60, ufoY)

Next

28

Exercise 5

Program IfQuestion

Method Main()

Define Xaxis As Integer = 0

Define Yaxis As Integer = 0

Define MoveX As Integer = 3

Define MoveY As Integer = 2

Define count As Integer

Define RightEdgeofScreen As Integer

RightEdgeofScreen = ScreenWidth()

Define BottomEdgeOfScreen As Integer

BottomEdgeOfScreen = ScreenHeight()

Define myUFO As Sprite

myUFO.Load("ufo.gif")

myUFO.MoveTo(Xaxis, Yaxis)

myUFO.Show()

For count = 1 to 1000

Delay (10)

Xaxis = Xaxis + MoveX

Yaxis = Yaxis + MoveY

If Xaxis = 150 Than

Xaxis = Xaxis + 150

End If

myUFO.MoveTo(Xaxis, Yaxis)

If Xaxis > RightEdgeofScreen Then

MoveX = MoveX * -1

Else

If Xaxis < 0 Then

MoveX = MoveX * -1

End If

End If

If Yaxis > BottomEdgeofScreen Then

MoveY = MoveY * -1

Else

If Yaxis < 0 Then

MoveY = MoveY * -1

End If

End If

Next

End Method

End Program

29

Exercise 5extra

Program IfQuestion

Method Main()

Define Xaxis As Integer = 0

Define Yaxis As Integer = 0

Define MoveX As Integer = 3

Define MoveY As Integer = 2

Define count As Integer

Define RightEdgeofScreen As Integer

RightEdgeofScreen = ScreenWidth()

Define BottomEdgeOfScreen As Integer

BottomEdgeOfScreen = ScreenHeight()

Define myUFO As Sprite

myUFO.Load("ufo.gif")

myUFO.MoveTo(Xaxis, Yaxis)

myUFO.Show()

For count = 1 to 1000

Delay (10)

Xaxis = Xaxis + MoveX

Yaxis = Yaxis + MoveY

If Xaxis = 150 Then

If MoveX > 0 Then

Xaxis = Xaxis + 150

Else

Xaxis = Xaxis - 150

End If

End If

myUFO.MoveTo(Xaxis, Yaxis)

If Xaxis > RightEdgeofScreen Then

MoveX = MoveX * -1

Else

If Xaxis < 0 Then

MoveX = MoveX * -1

End If

End If

If Yaxis > BottomEdgeofScreen Then

MoveY = MoveY * -1

Else

If Yaxis < 0 Then

MoveY = MoveY * -1

End If

End If

Next

End Method

End Program

30

Exercise 6

Program Keyboard1

Method Main()

Define myUFO As Sprite

Define xAxis As Integer = 290

Define Yaxis As Integer = 225

myUFO.Load("ufo.gif")

myUFO.MoveTo(Xaxis, Yaxis)

myUFO.Show()

While Not IsKeyDown("Escape")

Delay(10)

If IsKeyDown("s") Then

Xaxis = Xaxis + 3

End If

If IsKeyDown("a") Then

Xaxis = Xaxis - 3

End If

If IsKeyDown("w") Then

Yaxis = Yaxis - 2

End If

If IsKeyDown("z") Then

Yaxis = Yaxis + 2

End If

myUFO.MoveTo(Xaxis, Yaxis)

End While

myUFO.MoveTo(50,50)

End Method

End Program

31

Ufopong

Program UFOPong

Define LeftPaddle As Sprite

Define RightPaddle As Sprite

Define myUFO As Sprite

Define moveX As Integer

Define moveY As Integer

Define LeftScoreValue As Integer = 0

Define LeftScoreDisplay As Sprite

Define RightScoreValue As Integer = 0

Define RightScoreDisplay As Sprite

Define EndGame As Integer = 10

Define LeftScoreLocationX As Integer = 200

Define LeftScoreLocationY As Integer = 30

Define RightScoreLocationX As Integer = 396

Define RightScoreLocationY As Integer = 30

Define Xspeed As Integer = 10

Define Yspeed As integer = 10

Method Main()

 Define CurrentTime As Decimal

 Define TimeLastChecked As Decimal

 SetUpGameScreen()

 Alert("Left player use w and z keys, Right player use

up and down arrows", "Let's go")

 StartTheUFO()

 While LeftScoreValue < EndGame And RightScoreValue <

EndGame

 CurrentTime = TickCount()

 If CurrentTime - TimeLastChecked > 25 Then

 HandleKeys()

 MoveTheUFO()

 TimeLastChecked = CurrentTime

 End If

 End While

 ShowTheWinner()

End Method

Method ScorePointLeft()

 myUFO.UnLoad()

 PlaySound("CannonHit.wav")

