
Users Guide

Adaptive Server® Enterprise
ODBC Driver by Sybase

15.7

[Microsoft Windows and UNIX]

DOCUMENT ID: DC20116-01-1570-01

LAST REVISED: June 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under a license agreement,
and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or
translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of
Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and the marks listed
are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered trademarks of
SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

Users Guide iii

About This Book .. vii

CHAPTER 1 Introduction to ODBC Programming... 1
Introduction to ODBC ... 1

ODBC conformance .. 2

ODBC Driver Manager .. 3

Using the Adaptive Server ODBC Driver samples 6

Defining ODBC handles ... 7

Allocating ODBC handles.. 9

Connecting to a datasource ... 10

Choosing an ODBC connection function................................. 10

Establishing a connection.. 11

Using threads and connections in ODBC applications............ 12

Executing SQL statements... 12

Executing statements directly.. 13

Executing statements with bound parameters 14

Executing prepared statements... 15

Working with result sets ... 17

Choosing cursor characteristics .. 17

UseCursor connection property... 18

Retrieving data .. 18

Updating and deleting rows through a cursor.......................... 19

Using scrollable cursors .. 20

Calling stored procedures .. 23

Handling errors... 25

Datatype mappings .. 27

CHAPTER 2 Connecting to a Database .. 31
Introduction to connections .. 31

Installing ODBC MetaData stored procedures 32

How connection parameters work.. 33

Character sets.. 33

Configuring the Adaptive Server ODBC Driver 35

Contents

iv Adaptive Server Enterprise ODBC Driver

Microsoft Windows .. 35

UNIX.. 37

ODBC ini files .. 39

Connecting using a datasource.. 40

Using connection parameters.. 40

ODBC driver version information utility .. 49

CHAPTER 3 Supported Adaptive Server Features .. 51
Microsecond granularity for time data .. 52

Asynchronous execution for ODBC ... 52

Supported Adaptive Server Cluster Edition features...................... 53

Login redirection.. 54

Connection migration .. 54

Connection failover in Cluster Edition 54

Using distributed transactions .. 56

Programming for MS DTC... 57

Programming components deployed in Sybase EAServer,

MTS, or COM+ ... 58

Connection properties for distributed transaction support....... 58

Using directory services ... 59

LDAP as a directory service .. 59

Using directory services .. 60

Enabling directory services ... 61

Bookmark and bulk support ... 63

Bulk-load support ... 63

Support for Mainframe Connect and DirectConnect for z/OS Option .

65

ServiceName configuration property 65

BackEndType configuration property 66

DSN Migration tool ... 66

Using the migration tool... 66

Conversion switches ... 67

Password encryption.. 67

Enabling password encryption .. 68

Password expiration handling .. 69

Using SSL .. 70

SSL security levels in Adaptive Server ODBC Driver.............. 72

Validating the server by its certificate...................................... 72

Enabling SSL connections .. 73

Using failover in high availability systems 74

Microsoft Windows .. 77

UNIX.. 78

Kerberos authentication ... 78

Process overview .. 79

Contents

Users Guide v

Requirements .. 80

Enabling Kerberos authentication ... 80

Obtaining an initial ticket from the key distribution center 82

Logging without ODBC Driver Manager tracing 83

Log configuration file ... 83

Dynamic logging support without ODBC driver manager tracing 84

TDS protocol capture ... 85

Dynamic control of TDS protocol capture................................ 85

ODBC data batching without binding parameter arrays................. 86

Managing data batches ... 87

Examples... 87

Considerations .. 88

Bulk insert support for ODBC data batching 89

ODBC deferred array binding... 90

SQLBindColumnDA() .. 90

SQLBindParameterDA().. 91

Usage .. 92

Suppressing additional row format information 93

Suppressing row format metadata ... 94

Suppressing parameter format metadata....................................... 95

Releasing locks at cursor close.. 95

select for update support.. 96

Variable-length rows in data-only locked tables............................. 96

Nonmaterialized columns... 97

Large Object (LOB) support ... 97

Large Object (LOB) locator support ... 98

Enabling LOB locator support ... 98

Using server-specified packet size... 116

Glossary ... 117

Index ... 119

Contents

vi Adaptive Server Enterprise ODBC Driver

Users Guide vii

About This Book

Audience This document is intended for application developers who need access to
data from Adaptive Server® Enterprise on Microsoft Windows and UNIX
platforms, using Open Database Connectivity (ODBC).

How to use this book The information in this book is organized as follows:

• Chapter 1, “Introduction to ODBC Programming,” contains
information for developing applications that directly call the ODBC
programming interface.

• Chapter 2, “Connecting to a Database,” describes how client
applications connect to Adaptive Server using ODBC.

• Chapter 3, “Supported Adaptive Server Features,” describes the
Adaptive Server features that you can use with the Adaptive Server
ODBC Driver.

Related documents See these books for more information:

• The Software Developer’s Kit Release Bulletin for your platform
contains important last-minute information about Adaptive Server
ODBC Driver and Software Developer’s Kit (SDK).

• The Software Developer’s Kit and Open Server Installation Guide

contains information about installing SDK and its Adaptive Server
ODBC Driver component.

• The Adaptive Server Enterprise Installation Guide contains
information about installing Adaptive Server.

• The Adaptive Server Enterprise Release Bulletin for your platform
contains information about known problems and recent updates to
Adaptive Server.

Other sources of
information

Use the Sybase® Product Manuals Web site to learn more about your
product:

viii Adaptive Server Enterprise ODBC Driver

• The Sybase Product Manuals Web site is an online version of the SyBooks
CD that you can access using a standard Web browser. In addition to
product manuals, you will find links to EBFs/Maintenance, Technical
Documents, Case Management, Solved Cases, newsgroups, and the
Sybase Developer Network.

To access the Sybase Product Manuals Web site, go to Product Manuals at

http://www.sybase.com/support/manuals/.

Sybase certifications
on the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ Finding the latest information on product certifications

1 Point your Web browser to Technical Documents at

http://www.sybase.com/support/techdocs/.

2 Click Partner Certification Report.

3 In the Partner Certification Report filter select a product, platform, and
timeframe and then click Go.

4 Click a Partner Certification Report title to display the report.

❖ Finding the latest information on component certifications

1 Point your Web browser to Availability and Certification Reports at

http://certification.sybase.com/.

2 Either select the product family and product under Search by Base
Product; or select the platform and product under Search by Platform.

3 Select Search to display the availability and certification report for the
selection.

❖ Creating a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to create
a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at

http://www.sybase.com/support/techdocs/.

2 Click MySybase and create a MySybase profile.

 About This Book

Users Guide ix

Sybase EBFs and
software
maintenance

❖ Finding the latest information on EBFs and software maintenance

1 Point your Web browser to the Sybase Support Page at

http://www.sybase.com/support.

2 Select EBFs/Maintenance. If prompted, enter your MySybase user name
and password.

3 Select a product.

4 Specify a time frame and click Go. A list of EBF/Maintenance releases is
displayed.

Padlock icons indicate that you do not have download authorization for
certain EBF/Maintenance releases because you are not registered as a
Technical Support Contact. If you have not registered, but have valid
information provided by your Sybase representative or through your
support contract, click Edit Roles to add the “Technical Support Contact”
role to your MySybase profile.

5 Click the Info icon to display the EBF/Maintenance report, or click the
product description to download the software.

Conventions The following conventions are used in this book.

• Functions, command names, command option names, program names,
program flags, properties, keywords, statements, and stored procedures
are printed as follows:

Use the SQLSetConnectAttr function to control details of the connection.
For example, the following statement turns off ODBC autocommit
behavior:

sr = SQLSetConnectAttr(ConnectionHandle,
SQL_ATTR_AUTOCOMMIT,
(SQLPOINTER)SQL_AUTOCOMMIT_OFF,
SQL_IS_UINTEGER);

• Variables, parameters, and user-supplied words are in italics in syntax and
in paragraph text, are printed as follows:

For example, the following statement allocates a SQL_HANDLE_STMT
handle the with name stmt, on a connection with a handle named dbc.

• Names of database objects such as databases, tables, columns, and
datatypes, are printed as follows:

x Adaptive Server Enterprise ODBC Driver

The value of the pubs2 object.

• Examples that show the use of functions are printed as follows:

retcode = SQLConnect(dbc,
(SQLCHAR*) "MANGO", SQL_NTS,
(SQLCHAR*) "sa", SQL_NTS,
(SQLCHAR*) "", SQL_NTS);

Syntax formatting conventions are summarized in the following table.

Table 1: Syntax formatting conventions

Accessibility
features

This document is available in an HTML version that is specialized for
accessibility. You can navigate the HTML with an adaptive technology such as
a screen reader, or view it with a screen enlarger.

Software Developer’s Kit version 15.7 and the HTML documentation have
been tested for compliance with U.S. government Section 508 Accessibility
requirements. Documents that comply with Section 508 generally also meet
non-U.S. accessibility guidelines, such as the World Wide Web Consortium
(W3C) guidelines for Web sites.

Key Definition

{ } Curly braces mean you must choose at least one of the enclosed
options. Do not include braces in the command.

[] Brackets mean you can choose or omit enclosed options. Do not
include brackets in the command.

| Vertical bars mean you can choose no more than one option
(enclosed in braces or brackets).

, Commas mean you can choose as many options as you need
(enclosed in braces or brackets). Separate your choices with
commas, to be typed as part of the command.

Commas can also be required in other syntax contexts.

() Parentheses are to be typed as part of the command.

... An ellipsis (three dots) means you can repeat the last unit as many
times as you need. Do not include ellipses in the command.

 About This Book

Users Guide xi

The online help for this product is also provided in HTML, which you can
navigate using a screen reader.

Note You might need to configure your accessibility tool for optimal use.
Some screen readers pronounce text based on its case; for example, they
pronounce ALL UPPERCASE TEXT as initials, and Mixed Case Text as
words. You might find it helpful to configure your tool to announce syntax
conventions. Consult the documentation for your tool.

For information about how Sybase supports accessibility, see Sybase

Accessibility at http://www.sybase.com/accessibility. The Sybase Accessibility
site includes links to information on Section 508 and W3C standards.

If you need help Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

xii Adaptive Server Enterprise ODBC Driver

Users Guide 1

C H A P T E R 1 Introduction to ODBC
Programming

This chapter presents information for developing applications that directly
call the Open Database Connectivity (ODBC) programming interface.

The primary documentation for ODBC application development is the
Microsoft ODBC SDK documentation at http://msdn.microsoft.com. This
chapter provides introductory material and describes features specific to
Adaptive Server® Enterprise ODBC Driver by Sybase but is not a
complete guide to ODBC application programming.

Introduction to ODBC
The ODBC interface is a call-based application programming interface
defined by Microsoft Corporation as a standard interface to database
management systems on Microsoft Windows. In addition, ODBC is now
widely used on many non-Windows platforms, such as Linux.

Software requirements To write ODBC applications for Adaptive Server Enterprise, you need:

• Adaptive Server Enterprise

• A C compiler capable of creating programs for your environment

Topic Page

Introduction to ODBC 1

Using the Adaptive Server ODBC Driver samples 6

Defining ODBC handles 7

Connecting to a datasource 10

Executing SQL statements 12

Working with result sets 17

Calling stored procedures 23

Handling errors 25

Datatype mappings 27

Introduction to ODBC

2 Adaptive Server Enterprise ODBC Driver

• ODBC Software Development Kit (SDK):

• On Windows platform, the operating system together with the Visual
Studio compiler provide all required components. Alternatively,
install the Microsoft Data Access Components (MDAC).

• For non-Windows platforms, there are commercial and open source
projects such as unixODBC and iODBC that provide the ODBC SDK,
including the ODBC Driver Manager and header files. Linux
operating system includes such open source distributions.

• On HP HP-UX, IBM AIX, and Sun Solaris, you can use the
iAnywhere ODBC Driver Manager, which is included in your
Adaptive Server ODBC Driver installation. You can also use other
commercial or open source distributions of the ODBC SDK, however,
to do so, you must install them separately.

Note The iAnywhere ODBC Driver Manager does not map calls to
ODBC versions 1.0 and 2.0 to calls to ODBC version 3.x.
Applications using the iAnywhere ODBC Driver Manager must
restrict their use of the ODBC feature set to versions 3.0 and later.

Supported platforms See the Open Server and SDK New Features for Microsoft Windows, Linux,

and UNIX for a list of platforms on which Adaptive Server ODBC Driver is
available.

Note Significant portions of this book deal with writing C programs to access
data using ODBC functions with Adaptive Server ODBC Driver. There are
utilities, programs, and 4GL RAD tools that can use ODBC connections. For
example, you can write a PowerBuilder® application or a PHP Web page that
connects to an ODBC datasource. For such uses, you only need to know how
to set up a datasource using Adaptive Server ODBC Driver. Once the
datasource has been set up, these tools completely abstract the underlying
ODBC function calls.

ODBC conformance

The Adaptive Server ODBC Driver conforms to ODBC 3.52 specification.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 3

ODBC features are arranged according to level of conformance. Features are
either Core, Level 1, or Level 2, with Level 2 being the most complete level of
ODBC support. These features are listed in the Microsoft ODBC Programmer's

Reference.

The Adaptive Server ODBC Driver meets Level 2 conformance with the
following exceptions:

• Level 1 conformance The Adaptive Server ODBC Driver supports all
Level 1 features except SQLSetPos with SQL_REFRESH.

• Level 2 conformance The Adaptive Server ODBC Driver supports all
Level 2 features except for using bookmarks in SQLBulkOperations
(SQL_FETCH_BY_BOOKMARK, SQL_UPDATE_BY_BOOKMARK,
SQL_DELEET_BY_BOOKMARK).

Applications developed using older versions of ODBC continue to work with
the Adaptive Server ODBC Driver and the newer ODBC Driver Manager. The
new ODBC features are not available for older applications.

ODBC Driver Manager

The ODBC Driver Manager manages the communications between the user
applications and the ODBC Drivers. Typically, user applications are linked
against the ODBC Driver Manager. The Driver Manager manages the job of
loading and unloading the appropriate ODBC Driver for the application.
Applications make ODBC calls to the ODBC Driver Manager, which performs
basic error checking and then processes these calls or passes them on to the
underlying ODBC Driver.

The ODBC Driver Manager is not a required component, but it exists to solve
many issues surrounding ODBC application development and deployment.
Some advantages of using an ODBC Driver Manager are:

• Portable data access: Applications do not need to be rebuilt to use a
different DBMS.

• Runtime binding to a datasource.

• Ability to easily change a datasource.

To use the Adaptive Server ODBC Driver without using the ODBC Driver
Manager, link your application directly to the Adaptive Server ODBC Driver
library. The resulting executable connects only to Adaptive Server datasources.

Introduction to ODBC

4 Adaptive Server Enterprise ODBC Driver

The Adaptive Server ODBC Driver has been tested with these ODBC Driver
Managers:

• On Microsoft Windows, the Microsoft ODBC Driver Manager that is
included with Microsoft Windows

• On Linux, the unixODBC Driver Manager that is included with Red Hat
and SuSE

• On HP HP-UX, IBM AIX, and Solaris, the unixODBC Driver Manager
version 2.2.14 and the Sybase iAnywhere ODBC Driver Manager
included with the Adaptive Server ODBC Driver installation

Note Historically, the unixODBC Driver Manager on 64-bit Linux platforms
has expected a 4-byte SQLLEN from ODBC drivers. As of version 2.2.13, the
unixODBC Driver Manager expects an 8-byte SQLLEN datatype. Starting with
15.7 ESD #4, Adaptive Server ODBC Driver installation contains both 4-byte
SQLLEN and 8-byte SQLLEN versions of the driver. The 4-byte version is
configured as the default. Please check the version of your unixODBC Driver
Manager, and, if it is 2.2.13 or later, change your ODBC driver installation:

> cd ${SYBASE}/DataAccess64/ODBC/lib
> rm libsybdrvodb.so
> ln -s libsybdrvodb-sqllen8.so libsybdrvodb.so

Note that Red Hat Enterprise Linux version 6 and later use the 8-byte SQLLEN
version of the unixODBC Driver Manager and thus require the aforementioned
change.

Building applications using an ODBC Driver Manager

This section discusses how to build applications using an ODBC Driver
Manager.

Microsoft Windows The Microsoft ODBC Driver Manager includes either a DLL named
odbc32.dll or an import library named odbc32.lib. The odbc32.dll file is
located in %SystemRoot%\system32. The odbc32.lib file can appear in a
number of locations, depending on which products you have installed. If you
use Microsoft Visual Studio.NET, the odbc32.lib is located in the %Install Path

to Microsoft Visual Studio%\ Vc7\PlatformSDK\Lib.

To link an ODBC application to the Microsoft ODBC Driver Manager, use
odbc32.lib.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 5

UNIX using
unixODBC Driver
Manager

The unixODBC Driver Manager includes a shared library named libodbc.so,
which is a soft link to a library named libodbc.so.1. This file is typically located
in the /usr/lib directory.

Note Some older Driver Manager packages do not create the soft link from
libodbc.so.1 to libodbc.so. Sybase recommends that you manually create this
link. The ODBC Driver Manager also includes another shared library called
libodbcinst.so.1. A soft link from this file to libodbcinst.so should also exist. If
it is not on your system, you should create one.

To link an ODBC application against the unixODBC Driver Manager, pass the
-lodbc flag to the linker.

If the unixODBC Driver Manager is not installed in the /usr/lib directory, you
must also pass this to the linker:

-Ldir

where dir is the directory where the unixODBC Driver Manager shared
libraries are located.

UNIX using the
Sybase iAnywhere
ODBC Driver
Manager

To link an ODBC application against the Sybase iAnywhere ODBC Driver
Manager, pass the -lodbc or -ldbodm flag to the linker. You must also pass the
-Ldir flag to the linker, where dir is the directory where the Sybase iAnywhere
ODBC Driver Manager shared libraries are located.

Building applications without using an ODBC Driver Manager

You can build applications without using an ODBC Driver Manager. The
Adaptive Server ODBC Driver is a shared dynamic library with platform
specific names.

❖ Linking an ODBC application with the Adaptive Server ODBC Driver on
Windows

1 Add sybdrvodb.lib to Additional Dependencies in the Linker/Input
properties and add <aseodbc_dir> to Additional Library Directories in
Linker/General properties for your project.

Platform Library file Location

Windows 32-bit sybdrvodb.dll %SYBASE%\DataAccess\ODBC\dll

Windows 64-bit sybdrvodb64.dl %SYBASE%\DataAccess64\ODBC\dll

UNIX 32-bit libsybdrvodb.so $SYBASE/DataAccess/ODBC/lib

UNIX 64-bit libsybdrvodb.so $SYBASE/DataAccess64/ODBC/lib

Using the Adaptive Server ODBC Driver samples

6 Adaptive Server Enterprise ODBC Driver

2 When deploying your application, verify that
%SYBASE%\DataAccess\ODBC\dll (for 32-bit ODBC drivers) or
%SYBASE%\DataAccess64\ODBC\dll (for 64-bit ODBC drivers), the
directory containing the Adaptive Server ODBC Driver shared library, is
included in your system path.

❖ Linking an ODBC application with the Adaptive Server ODBC Driver on
UNIX

1 Pass the -lsybdrvodb and -L<aseodbc_dir> flags to the linker.

2 When deploying your application, verify that
$SYBASE/DataAccess/ODBC/lib (for 32-bit ODBC drivers) or
$SYBASE/DataAccess64/ODBC/lib (for 64-bit ODBC drivers), the
directory containing the Adaptive Server ODBC Driver shared library, is
included in your library path. The library path variable for your platform
is:

• On HP HP-UX Itanium: SHLIB_PATH

• On IBM AIX: LIBRARY_PATH

• On Linux and Solaris: LD_LIBRARY_PATH

Using the Adaptive Server ODBC Driver samples
The Adaptive Server ODBC Driver samples are located in:

• 32-bit Linux: $SYBASE\DataAccess\ODBC\samples

• 64-bit UNIX: $SYBASE\DataAccess64\ODBC\samples

• Microsoft Windows: %SYBASE%\DataAccess\ODBC\samples or
%SYBASE%\DataAccess64\ODBC\samples

Each directory and sample includes a README file that contains instructions
on building and running the following samples. These samples are available on
Microsoft Windows and UNIX:

• advanced

• asynchexec

• cursors

• odbcbatch

CHAPTER 1 Introduction to ODBC Programming

Users Guide 7

• odbcloblocator

• simple

These samples are available on Microsoft Windows only:

• adovbsample

• kerberos

Defining ODBC handles
ODBC applications use a small set of handles to define basic features, such as
database connections and SQL statements. A handle is a 32-bit value on 32-bit
platforms and a 64-bit value on 64-bit platforms.

The handle types required for ODBC programs are:

The following handles are used in all ODBC applications:

• Environment The environment handle provides a global context in
which to access data. Every ODBC application must allocate exactly one
environment handle upon starting, and must free it at the end.

This code allocates an environment handle:

SQLHENV env;
SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_ENV,

SQL_NULL_HANDLE, &env);

• Connection A connection is specified by an ODBC driver and a
datasource. An application can have several connections associated with
its environment. Allocating a connection handle does not establish a
connection; a connection handle must be allocated first and then used
when the connection is established.

This code allocates a connection handle:

SQLHDBC dbc;

Item Handle type

Environment SQLHENV

Connection SQLHDBC

Statement SQLHSTMT

Descriptor SQLHDESC

Defining ODBC handles

8 Adaptive Server Enterprise ODBC Driver

SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

• Statement A statement handle provides access to a SQL statement and
any information associated with it, such as result sets and parameters.
Each connection can have several statements. Statements are used both for
cursor operations (fetching data) and for single statement execution (such
as INSERT, UPDATE, and DELETE).

This code allocates a statement handle:

SQLHSTMT stmt; SQLRETURN rc;
rc = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

• Descriptor A descriptor is a collection of metadata that describes the
parameters of a SQL statement or the columns of a result set, as seen by
the application or driver. Thus, a descriptor can fill any of four roles:

• Application Parameter Descriptor (APD) – contains information
about the application buffers bound to the parameters in an SQL
statement, such as their addresses, lengths, and C datatypes.