 LeftScoreValue = LeftScoreValue + 1

 If LeftScoreValue < EndGame Then

 LeftScoreDisplay.Load(LeftScoreValue + ".gif")

 LeftScoreDisplay.MoveTo(LeftScoreLocationX,

LeftScoreLocationY)

 LeftscoreDisplay.Show()

 StartTheUFO()

 End If

32

End Method

Method ScorePointRight()

 myUFO.UnLoad()

 PlaySound("CannonHit.wav")

 RightScoreValue = RightScoreValue + 1

 If RightScoreValue < EndGame Then

 RightScoreDisplay.Load(RightScoreValue + ".gif")

 RightScoreDisplay.MoveTo(RightScoreLocationX,

RightScoreLocationY)

 RightscoreDisplay.Show()

 StartTheUFO()

 End If

End Method

Method SetUpGameScreen()

 ClearBackground(Black)

 LeftPaddle.Y = 225

 LeftPaddle.Load("leftpaddle.gif")

 LeftPaddle.MoveTo(30, LeftPaddle.Y)

 LeftPaddle.Show()

 LeftScoreDisplay.Load("0.gif")

 LeftScoreDisplay.MoveTo(LeftScoreLocationX,

LeftScoreLocationY)

 LeftscoreDisplay.Show()

 RightPaddle.Y = 225

 RightPaddle.Load("rightpaddle.gif")

 RightPaddle.MoveTo(597, RightPaddle.Y)

 RightPaddle.Show()

 RightScoreDisplay.Load("0.gif")

 RightScoreDisplay.MoveTo(RightScoreLocationX,

RightScoreLocationY)

 RightscoreDisplay.Show()

End Method

Method ShowTheWinner()

 ClearSprites()

 PlaySound("tada.wav")

 Alert("Congratulations!", "We have a winner")

End Method

Method HandleKeys()

 If IsKeyDown("Up") And RightPaddle.Y > 1 Then

 RightPaddle.Y = RightPaddle.Y - Yspeed

 End If

 If IsKeyDown("Down") And RightPaddle.Y <

ScreenHeight() Then

 RightPaddle.Y = RightPaddle.Y + Yspeed

 End If

 RightPaddle.MoveTo(597, RightPaddle.Y)

 If IsKeyDown("w") And LeftPaddle.Y > 1 Then

 LeftPaddle.Y = LeftPaddle.Y - Yspeed

33

 End If

 If IsKeyDown("z") And LeftPaddle.Y < ScreenHeight()

Then

 LeftPaddle.Y = LeftPaddle.Y + Yspeed

 End If

 LeftPaddle.MoveTo(30, LeftPaddle.Y)

End Method

Method MoveTheUFO()

 myUFO.X = myUFO.X + moveX

 myUFO.Y = myUFO.Y + moveY

 myUFO.Show()

 If myUFO.X > (ScreenWidth() + 5) Then

 ScorePointLeft()

 Return

 Else If myUFO.X < 0 Then

 ScorePointRight()

 Return

 Else If myUFO.Y > (ScreenHeight() - 20) Then

 moveY = moveY * -1

 If moveY = 0 Then

 moveY = -1

 End If

 PlaySound("Bounce.wav")

 Else

 If myUFO.Y < 10 Then

 moveY = moveY * -1

 If moveY = 0 Then

 moveY = -1

 End If

 myUFO.Y = myUFO.Y + moveY

 PlaySound("Bounce.wav")

 End If

 End If

 If myUFO.Intersects(LeftPaddle) Then

 PlaySound("Bounce.wav")

 moveX = moveX * -1

 moveY = moveY - 1 + Random(0,2)

 myUFO.X = LeftPaddle.X + LeftPaddle.Width + moveX

 myUFO.Y = myUFO.Y + moveY

 myUFO.MoveTo(myUFO.X, myUFO.Y)

 End If

 If myUFO.Intersects(RightPaddle) Then

 PlaySound("Bounce.wav")

 moveX = moveX * -1

 moveY = moveY - 1 + Random(0,2)

 myUFO.X = RightPaddle.X + myUFO.Width + moveX

 myUFO.Y = myUFO.Y + (moveY*2)

 myUFO.MoveTo(myUFO.X, myUFO.Y)

 End If

End Method

Method StartTheUFO()

34

 Delay(2000)

 myUFO.Load("SmallUFO.gif")

 myUFO.X = 300

 myUFO.Y = 250

 myUFO.Show()

 moveX = 6

 moveY = Random(1,4)

 If Random(1,2) = 1 Then

 moveX = moveX * -1

 End If

 If Random(1,2) = 1 Then

 moveY = moveY * -1

 End If

End Method

End Program