• Implementation Parameter Descriptor (IPD) – contains information
about the parameters in a SQL statement, such as their SQL datatypes,
lengths, and nullability.

• Application Row Descriptor (ARD) – contains information about the
application buffers bound to the columns in a result set, such as their
addresses, lengths, and C datatypes.

• Implementation Row Descriptor (IRD) – contains information about
the columns in a result set, such as their SQL datatypes, lengths, and
nullability.

The following example illustrates how to retrieve implicitly allocated
descriptors:

SQLRETURN rc;
SQLHDESC aparamdesc;
SQLHDESC iparamdesc;
SQLHDESC irowdesc;
SQLHDESC arowdesc;
rc = SQLGetStmtAttr(stmt, SQL_ATTR_APP_PARAM_DESC,

&aparamdesc, SQL_IS_POINTER);

rc = SQLGetStmtAttr(stmt, SQL_ATTR_APP_ROW_DESC,
&arowdesc, SQL_IS_POINTER);

rc = SQLGetStmtAttr(stmt, SQL_ATTR_APP_ROW_DESC,

CHAPTER 1 Introduction to ODBC Programming

Users Guide 9

&iparamdesc, SQL_IS_POINTER);

rc = SQLGetStmtAttr(stmt, SQL_ATTR_APP_ROW_DESC,
&irowdesc, SQL_IS_POINTER);

Implicit descriptors are automatically freed when the statement handle is
freed by calling SQLFreeHandle(SQL_HANDLE_STMT, stmt).

Allocating ODBC handles

❖ Allocating an ODBC handle

1 Call the SQLAllocHandle function, which takes the following parameters:

• An identifier for the type of item being allocated

• The handle of the parent item

• A pointer to the location of the handle to be allocated

For a full description, see SQLAllocHandle in the Microsoft ODBC

Programmer's Reference.

2 Use the handle in subsequent function calls.

3 Free the object using SQLFreeHandle, which takes the following
parameters:

• An identifier for the type of item being freed

• The handle of the item being freed

For a full description, see SQLFreeHandle in the Microsoft ODBC

Programmer's Reference.

Example The following code fragment allocates and frees an environment handle:

SQLHENV env;
SQLRETURN retcode;
retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);
if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)
{

// success: application code here
}

Connecting to a datasource

10 Adaptive Server Enterprise ODBC Driver

Connecting to a datasource
This section describes how to use ODBC functions to establish a connection to
an Adaptive Server Enterprise database.

Note In general, the examples in this chapter use SQLConnect.

Choosing an ODBC connection function

ODBC supplies a set of connection functions. Which of the following you use
depends on how you expect your application to be deployed and used:

• SQLConnect, which is the simplest connection function

SQLConnect takes a datasource name (DSN), and an optional user ID and
password. You might want to use SQLConnect if you hard-code a
datasource name into your application.

For more information, see SQLConnect in the Microsoft ODBC

Programmer's Reference.

• SQLDriverConnect, which connects to a datasource using a connection
string

SQLDriverConnect allows the application to use Adaptive Server
Enterprise-specific connection information that is external to the
datasource.

Note On UNIX, the Adaptive Server ODBC Driver supports only

SQL_DRIVER_NOPROMPT.

You can also use SQLDriverConnect to connect without specifying a
datasource.

For more information, see SQLDriverConnect in the Microsoft ODBC

Programmer's Reference.

• SQLBrowseConnect, which connects to a datasource using a connection
string, like SQLDriverConnect.

SQLBrowseConnect allows your application to build its own dialog boxes
to prompt for connection information, and to browse for datasources used
by a particular driver—in this case, the Adaptive Server ODBC Driver.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 11

For more information, see SQLBrowseConnect in the Microsoft ODBC

Programmer's Reference.

For a complete list of connection parameters that can be used in connection
strings, see Chapter 2, “Connecting to a Database.”

Establishing a connection

Your application must establish a connection before it can carry out any
database operations.

❖ Establishing an ODBC connection

1 Allocate an ODBC environment:

SQLHENV env;
SQLRETURN retcode;
retcode = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);

2 Declare the ODBC version.

By declaring that the application follows ODBC version 3, SQLSTATE
values and some other version-dependent features are set to the proper
behavior. For example:

retcode = SQLSetEnvAttr(env, SQL_ATTR_ODBC_VERSION,
(void*)SQL_OV_ODBC3, 0);

3 If necessary, assemble the datasource or connection string.

Depending on your application, you can have a hard-coded datasource or
connection string, or you can store it externally for greater flexibility.

4 Allocate an ODBC connection handle:

retcode = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

5 Set any connection attributes that must be set before connecting. (Some
connection attributes must be set before establishing a connection, while
others can be set either before or after.) For example:

retcode = SQLSetConnectAttr(dbc, SQL_AUTOCOMMIT,
(SQLPOINTER)SQL_AUTOCOMMIT_OFF, SQL_IS_UINTEGER);

6 Call the ODBC connection function:

if (retcode == SQL_SUCCESS || retcode ==
SQL_SUCCESS_WITH_INFO)

{
printf("dbc allocated\n");

Executing SQL statements

12 Adaptive Server Enterprise ODBC Driver

retcode = SQLConnect(dbc, (SQLCHAR*) "MANGO",
SQL_NTS, (SQLCHAR*) "sa", SQL_NTS,
(SQLCHAR*) "", SQL_NTS);

if (retcode == SQL_SUCCESS || retcode ==
SQL_SUCCESS_WITH_INFO)
{

// successfully connected.
}

}

You can find a complete sample of establishing a connection in your
installation directory.

Notes on usage • Every string passed to ODBC has a corresponding length. If the length is
unknown, you can pass SQL_NTS indicating that it is a Null Terminated
String whose end is marked by the null character (\0).

• Use the SQLSetConnectAttr function to control details of the connection.
For example, the following statement turns off ODBC autocommit
behavior:

retcode = SQLSetConnectAttr(dbc, SQL_AUTOCOMMIT,
(SQLPOINTER)SQL_AUTOCOMMIT_OFF, SQL_IS_UINTEGER);

Many aspects of the connection can be controlled through the connection
parameters. See Chapter 2, “Connecting to a Database.”

For more information including a list of connection attributes, see
SQLSetConnectAttr in the Microsoft ODBC Programmer's Reference.

Using threads and connections in ODBC applications

You can develop multithreaded ODBC applications for Adaptive Server
Enterprise. Sybase recommends that you use a separate connection for each
thread. However, you are allowed to share an open connection among multiple
threads.

Executing SQL statements
ODBC includes several functions for executing SQL statements:

CHAPTER 1 Introduction to ODBC Programming

Users Guide 13

• Direct execution Adaptive Server parses the SQL statement, prepares
an access plan, and executes the statement. Parsing and access plan
preparation are called preparing the statement.

• Bound parameter execution You can construct and execute a SQL
statement using bound parameters to set values for statement parameters
at runtime. Bind parameters are also used with prepared statements to
provide performance benefits for statements that are executed more than
once.

• Prepared execution The statement preparation is carried out separately
from the execution. For statements that are to be executed repeatedly, this
avoids repeated preparation and as a result improves performance.

Executing statements directly

The SQLExecDirect function prepares and executes a SQL statement.
Optionally, the statement can include parameters.

The following code fragment illustrates how to execute a statement without
parameters. The SQLExecDirect function takes a statement handle, a SQL
string, and a length or termination indicator, which in this case is a null-
terminated string indicator.

❖ Executing a SQL statement in an ODBC application

1 Allocate a handle for the statement using SQLAllocHandle.

For example, the following statement allocates a SQL_HANDLE_STMT
handle with the name “stmt,” on a connection with a handle named “dbc”:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

2 Call the SQLExecDirect function to execute the statement.

For example, the following lines declare a statement and execute it:

SQLCHAR *deletestmt =
"DELETE FROM department WHERE dept_id = 201";

SQLExecDirect(stmt, deletestmt, SQL_NTS) ;

See SQLExecDirect in the Microsoft ODBC Programmer's Reference.

Executing SQL statements

14 Adaptive Server Enterprise ODBC Driver

Executing statements with bound parameters

This section describes how to construct and execute a SQL statement, using
bound parameters to set values for statement parameters at runtime.

❖ Executing a SQL statement with bound parameters in an ODBC
application

1 Allocate a handle for the statement using SQLAllocHandle.

For example, the following statement allocates a SQL_HANDLE_STMT
handle the with name “stmt”, on a connection with a handle named “dbc”:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

2 Bind parameters for the statement using SQLBindParameter.

For example, the following lines declare variables to hold the values for
the department ID, department name, and manager ID, as well as for the
statement string itself. Then, they bind parameters to the first, second, and
third parameters of a statement executed using the “stmt” statement
handle.

#defined DEPT_NAME_LEN 20

SQLINTEGER cbDeptID = 0,
cbDeptName = SQL_NTS, cbManagerID = 0;

SQLCHAR deptname[DEPT_NAME_LEN];
SQLSMALLINT deptID, managerID;
SQLCHAR *insertstmt =

"INSERT INTO department "
"(dept_id, dept_name, dept_head_id)"
"VALUES (?, ?, ?,)";

SQLBindParameter(stmt, 1, SQL_PARAM_INPUT,
SQL_C_SSHORT, SQL_INTEGER, 0, 0,
&deptID, 0, &cbDeptID);

SQLBindParameter(stmt, 2, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_CHAR, DEPT_NAME_LEN, 0,
deptname, 0,&cbDeptName);

SQLBindParameter(stmt, 3, SQL_PARAM_INPUT,
SQL_C_SSHORT, SQL_INTEGER, 0, 0,
&managerID, 0, &cbManagerID);

3 Assign values to the parameters.

For example, the following lines assign values to the parameters for the
fragment of step 2:

deptID = 201;
strcpy((char *) deptname, "Sales East");

CHAPTER 1 Introduction to ODBC Programming

Users Guide 15

managerID = 902;

Usually, these variables are set in response to user action.

4 Execute the statement using SQLExecDirect.

For example, the following line executes the statement string held in
“insertstmt” on the “stmt” statement handle.

SQLExecDirect(stmt, insertstmt, SQL_NTS) ;

Bind parameters are also used with prepared statements to provide
performance benefits for statements that are executed more than once.

See SQLExecDirect in the Microsoft ODBC Programmer's Reference.

Executing prepared statements

The Adaptive Server ODBC Driver provides a full set of functions for using
prepared statements that provide performance advantages for statements that
are used repeatedly.

❖ Executing a prepared SQL statement

1 Prepare the statement using SQLPrepare.

For example, the following code fragment illustrates how to prepare an
insert statement:

SQLRETURN retcode;
SQLHSTMT stmt;
retcode = SQLPrepare(stmt, "INSERT INTO department"

"(dept_id, dept_name, dept_head_id)"
"VALUES (?, ?, ?,)", SQL_NTS);

where:

• retcode holds a return code that should be tested for success or failure
of the operation.

• stmt provides a handle to the statement.

• ? is a statement parameter marker.

2 Set statement parameter values using SQLBindParameter.

For example, the following function call sets the value of the dept_id
variable:

SQLBindParameter(stmt,

Executing SQL statements

16 Adaptive Server Enterprise ODBC Driver

1,
SQL_PARAM_INPUT,
SQL_C_SHORT,
SQL_INTEGER,
0,
0,
&sDeptID,
0,
&cbDeptID);

where:

• stmt is the statement handle.

• 1 indicates that this call sets the value of the first parameter.

• SQL_PARAM_INPUT indicates that the parameter is an input
statement.

• SQL_C_SHORT indicates the C datatype being used in the
application.

• SQL_INTEGER indicates the SQL datatype being used in the
database.

• 0 indicates the column precision.

• 0 indicates the number of decimal digits.

• &sDeptID is a pointer to a buffer for the parameter value.

• 0 indicates the length of the buffer, in bytes.

• &cbDeptID is a pointer to a buffer for the length of the parameter
value.

3 Bind the other two parameters and assign values to sDeptId:

SQLBindParameter(stmt, 2, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_CHAR, DEPT_NAME_LEN, 0,
deptname, 0,&cbDeptName);

SQLBindParameter(stmt, 3, SQL_PARAM_INPUT,
SQL_C_SSHORT, SQL_INTEGER, 0, 0,
&managerID, 0, &cbManagerID);

4 Execute:

retcode = SQLExecute(stmt);

You can repeat steps 2 through 4 multiple times.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 17

5 Drop the statement using SQLFreeHandle.

Dropping the statement frees resources associated with the statement
itself.

Working with result sets
ODBC applications use cursors to manipulate and update result sets. The
Adaptive Server ODBC Driver provides extensive support for different kinds
of cursors and cursor operations.

Choosing cursor characteristics

ODBC functions that execute statements and manipulate result sets use cursors
to carry out their tasks. Applications open a cursor implicitly when they
execute a statement that returns a result set.

For applications that move through a result set only in a forward direction and
do not update the result set, cursor behavior is relatively straightforward. By
default, ODBC applications request this behavior. ODBC defines a read-only,
forward-only cursor, and the Adaptive Server ODBC Driver provides a cursor
optimized for performance in this case.

To set the required ODBC cursor characteristics, call the SQLSetStmtAttr
function that defines statement attributes. You must call SQLSetStmtAttr before
executing a statement that returns a result set.

You can use SQLSetStmtAttr to set many cursor characteristics. The
characteristic that determines the cursor type for the Adaptive Server ODBC
Driver is SQL_ATTR_CONCURRENCY. You can set one of the following
values:

• SQL_CONCUR_READ_ONLY Disallow updates. This is the default.

• SQL_CONCUR_LOCK Use the lowest level of locking needed to verify
that the row can be updated.

See SQLSetStmtAttr in the Microsoft ODBC Programmer's Reference.

Example The following fragment requests an updateable cursor:

SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
SQLSetStmtAttr(stmt, SQL_ATTR_CONCURRENCY,

Working with result sets

18 Adaptive Server Enterprise ODBC Driver

SQL_CONCUR_LOCK, 0);

UseCursor connection property

Adaptive Server ODBC Driver can create either of the two types of cursors
when a SQL statement that generate result sets is executed:

• Server-side cursors - uses more resources, but is required to fully support
cursor semantics.

• Client-side cursors - uses less resources and is adequate for most use cases.

Use the UseCursor connection property to determine the type of cursor
generated by the Adaptive Server ODBC Driver.

Values:

• 0 – (default) Client-side cursors are used for all statements that generate
result sets.

• 1– Server-side cursors are used for all statements that generate result sets.

• 2– Server-side cursors are used for all statements that generate result sets
only when the SQLSetCursorName ODBC function is called. Use this
setting to limit use of server-side cursors only for situations that require
them.

Note Depending on the other cursor attribute settings, a server-side cursor
request may implicitly be changed by the Adaptive Server ODBC Driver to a
client-side cursor.

Retrieving data

To retrieve rows from a database, execute a select statement using SQLExecute
or SQLExecDirect. This opens a cursor on the statement. Then, use SQLFetch
or SQLFetchScroll with SQL_FETCH_NEXT option to fetch rows through the
cursor. When an application frees the statement using SQLFreeStmt with
SQL_CLOSE option, it closes the cursor.

To fetch values from a cursor, your application can use either SQLBindCol or
SQLGetData:

• If you use SQLBindCol, values are automatically retrieved on each fetch.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 19

• If you use SQLGetData, you must call it for each column after each fetch.

SQLGetData is used to fetch values in pieces for columns such as LONG

VARCHAR or LONG BINARY. As an alternative, you can set the
SQL_ATTR_MAX_LENGTH statement attribute to a value large enough to hold
the entire value for the column. For SQL_ATTR_MAX_LENGTH, the default
value is 32KB.

The following code fragment from the simple sample opens a cursor on a query
and retrieves data through the cursor. Error checking has been omitted to make
the example easier to read.

SQLExecDirect(stmt, "select au_fname from authors",
SQL_NTS) ;

retcode = SQLBindCol(stmt, 1, SQL_C_CHAR, aufName,
sizeof(aufName), &aufNameLen);

while(retcode == SQL_SUCCESS || retcode ==
SQL_SUCCESS_WITH_INFO)

{
retcode = SQLFetch(stmt);

}

Updating and deleting rows through a cursor

To open a cursor for updates or deletes, you can set a statement attribute called
SQL_ATTR_CONCURRENCY to SQL_CONCUR_LOCK:

SQLSetStmtAttr(stmt,SQL_ATTR_CONCURRENCY,(SQLPOINTER)
SQL_CONCUR_LOCK,0);

The following code fragment from the cursor sample illustrates using cursors
for updates and deletes. Error checking has been omitted for clarity.

/* Set statement attribute for an updateable cursor */
SQLSetStmtAttr(stmt, SQL_ATTR_CONCURRENCY,

(SQLPOINTER)SQL_CONCUR_LOCK, 0);
SQLSetCursorName(stmt1, "CustUpdate", SQL_NTS);
SQLExecDirect(stmt1, "select LastName

from t_CursorTable ", SQL_NTS) ;
SQLFetch(stmt1);
SQLExecDirect(stmt2, "Update t_CursorTable"

"set LastName='UpdateLastName'"
"where current of CustUpdate", SQL_NTS) ;

For the complete code, refer to the cursor.cpp sample.

Working with result sets

20 Adaptive Server Enterprise ODBC Driver

Using scrollable cursors

Scrollable cursors can go backward as well as forward to more easily support
screen-based applications. When a user scrolls backward and forward, the back
end provides the corresponding data.

Setting the UseCursor connection property

To determine whether the client-side or the server-side scrollable cursors are
used, set the UseCursor property:

• When the UseCursor connection property is set to 1 or 2, server-side
scrollable cursors are used if Adaptive Server version is 15.0 or later. In
earlier versions of the Adaptive Server, server-side scrollable cursors were
not available. When the UseCursor connection property is set to 0, client-
side scrollable cursors (cached result sets) are used, regardless of the
Adaptive Server version.

 Warning! Using client-side scrollable cursors is resource-intensive.

• When the UseCursor connection property is set to 0, client-side scrollable
cursors (cached result sets) are used, regardless of the Adaptive Server
version.

Note See “UseCursor connection property” on page 18.

Support for the Static Insensitive scrollable cursor

The Adaptive Server ODBC Driver supports the Static Insensitive scrollable
cursor. It implements the ODBC SQLFetchScroll method to scroll and fetch
rows. The SQLFetchScroll method is a standard ODBC method defined in
Microsoft Open Database Connectivity Software Development Kit

Programmer’s Reference, Volume 2, which is part of the MSDN library.

The Adaptive Server ODBC Driver supports the following scrolling types:

• SQL_FETCH_NEXT – return the next rowset.

• SQL_FETCH_PRIOR – return the prior rowset.

• SQL_FETCH_RELATIVE – return the rowset n from the start of the current
rowset.

• SQL_FETCH_FIRST – return the first rowset in the result set.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 21

• SQL_FETCH_LAST – return the last complete rowset in the result set.

• SQL_FETCH_ABSOLUTE – return the rowset starting at row n.

Setting scrollable cursor attributes

You must set the following attributes to use scrollable cursors:

• SQL_ATTR_CURSOR_SCROLLABLE – the type of scrollable cursor you
are using. It should be set to the value of SQL_SCROLLABLE. Possible
values are static, semi-sensitive, and insensitive.

• SQL_ATTR_CURSOR_SENSITIVITY – the sensitivity value for this
scrollable cursor. The only supported value for this is SQL_INSENSITIVE.

The following are optional attributes when using scrollable cursors:

• SQL_ATTR_ROW_ARRAY_SIZE – the number of rows that you want
returned from each call to the SQLFetchScroll() method. If you do not set
this value, the default value of one row is used.

• SQL_ATTR_CURSOR_TYPE – The type of scrollable cursor you are using.
The only supported values for this are SQL_CURSOR_FORWARD_ONLY
or SQL_CURSOR_STATIC.

• SQL_ATTR_ROWS_FETCHED_PTR – the address where the number of
rows fetched are stored. The SQL_ATTR_ROWS_FETCHED_PTR points to
a variable of datatype SQLUINTEGER.

• SQL_ATTR_ROW_STATUS_PTR – the address where the row status is
stored. The SQL_ATTR_ROW_STATUS_PTR points to a variable of
datatype SQLUSMALLINT.

Executing scrollable cursors

❖ Setting up a program to execute a scrollable cursor

1 Set the scrollable cursor attributes for your environment.

See “Setting scrollable cursor attributes” on page 21 for more
information.

2 Bind the results. For example, add the following to your program:

res=SQLBindCol(m_StatementHandle, 2, SQL_C_DOUBLE, price, 0, NULL);
res=SQLBindCol(m_StatementHandle, 3, SQL_C_LONG, quantity, 0, NULL);

3 Scroll and fetch by using SQLFetchScroll(). For example, add the
following to your program:

Working with result sets

22 Adaptive Server Enterprise ODBC Driver

res = SQLSetStmtAttr(m_StatementHandle, SQL_ATTR_CURSOR_SCROLLABLE,
(SQLPOINTER)SQL_SCROLLABLE,SQL_IS_INTEGER);

res = SQLSetStmtAttr(m_StatementHandle, SQL_ATTR_CURSOR_SENSITIVITY,
(SQLPOINTER)SQL_INSENSITIVE, SQL_IS_INTEGER);

res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_NEXT,0);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_PRIOR,0);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_FIRST,0);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_LAST,0);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_ABSOLUTE,2);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_ABSOLUTE,-2);
res = SQLFetchScroll(m_StatementHandle, SQL_FETCH_RELATIVE,1);

4 Execute the Select statement. For example, add the following to your
program:

res = SQLExecDirect(m_StatementHandle,
(SQLCHAR "select price, quantity from book" SQL_NTS);

5 Close the result set and the cursor. For example, add the following to your
program:

res = SQLFreeStmt(m_StatementHandle,SQL_CLOSE);

Looking at results

After you execute a scrollable cursor, you see these results, assuming a total of
N rows and a rowset m where N > m:

The following results are expected if the current cursor points to row k and k-a >

0, k + m + a < N, a>=0:

Result Interpretation

Absolute 0 No row is returned, error.

Absolute 1 m row is returned.

Absolute N 1 row is returned.

Absolute N+1 No row is returned, error.

First The first (1..m) rows are returned.

Last The last (N-m+1 .. N) rows are returned.

Next The same as SQLFetch().

Prior Return the rowset that is before current rowset.

Result Interpretation

Relative -a The rows (k-a, k-a + m -1) are returned.

CHAPTER 1 Introduction to ODBC Programming

Users Guide 23

Implicit setting of scrolling cursor attributes

Certain attributes are set implicitly when your application sets specific
attributes. The supported ODBC scrollable cursor attributes set implicitly are
as follows:

Calling stored procedures
This section describes how to create and call stored procedures, and how to
process the results from an ODBC application.

For a full description of stored procedures and triggers, see the Adaptive Server

Enterprise Reference Manual.

Procedures and result
sets

There are two types of procedures: those that return result sets, and those that
do not. You can use SQLNumResultCols to tell the difference: The number of
result columns is zero if the procedure does not return a result set. If there is a
result set, you can fetch the values using SQLFetch or SQLFetchScroll just like
any other cursor.

Relative a The rows (k + a, k+a + m -1) are returned.

Result Interpretation

Application sets attribute to Other attributes set implicitly

SQL_ATTR_CONCURRENCY to
SQL_CONCUR_READ_ONLY

SQL_ATTR_CURSOR_SENSITIVITY to
SQL_INSENSITIVE

SQL_ATTR_CONCURRENCY to
SQL_CONCUR_LOCK

SQL_ATTR_CURSOR_SENSITIVITY to
SQL_SENSITIVE

SQL_ATTR_CURSOR_SCROLLABLE
to SQL_NONSCROLLABLE

SQL_ATTR_CURSOR_TYPE to
SQL_CURSOR_FORWARD_ONLY

SQL_ATTR_CURSOR_SENSITIVITY to
SQL_INSENSITIVE

SQL_ATTR_CONCURRENCY to
SQL_CONCUR_READ_ONLY
SQL_ATTR_CURSOR_TYPE to
SQL_CURSOR_STATIC

SQL_ATTR_CURSOR_TYPE to
SQL_CURSOR_FORWARD_ONLY

SQL_ATTR_CURSOR_SCROLLABLE to
SQL_NONSCROLLABLE

SQL_ATTR_CURSOR_TYPE to
SQL_CURSOR_STATIC

SQL_ATTR_CURSOR_SCROLLABLE to
SQL_SCROLLABLE

Calling stored procedures

24 Adaptive Server Enterprise ODBC Driver

Pass parameters to procedures using parameter markers (question marks). Use
SQLBindParameter to assign a storage area for each parameter marker, whether
it is an INPUT, OUTPUT, or INOUT parameter.

Example The advanced sample illustrates a stored procedure that returns an output
parameter and a return value, and another stored procedure that returns
multiple result sets. Error checking has been omitted to make the example
easier to read.

/*
Example 1: How to call a stored procedure and use input and output parameters

*/

SQLBindParameter(stmt, 1, SQL_PARAM_OUTPUT, SQL_C_SLONG,
SQL_INTEGER, 0, 0, &retVal, 0, SQL_NULL_HANDLE);

SQLBindParameter(stmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR, 4, 0, stor_id, sizeof(stor_id), SQL_NULL_HANDLE);

SQLBindParameter(stmt, 3, SQL_PARAM_OUTPUT, SQL_C_CHAR,
SQL_VARCHAR, 20, 0, ord_num, sizeof(ord_num), &ordnumLen);

SQLBindParameter(stmt, 4, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_VARCHAR, 40, 0, date, sizeof(date), &dateLen);

SQLExecDirect(stmt, "{ ? = call sp_selectsales(?,?,?) }", SQL_NTS);

/*
At this point retVal contains the return value as returned from the stored
procedure and the ord_num contains the order number as returned from the
stored procedure
*/

/*
Example 2: How to call stored procedures returning multiple result sets
*/

SQLBindParameter(stmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_CHAR , 4, 0, stor_id, sizeof(stor_id), SQL_NULL_HANDLE);

SQLExecDirect(stmt, "{ call sp_multipleresults(?) }", SQL_NTS);
SQLBindCol(stmt, 1, SQL_C_CHAR, dbValue, sizeof(dbValue), &dbValueLen);
SQLSMALLINT count = 1;

while(retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)
{

retcode = SQLFetch(stmt);
if (retcode == SQL_NO_DATA)

CHAPTER 1 Introduction to ODBC Programming

Users Guide 25

{
/*
-- End of first result set --
*/
if(count == 1)
{

retcode = SQLMoreResults(stmt);
count ++;

}
/*
At this point dbValue contains the value in the current row of the
result
*/

}
}

Handling errors
Errors in ODBC are reported using the return value from each of the ODBC
function calls and either the SQLGetDiagField function or the SQLGetDiagRec
function. The SQLError function was used in ODBC versions up to, but not
including, version 3. As of version 3, the SQLError function has been replaced
by the SQLGetDiagRec and SQLGetDiagField functions.

Every ODBC function returns a SQLRETURN that is one of the following status
codes:

Status code Description

SQL_SUCCESS No error.

SQL_SUCCESS_WITH_INFO The function completed, but a call to

SQLGetDiagRec will indicate a warning.

The most common cause for this status is that
a value being returned is too long for the buffer
provided by the application.

SQL_INVALID_HANDLE An invalid environment, connection, or
statement handle was passed as a parameter.

This often happens if a handle is used after it
has been freed, or if the handle is the null
pointer.

Handling errors

26 Adaptive Server Enterprise ODBC Driver

Every environment, connection, and statement handle can have one or more
errors or warnings associated with it. Each call to SQLGetDiagRec returns the
information for one error and removes the information for that error. If you do
not call SQLGetDiagRec to remove all errors, the errors are removed on the
next function call that passes the same handle as a parameter.

Each call to SQLGetDiagRec can pass either an environment, connection, or
statement handle. The first call passes in a handle of type SQL_HANDLE_DBC
to get the error associated with a connection. The second call passes in a handle
of type SQL_HANDLE_STMT to get the error associated with the statement that
was just executed.

SQLGetDiagRec returns SQL_SUCCESS if there is an error to report (not
SQL_ERROR), and SQL_NO_DATA_FOUND if there are no more errors to
report.

Example 1 The following code fragments use SQLGetDiagRec and return codes:

retcode = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
if(retcode == SQL_ERROR)
{

SQLGetDiagRec(SQL_HANDLE_DBC,dbc, 1, NULL, NULL,
errmsg, 100, NULL);

/* Assume that print_error is defined */
print_error("Allocation failed", errmsg);
return;

}

Example 2 retcode = SQLExecDirect(stmt,
"delete from sales_order_items where id=2015",
SQL_NTS);

if(retcode == SQL_ERROR)
{

SQLGetDiagRec(SQL_HANDLE_STMT,stmt, 1, NULL, NULL,

SQL_NO_DATA There is no information available.

The most common use for this status is when
fetching from a cursor; it indicates that there
are no more rows in the cursor.

SQL_NEED_DATA Data is needed for a parameter.

This is an advanced feature described in the
ODBC Software Development Kit
documentation under SQLParamData and
SQLPutData.

Status code Description

CHAPTER 1 Introduction to ODBC Programming

Users Guide 27

errmsg, 100, NULL);
/* Assume that print_error is defined */
print_error("Failed to delete items", errmsg);
return;

}

Datatype mappings
Table 1-1 describes the Adaptive Server ODBC Driver datatype mappings.

Datatype mappings

28 Adaptive Server Enterprise ODBC Driver

Table 1-1: Datatype mappings

ASE datatype ODBC SQL datatype ODBC bind datatype

bigdatetime SQL_TYPE_TIMESTAMP SQL_C_TYPE_TIMESTAMP
or SQL_C_CHAR

bigtime SQL_TYPE_TIME SQL_C_TYPE_TIME
or SQL_C_CHAR

bigint SQL_BIGINT SQL_C_BIGINT

binary SQL_BINARY SQL_C_BINARY

bit SQL_BIT SQL_C_BIT

char SQL_CHAR SQL_C_CHAR

date SQL_TYPE_DATE SQL_C_TYPE_DATE
or SQL_C_CHAR

datetime SQL_TYPE_TIMESTAMP SQL_C_TYPE_TIMESTAMP
or SQL_C_CHAR

decimal SQL_DECIMAL SQL_C_NUMERIC
or SQL_C_CHAR

double SQL_DOUBLE SQL_C_DOUBLE

float(<16) SQL_REAL SQL_C_FLOAT

float(>=16) SQL_DOUBLE SQL_C_DOUBLE

image SQL_LONGVARBINARY SQL_C_BINARY

image_locator SQL_IMAGE_LOCATOR SQL_C_ IMAGE_LOCATOR

int[eger] SQL_INTEGER SQL_C_LONG

money SQL_DECIMAL SQL_C_NUMERIC
or SQL_C_CHAR

nchar SQL_CHAR SQL_C_CHAR

nvarchar SQL_VARCHAR SQL_C_CHAR

numeric SQL_NUMERIC SQL_C_NUMERIC
or SQL_C_CHAR

real SQL_REAL SQL_C_FLOAT

smalldatetime SQL_TYPE_TIMESTAMP SQL_C_TYPE_TIMESTAMP
or SQL_C_CHAR

smallint SQL_SMALLINT SQL_C_SHORT

smallmoney SQL_DECIMAL SQL_C_NUMERIC
or SQL_C_CHAR

text SQL_LONGVARCHAR SQL_C_CHAR

text_locator SQL_TEXT_LOCATOR SQL_C_TEXT_LOCATOR

time SQL_TYPE_TIME SQL_C_TYPE_TIME
or SQL_C_CHAR

timestamp SQL_BINARY SQL_C_BINARY

tinyint SQL_TINYINT SQL_C_TINYINT

CHAPTER 1 Introduction to ODBC Programming

Users Guide 29

Special instructions for
unichar, varchar, and
unitext

When you use the Adaptive Server datatypes unichar, univarchar, and unitext,
and then bind any of them to SQL_C_CHAR, the Adaptive Server ODBC
Driver must convert the data from Unicode to multibyte and vice versa. For this
conversion, it must have the SYBASE charsets installed in the $SYBASE
directory. The installation program includes an option to install these charset
files.

If the driver does not find the charsets, or if the $SYBASE environment variable
is not set, then an appropriate error is propagated to the application. To install
the SYBASE charsets, you must reinstall the ODBC Driver. See the Software

Developer’s Kit and Open Server Installation Guide for your platform.

Note To support older applications, the Adaptive Server ODBC Driver
assumes that the default type is SQL_C_CHAR when a unitext, univarchar, or
unichar column is bound as SQL_C_DEFAULT. To bind as unicode, the
application must explicitly use a bind type of SQL_C_WCHAR.

Special instructions for
bigint

When you use a column of type bigint as an identifier in an Adaptive Server
table (for example, as an identity or primary key), and applications such as
Microsoft Access accesses the table through Adaptive Server ODBC Driver,
the values of such column may appear as “#deleted”, and prevent further
operations on the table. As a workaround, set CHANGEBIGINTDEFAULT to
1.

CHANGEBIGINTDEFAULT values:

• 0 – the default value, binds SQL_C_DEFAULT to SQL_C_BIGINT.

• 1 – binds SQL_C_DEFAULT to SQL_C_CHAR. Use this setting when
you want to access Adaptive Server tables with bigint identifiers from
applications such as Microsoft Access or Microsoft Excel.

unichar SQL_WCHAR SQL_C_CHAR

unitext SQL_WLONGVARCHAR SQL_C_CHAR

unitext_locator SQL_UNITEXT_LOCATOR SQL_C_ UNITEXT_LOCATOR

univarchar SQL_WVARCHAR SQL_C_CHAR

unsignedbigint SQL_BIGINT SQL_C_UBIGINT

unsignedint SQL_INTEGER SQL_C_ULONG

unsignedsmallint SQL_SMALLINT SQL_C_USHORT

varbinary SQL_VARBINARY SQL_C_BINARY

varchar SQL_VARCHAR SQL_C_CHAR

ASE datatype ODBC SQL datatype ODBC bind datatype

Datatype mappings

30 Adaptive Server Enterprise ODBC Driver

• 2 – binds SQL_C_DEFAULT to SQL_C_WCHAR.

Users Guide 31

C H A P T E R 2 Connecting to a Database

This chapter describes how client applications connect to Sybase
Adaptive Server Enterprise using ODBC.

Introduction to connections
Any client application that uses Adaptive Server Enterprise must establish
a connection to the Adaptive server before any work can be done. The
connection forms a channel through which all activity from the client
application takes place. For example, your user ID determines
permissions to carry out actions on the database—and the database server
has your user ID because it is part of the request to establish a connection.
The Adaptive Server ODBC Driver uses connection information included
in the call from the client application (perhaps together with information
held on disk in an initialization file) to locate and connect to an Adaptive
Server server running the required database.

Topic Page

Introduction to connections 31

How connection parameters work 33

Character sets 33

Configuring the Adaptive Server ODBC Driver 35

Connecting using a datasource 40

Introduction to connections

32 Adaptive Server Enterprise ODBC Driver

Installing ODBC MetaData stored procedures

The ODBC MetaData stored procedures ensure that ODBC functionalities
behave as expected. Sybase recommends that you check the version of the
ODBC MetaData stored procedures on all the Adaptive Server servers that you
need to connect to, using the ODBC Driver and update them wherever needed.

Note Use the “ODBC driver version information utility” with the -connect
option to check if the metdata stored procedures are up to date or need update.

❖ Installing the MetaData stored procedures

This procedure installs the ODBC MetaData stored procedures in
sybsystemprocs.

To run the script successfully, you need permission to create stored procedures
in sybsystemprocs.

1 Go to the sp directory under the Adaptive Server ODBC Driver
installation directory:

• Adaptive Server ODBC Driver 32-bit for Microsoft Windows:
%SYBASE%\DataAccess\ODBC\sp

• Adaptive Server ODBC Driver 64-bit for Microsoft Windows:
%SYBASE%\DataAccess64\ODBC\sp

• Adaptive Server ODBC Driver 32-bit for Linux:
$SYBASE\DataAccess\ODBC\sp

• Adaptive Server ODBC Driver 64-bit for UNIX:
$SYBASE\DataAccess64\ODBC\sp

2 Execute the install_odbc_sprocs script.

• Adaptive Server ODBC Driver for Microsoft Windows:

install_odbc_sprocs ServerName username
[password]

• Adaptive Server ODBC Driver for UNIX:

./install_odbc_sprocs ServerName username
[password]

where:

• ServerName is the name of the Adaptive Server.

• username is the user name to connect to the server.

CHAPTER 2 Connecting to a Database

Users Guide 33

• [password] is the password for the user name. If the value is null,
leave the parameter empty.

How connection parameters work
When an application connects to a database, it uses a set of connection
parameters to define the connection. Connection parameters include
information such as the server name, the database name, and a user ID. A
keyword-value pair (of the form parameter=value) specifies each connection
parameter. For example, you specify the user ID connection parameter as
follows:

UID=sa

Connection
parameters passed as
connection strings

Connection parameters are passed to the Adaptive Server ODBC driver as a
connection string and are separated by semicolons:

parameter1=value1;parameter2=value2;...

In general, the connection string built by an application and passed to the driver
does not correspond directly to the way a user enters the information. Instead,
a user can fill in a dialog box, or the application can read connection
information from an initialization file.

Character sets
The CharSet connection property defines the character set that the driver uses
to send character data to Adaptive Server, while the ClientCharset connection
property defines the character set used by client applications.

The valid CharSet values are:

• ServerDefault – when specified, Adaptive Server ODBC Driver
communicates with Adaptive Server using the server's default character
set. The Adaptive Server ODBC Driver converts character data for the
client if the client and server use different character sets.

Character sets

34 Adaptive Server Enterprise ODBC Driver

• ClientDefault –when specified, Adaptive Server ODBC Driver
communicates with Adaptive Server using the client-specified character
set. In this case, if the default Adaptive Server character set is different
from the client's, Adaptive Server converts character data to the client
character set. Adaptive Server uses additional resources when performing
character set conversions.

• NoConversions – when specified, Adaptive Server ODBC Driver ignores
the client's character set and does not convert character data. In this setting,
the client application must ensure that character data is correctly converted
between the client's character set and the default Adaptive Server
character set. Use this value only under specific circumstances. For
example, when character data stored in Adaptive Server must be converted
in the client application using a customized character set conversion logic.

Note In the Microsoft Windows ODBC Data Source Administrator, the
“Server Default,” “Client Charset,” and "No Conversions" fields found in the
Advanced window correspond to the CharSet values ServerDefault,
ClientDefault, and NoConversions, respectively.

The Adaptive Server ODBC Driver determines the client character set,
depending on the platform:

• On Microsoft Windows, the default client character set selected is the
ANSI code page for your login session. The valid code page types are
ANSI, OEM, and Other. If Other is chosen, you must enter a valid
Windows code page value.

• By default, on UNIX, the Adaptive Server ODBC Driver examines the
LC_CTYPE and LANG environment variables. If they are not set, the
driver defaults to ISO 8859-1. If one of these environment variables are
set, the driver looks for locales.dat in the $SYBASE/locales/locales.dat
directory to pick up the corresponding Adaptive Server character set. If the
file is not found, the driver looks into its own map in memory to lookup
the corresponding Adaptive Server character set.

CHAPTER 2 Connecting to a Database

Users Guide 35

Configuring the Adaptive Server ODBC Driver
When connecting to the database, ODBC applications typically use ODBC
datasources. An ODBC datasource is a set of connection parameters, stored in
the registry or in a file. ODBC datasources on non-Windows platforms
typically reside in an ini file. Most ODBC Driver Managers provide a GUI tool
to configure ODBC Driver and datasources.

Microsoft Windows

When you use the Sybase SDK installation program to install the Adaptive
Server ODBC Driver, it registers the driver on the local machine. You can
manually register the Adaptive Server ODBC Driver on Microsoft Windows
using the regsvr32 utility.

Registering the Adaptive Server ODBC Driver

Note You do not need to manually register the Adaptive Server ODBC Driver
if you have used the Sybase SDK installation program to install Adaptive
Server ODBC Driver.

❖ Manually registering Adaptive Server ODBC Driver 32-bit on Microsoft
Windows x86 32-bit

1 Change to the %SYBASE%\DataAccess\ODBC\dll directory, which
contains the Adaptive Server ODBC Driver DLL.

2 Run the regsvr32 utility to create registry entries in the
HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI key:

regsvr32 sybdrvodb.dll

❖ Manually registering Adaptive Server ODBC Driver 64-bit on Microsoft
Windows x86-64 64-bit

1 Change to the %SYBASE%\DataAccess64\ODBC\dll directory, which
contains the Adaptive Server ODBC Driver DLL.

2 Run the regsvr32 utility to create registry entries in the
HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI key:

regsvr32 sybdrvodb64.dll

Configuring the Adaptive Server ODBC Driver

36 Adaptive Server Enterprise ODBC Driver

❖ Manually registering Adaptive Server ODBC Driver 32-bit on Microsoft
Windows x86-64 64-bit

1 Change to the %SYBASE%\DataAccess\ODBC\dll directory, which
contains the Adaptive Server ODBC Driver DLL.

2 Run the regsvr32 utility to create registry entries in the
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ODBC\

ODBCINST.INI key:

regsvr32 sybdrvodb.dll

Note To configure a datasource using Adaptive Server ODBC Driver 32-bit
on Microsoft Windows x86-64 64-bit, use the 32-bit ODBC Data Source
Administrator odbcad32.exe located by default at C:\WINDOWS\SysWOW64\.

Configuring a datasource

❖ Configuring a datasource

1 Launch the ODBC Administrator. See the online help for your specific
Microsoft Windows operating system for detailed instructions.

2 Select the User DSN tab. Click Add.

3 Choose “Adaptive Server Enterprise” from the list of drivers.

4 Click Finish.

5 Select the General tab. Enter values in the following fields:

• Data Source Name – a name for your datasource

• Description – a description for your datasource

• Server Name – an Adaptive Server Enterprise host name

• Server Port – an Adaptive Server Enterprise port number

• Database Name – a database name

• Logon ID – a user name to log in to the Adaptive Server Enterprise
database

6 Select Use Cursors to open cursors for every select statement.

7 Complete the Connection and Advanced tabs as needed.

CHAPTER 2 Connecting to a Database

Users Guide 37

8 Click OK to save the changes.

Note For a detailed explanation of connection parameters, see “Using
connection parameters” on page 40.

UNIX

The unixODBC Driver Manager supports configuring drivers and datasources
from a GUI as well as the command line. Refer to the ODBC Driver Manager's
documentation for instructions on the GUI tool and command line syntax.

Note The Adaptive Server ODBC Driver and datasources that use this driver
cannot be configured using the GUI tools from the unixODBC Driver
Manager. You must use the command line interface.

When configuring the driver and datasources using the unixODBC Driver
Manager command line tool, you must supply a template file. Sample
templates are described in the following section. You can also find these
templates in:

• Adaptive Server ODBC Driver 32-bit:
$SYBASE/DataAccess/ODBC/samples

• Adaptive Server ODBC Driver 64-bit:
$SYBASE/DataAccess64/ODBC/samples

The following is an example of a driver template file:

[Adaptive Server Enterprise]
Description=Sybase ODBC Driver
Driver=/install dir/driver library name
FileUsage=-1

where:

• install dir is the path to the Adaptive Server ODBC Driver installation.

• driver library name is the name of the driver library.

Installing the Adaptive Server ODBC Driver

To install the Adaptive Server ODBC Driver using the unixODBC command
line tool, execute:

Configuring the Adaptive Server ODBC Driver

38 Adaptive Server Enterprise ODBC Driver

odbcinst -i -d -f driver template file

where driver template file is the complete path to the Adaptive Server ODBC
Driver template file.

Note In most cases, this command needs to be executed as the root user
because it modifies the odbcinst.ini file that is owned by root.

Configuring a datasource

unixODBC Driver
Manager

This is a datasource template:

[sampledsn]
Description=Sybase ODBC Data Source
UserID=sa
Password=
Driver=Adaptive Server Enterprise
Server=sampleserver
Port=4100
Database=pubs2
UseCursor=1

Execute the following command to configure a datasource for the Adaptive
Server ODBC Driver using the unixODBC command line tool:

odbcinst -i -s -f dsn template file

where dsn template file is the complete path to the Adaptive Server ODBC
datasource template file. This creates entries for the datasource in the odbc.ini
file.

Note The exact command you need to configure ODBC datasources depends
on the ODBC Driver Manager you are using.

Sybase iAnywhere
ODBC Driver
Manager

The Sybase iAnywhere ODBC Driver Manager uses the information provided
in the odbc.ini file to locate the driver and other connection information. The
ODBCINI variable defines the location of the odbc.ini file.

❖ Manually configuring the ODBC driver and datasource

1 Create an odbc.ini file:

[sampledsn]
Description=Sybase ODBC Data Source
UserID=sa

CHAPTER 2 Connecting to a Database

Users Guide 39

Password=
Driver=complete_path_to_libsybdrvodb.so
Server=sampleserver
Port=4100
Database=pubs2
UseCursor=1

2 Set the ODBCINI environment variable to the complete path to the
odbc.ini file.

ODBC ini files

The ODBC Driver Manager stores driver and datasource information in ini
files or the system registry.

Note Refer to your ODBC Driver Manager documentation for the exact path
for these ini files.

Microsoft Windows

The odbc.ini and odbcinst.ini files are located in the c:\winnt directory. The
Microsoft ODBC Driver Manager looks up these files or the registry at runtime
when an application requests a connection to a datasource.

UNIX

Information about the ODBC Driver installed on the system is saved in the
odbcinst.ini file. This file is typically located at /etc/odbcinst.ini.

The information about datasources is saved in one of two files:

• User datasource information, available only to that user, is saved in the
$HOME/.odbc.ini file, where $HOME is the user home directory.

• System datasource information, available to any user on the system, is
usually saved in the /etc/odbc.ini file. If the same datasource is defined in
both files, the user datasource takes precedence.

The ODBC Driver Manager looks up these files at runtime when an application
requests a connection to a datasource. Refer to your ODBC Driver Manager
documentation for the exact path for these ini files. Some Driver Manager use
alternate locations.

Connecting using a datasource

40 Adaptive Server Enterprise ODBC Driver

If your application is not using ODBC Driver Manager and uses the Adaptive
Server ODBC Driver directly, the ini file is searched differently: The Adaptive
Server ODBC Driver first looks for a file named odbc.ini in the current
working directory; if the file is not found or the datasource not found in the file,
it looks for $SYBASE/odbc.ini.

If your application uses the Sybase iAnywhere ODBC Driver Manager, set the
ODBCINI environment variable to the complete path to the odbc.ini file. By
default, odbc.ini is located under $SYBASE.

Connecting using a datasource
ODBC applications usually use datasources on the client computer for each
database you want to connect to. You can store sets of Adaptive Server
Enterprise connection parameters as an ODBC datasource, in either the system
registry or ini files. If you have a datasource, your connection string can simply
name the datasource by using the DataSourceName (DSN) connection
parameter:

DSN=my data source

Using connection parameters

Table 2-1 lists the connection parameters other than from the DSN parameter
that can be supplied to the Adaptive Server ODBC Driver.

Table 2-1: Connection parameters

Property names Description Required Default value

AlternateServers A list of comma-separated host:port pairs such as
server1:port1,server2:port2,...,serverN:portN;
When establishing a connection, the Adaptive
Server ODBC Driver first connects to the host and
port specified by the Server and Port properties
before going through the list of hosts and ports
listed in AlternateServers.

See “Supported Adaptive Server Cluster Edition
features” on page 53 for information about how
AlternateServers is used in a high availability
environment.

No Empty

CHAPTER 2 Connecting to a Database

Users Guide 41

AnsiNull Strict ODBC compliance where you cannot use “=
NULL.” Instead, you must use “IsNull.”

No 1

ApplicationName The name used by Adaptive Server to identify the
client application.

No Empty

AuthenticationClient The type of client library to be used for Kerberos
Authentication. Valid values include:

• activedirectory

• cybersafekerberos

• mitkerberos

No Empty

AutoCommit Set the autocommit state. Valid values are:

• 0 – autocommit is off (equivalent to setting
SQL_ATTR_AUTOCOMMIT to
SQL_AUTOCOMMIT_OFF)

• 1 – (default) autocommit is on (equivalent to
setting SQL_ATTR_AUTOCOMMIT to
SQL_AUTOCOMMIT_ON)

No 1

BackEndType Specifies the target type of the datasource you are
defining. The Adaptive Server ODBC Driver can
communicate with multiple target objects,
including database systems such as Adaptive
Server, and gateways to non-Sybase database
systems. Valid values include:

• ASE

• DC DB2 Access Service

• DC TRS

• MFC Gatewayless

• Replication Server

See “Support for Mainframe Connect and
DirectConnect for z/OS Option” on page 65 for
more information.

No ASE

BufferCacheSize Keeps the input / output buffers in pool. When
large results will occur, increase this value to
boost performance.

No 20

ChangeBigIntDefault Specifies the default C type for bigint columns.
Valid values are:

• 0 – SQL_C_SBIGINT/SQL_CUBIGINT

• 1 – SQL_C_CHAR

• 2 – SQL_C_WCHAR

No 0

Property names Description Required Default value

Connecting using a datasource

42 Adaptive Server Enterprise ODBC Driver

CharSet Specifies the character set that is used to
communicate to Adaptive Server. The valid values
are ServerDefault, ClientDefault, NoConversions.

See “Character sets” on page 33.

No ServerDefault

ClientCharset Specifies the client character set.

See “Character sets” on page 33.

No The character
set currently
used by the
operating
system.

ClientHostName The name of the client host passed in the login
record to the server.

No Empty

ClientHostProc The identity of client process on this host machine
passed in the login record to the server.

No Empty

CodePageType Specifies the type of character encoding used. The
valid values are ANSI, OEM, and Other.

No ANSI

CommandTimeOut The time, in seconds, that a client has to wait for a
command to execute. If a command does not
execute within the time given, the client cancels
the command and generates an error.

No 0. A value of 0
indicates no
time limit,
allowing client
to execute a
command
indefinitely its
until return.

ConnectionTimeOut The time, in seconds, that a client has to wait to
establish a connection. If a connection is not
established within the time given, the client
cancels the attempt and generates an error.

No 0. A value of 0
indicates no
time limit,
allowing ODBC
to wait
indefinitely for
a database
connection to be
established.

CRC By default, the driver returns the total records
updated when multiple update statements are
executed in a stored procedure. This count will
also include all updates happening as part of the
triggers set on an update or an insert.

Set this property to 0 if you want the driver to
return only the last update count.

No 1

Database The database to which you want to connect. No Empty

DataIntegrity Enables Kerberos Data Integrity. No 0 (disabled)

Property names Description Required Default value

CHAPTER 2 Connecting to a Database

Users Guide 43

DistributedTransaction
Protocol

Sets the protocol to be used for distributed
transactions. Valid values are XA (default) and
OLE.

No XA

DSPassword The password used to authenticate on the LDAP
server, if the LDAP server does not allow
anonymous access. The password can be specified
in the Directory Service URL (DSURL) as well.

No Empty

DSPrincipal The user name used to authenticate on the LDAP
server, if the LDAP server does not allow
anonymous access. The principal can be specified
in the DSURL as well.

No Empty

DSURL The URL to the LDAP server. No Empty

DTCProtocol (Microsoft
Windows only)

Allows the driver to use either an XA protocol or
OleNative protocol when using distributed
transactions. See “Using distributed transactions”
on page 56, in Chapter 3, “Supported Adaptive
Server Features.”

No XA

DynamicPrepare When set to 1, the driver sends SQLPrepare calls
to Adaptive Server to compile/prepare. This can
boost performance if you use the same query
repeatedly.

No 0

EnableBulkLoad Specifies whether bulk-load support is enabled:

• 0 – bulk-load support is disabled.

• 1 – bulk-load using array insert is enabled.

• 2 – bulk-load using the bulk copy interface is
enabled.

• 3 – bulk-load using the fast logged bulk copy
interface is enabled.

See “Bulk-load support” on page 63.

Use the Sybase-specific
SQL_ATTR_ENABLE_BULK_LOAD
connection attribute to set EnableBulkLoad
programmatically. The attribute accepts the same
values as EnableBulkLoad.

Yes 0

EnableLOBLocator Specifies whether large object (LOB) locator
support is enabled:

• 0 – LOB locator support is disabled.

• 1 – LOB locator support is enabled.

See “Large Object (LOB) locator support” on
page 98.

No 0

Property names Description Required Default value

Connecting using a datasource

44 Adaptive Server Enterprise ODBC Driver

EnableMDACheck Sets the checking mode for MDA scripts installed
on the server. Valid values are:

• 0 – disables MDA script checking.

• 1 – raise warning if the MDA script version is
older than the driver version and continue with
the connection.

• 2 – raise error if the MDA script version is
older than the driver version and fail the
connection.

No 0

EnableServerPacketSize Allows Adaptive Server server versions 15.0 or
later to choose the optimal packet size.

No 1

Encryption The designated encryption. Possible values: ssl. No Empty

EncryptPassword Specifies whether password is transmitted in an
encrypted format:

• 0 – use plain text password.

• 1 – use encrypted password. If it is not
supported, return an error message.

• 2 – use encrypted password. If it is not
supported, use plain text password.

Note When password encryption is enabled, and
the server supports asymmetric encryption, this
format is used instead of symmetric encryption.

No 0

Escape Sets the ODBC escape character. No ‘\’

FetchArraySize Specifies the number of rows the driver retrieves
when fetching results from the server.

No 25

HASession Specifies if high availability is enabled. 0
indicates high availability disabled, 1 high
availability enabled.

No 0

Property names Description Required Default value

CHAPTER 2 Connecting to a Database

Users Guide 45

HomogeneousBatch Specifies the parameter batch handling mode:

• 0 – disables parameter batching.

• 1 – enables Adaptive Server parameter
batching protocol.

• 2 – enables Adaptive Server bulk insert
protocol.

Use the Sybase-specific
SQL_ATTR_HOMOGENEOUS_BATCH
connection attribute to set HomogeneousBatch
programmatically. The attribute accepts the same
values as HomogeneousBatch.

No 0

IgnoreErrorsIfRS
Pending

Specifies whether the driver is to continue
processing or stop if error messages are present.
When set to 1, the driver ignores errors and
continues processing the results if more results are
available from the server. When set to 0, the driver
stops processing the results if an error is
encountered even if there are results pending

No 0

InitializationString Sets a Transact-SQL statement to be executed at
login.

No Empty

Isolation Specified the initial isolation level for the
connection. Valid values are:

• 0 – read uncommitted

• 1 – read committed

• 2 – repeatable read

• 3 – serializable

No 0

Language The language in which Adaptive Server returns
error messages.

No Empty –
Adaptive Server
uses English by
default

LoginTimeOut Number of seconds to wait for a login attempt
before returning to the application. If set to 0, the
timeout is disabled, and a connection attempt
waits for an indefinite period of time.

No 15

NormalizeWCharParams Specifies whether to enable Unicode string
normalization. Set this property to 1 when the
Adaptive Server configuration option enable

unicode normalization is set to 0. Valid values are:

• 0 – disables Unicode string normalization.

• 1 – enables Unicode string normalization.

No 0

Property names Description Required Default value

Connecting using a datasource

46 Adaptive Server Enterprise ODBC Driver

OldPassword The current password. If OldPassword contains a
value that is not null or an empty string, the
current password is changed to the value
contained in PWD.

No Empty

PacketSize The number of bytes per network packet
transferred between Adaptive Server and the
client.

No Server-
determined
when driver is
connected to
Adaptive Server
15.0 or later. For
older versions,
the default is
512.

ParamsetsBeforeThread Specifies the number of parameter sets to send
before starting the response thread during a batch
operation.

No 50

Port The port number of Adaptive Server. Yes Empty

ProgName Sets the value of progname to be used during
login.

The specified value is truncated to 30 characters.

No Empty

ProtocolCapture Enable this property to capture TDS packets
exchanged between an ODBC application and the
server for debugging purposes. This property is
enabled by specifying the capture file prefix.

See “TDS protocol capture” on page 85.

No Empty

PWD, Password Contains the value of the password. When
performing a normal login, OldPassword is not set
and PWD contains the value of the current
password. When changing the password,
OldPassword is set to the current password, and
PWD contains the value of the new password.

No, if the user
name does not
require a
password

Empty

QuotedIdentifier Specifies if Adaptive Server treats character
strings enclosed in double quotes as identifiers:

• 0 – does not enable quoted identifiers.

• 1 – enables quoted identifiers.

No 0

ReadWriteUnknown When set, the columns are not updatable are
marked as read/write unknown.

No 0

Property names Description Required Default value

CHAPTER 2 Connecting to a Database

Users Guide 47

ReleaseLocksOnCursorC
lose

Specifies if Adaptive Server releases shared read-
only cursor locks at isolation levels 2 and 3 when
a cursor is closed:

• 0 – does not enable shared cursor locks release
on close.

• 1 – enables shared cursor locks release on
close.

No 0

RemotePwd Sets the remote password(s) for servers in
servername,password;servername,passwo

rd;... format.

No Empty

ReplayDetection Enables Kerberos Replay Detection. No 0

RestrictMaximum
PacketSize

If there are memory constraints when
EnableServerPacketSize is set to 1, set this
property to an int value in multiples of 512 to a
maximum of 65536.

No 0

RetryCount, RetryDelay Control the connection retry behavior.

RetryCount is the number of times to attempt to
connect to the server before reporting the
connection failed. Between each retry, the driver
delays for RetryDelay number of seconds.

By default, the ODBC application does not retry
the connection.

No 0

SecondaryPort The port number of the Adaptive Server acting as
a failover server in an active-active or active-
passive setup.

Yes, if
HASession is
set to 1.

Empty

SecondaryServer The name or the IP address of the Adaptive Server
acting as a failover server in an active-active or
active-passive setup.

Yes, if
HASession is
set to 1.

Empty

Server The name or IP address of the Adaptive Server. Yes Empty

ServerInitiated
Transactions

When SQL_ATTR_AUTOCOMMIT is set to 1,
Adaptive Server starts managing transactions as
needed. The driver issues a set chained on
command on the connection. Older ODBC drivers
do not use this feature and manage the job of
starting transactions by calling begin tran. Set this
property to 0 to maintain the old behavior or
require that your connection not use “chained”
transaction mode.

No 1

Property names Description Required Default value

Connecting using a datasource

48 Adaptive Server Enterprise ODBC Driver

ServerPrincipal The logical name or the principal Adaptive Server
name as configured in the Key Distribution Center
(KDC). Adaptive Server ODBC Driver uses the
information to negotiate Kerberos authentication
with the configured KDC and Adaptive Server.

No Empty

ServiceName Specifies the service name used to connect to the
host. ServiceName can hold any string value.

See “Support for Mainframe Connect and
DirectConnect for z/OS Option” on page 65.

No Empty

SuppressParamFormat Specifies that Adaptive Server is to suppress
parameter format metadata when prepared
statements are re-executed in a session.

Values:

• 0 – the parameter format metadata is not
suppressed.

• 1– the default value; Adaptive Server will
not send parameter format metadata where
possible.

See “Suppressing parameter format metadata” on
page 95.

No 1

SuppressRowFormat Specifies that Adaptive Server is to suppress row
format metadata (TDS_ROWFMT or
TDS_ROWFMT2) for queries that are re-
executed in a session.

Values:

• 0 – the row format metadata is not
suppressed.

• 1– the default value; Adaptive Server will
not send row format metadata where
possible.

See “Suppressing row format metadata” on page
94.

No 1

Property names Description Required Default value

CHAPTER 2 Connecting to a Database

Users Guide 49

ODBC driver version information utility
The odbcversion utility displays information about the ODBC driver.

SuppressRowFormat2 Specifies that Adaptive Server is to send data
using the TDS_ROWFMT byte sequence where
possible instead of the TDS_ROWFMT2 byte
sequence.

Values:

• 0 – the default value; TDS_ROWFMT2 is not
suppressed.

• 1– forces the server to send data in
TDS_ROWFMT where possible.

See “Suppressing additional row format
information” on page 93.

No 0

SupressTDSControl
Tokens

When set, the server does not send TDS control
tokens.

No 0

TextSize The maximum size of binary or text data that can
be sent over the wire.

No Empty –
Adaptive Server
default is 32K.

TightlyCoupled
Transaction (Microsoft
Windows only)

When using distributed transactions, if you are
using two DSNs that connect to the same Adaptive
Server, set this to 1. See “Using distributed
transactions” on page 56, in Chapter 3,
“Supported Adaptive Server Features.”

No 0

TrustedFile If encryption is set to ssl, set this property to the
path to the Trusted File.

No Empty

UID, UserID A case-sensitive user ID required to connect to the
Adaptive Server.

Yes Empty

UseCursor Specifies which cursor type is to be used for SQL
statements that generate result sets.

• 0 – use server-side cursors for all cases.

• 1 – use client-side cursors for all cases.

• 2 – use server-side cursors only when
SQLSetCursorName ODBC function is called.

See “UseCursor connection property” on page 18.

No 0

Property names Description Required Default value

ODBC driver version information utility

50 Adaptive Server Enterprise ODBC Driver

Syntax odbcversion

-version |
-fullversion |
-connect dsn userid password

Parameters -version

displays a simple numeric version string for the ODBC driver.

-fullversion

displays the verbose version string for the ODBC driver.

-connect dsn userid password

displays the Adaptive Server version and the version of ODBC and OLEDB
MDA scripts installed on that Adaptive Server. Three variables are required
with this parameter: dsn, which is the data source name for the Adaptive
Server, and the user ID and password used to connect to the Adaptive Server.

Example Obtain the simple numeric version string of an ODBC driver used to connect
to Adaptive Server:

odbcversion -version

The utility returns a numeric version string:

15.05.00.1015

Usage When no parameters are specified, the odbcversion utility displays a list of
valid parameters.

Users Guide 51

C H A P T E R 3 Supported Adaptive Server Features

This chapter describes the advanced Adaptive Server features you can use
with the Adaptive Server ODBC Driver.

Topic Page

Microsecond granularity for time data 52

Asynchronous execution for ODBC 52

Supported Adaptive Server Cluster Edition features 53

Using distributed transactions 56

Using directory services 59

Bookmark and bulk support 63

Bulk-load support 63

Support for Mainframe Connect and DirectConnect for z/OS Option 65

DSN Migration tool 66

Password encryption 67

Password expiration handling 69

Using SSL 70

Using failover in high availability systems 74

Kerberos authentication 78

Logging without ODBC Driver Manager tracing 83

TDS protocol capture 85

ODBC data batching without binding parameter arrays 86

Releasing locks at cursor close 95

select for update support 96

Variable-length rows in data-only locked tables 96

Nonmaterialized columns 97

Large Object (LOB) support 97

Large Object (LOB) locator support 98

Microsecond granularity for time data

52 Adaptive Server Enterprise ODBC Driver

Microsecond granularity for time data
Adaptive Server ODBC Driver provides microsecond-level precision for time
data by supporting the SQL datatypes bigdatetime and bigtime.

bigdatetime and bigtime function similarly to and have the same data mappings
as the SQL datetime and time datatypes:

• bigdatetime corresponds to the Adaptive Server bigdatetime datatype and
indicates the number of microseconds that have passed since January 1,
0000 00:00:00.000000. The range of legal bigdatetime values is from
January 1, 0001 00:00:00.000000 to December 31, 9999 23:59:59.999999.

• bigtime corresponds to the Adaptive Server bigtime datatype and indicates
the number of microseconds that have passed since the beginning of the
day. The range of legal bigtime values is from 00:00:00.000000 to
23:59:59.999999.

Usage • When connecting to Adaptive Server 15.5, the Adaptive Server ODBC
Driver transfers data using the bigdatetime and bigtime datatypes, even if
the receiving Adaptive Server columns are defined as datetime and time.

This means that Adaptive Server may silently truncate the values from the
Adaptive Server ODBC Driver to fit the Adaptive Server columns. For
example, a bigtime value of 23:59:59.999999 is saved as 23:59:59.996 in
an Adaptive Server column with datatype time.

• When connecting to Adaptive Server 15.0.x and earlier, the Adaptive
Server ODBC Driver transfers data using the datetime and time datatypes.

Asynchronous execution for ODBC
By default, drivers execute ODBC functions synchronously. That is, the
application calls a function and the driver returns control to the application
when execution is complete. With asynchronous execution, the driver returns
control to the application after minimal processing and before execution is
complete. This allows the application to execute in parallel other functions
while the first function is still executing. Asynchronous execution is beneficial
when a task is complex and requires a significant amount of time to execute.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 53

The Adaptive Server ODBC Driver by Sybase supports a maximum of one
concurrent statement in asynchronous mode. Only one concurrent statement,
synchronous or asynchronous, can be executed if server-side cursors are used
or if the connection’s auto-commit is disabled.

To use connection-level asynchronous execution with the Adaptive Server
ODBC Driver by Sybase, call SQLSetConnectAttr and set
SQL_ATTR_ASYNC_ENABLE to SQL_ASYNC_ENABLE_ON.

For more information about asynchronous execution and its application, refer
to the ODBC Programmer’s Reference that is available at the Microsoft

Developers Network at http://msdn.microsoft.com/.

Note Calling SQLCancel when no processing is being done will not close the
associated cursors. ODBC applications should explicitly call SQLFreeStmt or
SQLCloseCursor to close cursors.

Supported Adaptive Server Cluster Edition features
This section describes the Adaptive Server ODBC Driver features that support
the Cluster Edition, where multiple Adaptive Servers connect to a shared set of
disks and a high-speed private interconnection. This allows Adaptive Server to
scale using multiple physical and logical hosts.

See the Adaptive Server Enterprise Clusters Users Guide.

Supported Adaptive Server Cluster Edition features

54 Adaptive Server Enterprise ODBC Driver

Login redirection

At any given time, some servers within a Cluster Edition environment are
usually more loaded with work than others. When a client application attempts
to connect to a busy server, the login redirection feature helps balance the load
of the servers by allowing the server to redirect the client connection to less
busy servers within the cluster. The login redirection occurs during the login
sequence and the client application does not receive notification that it was
redirected. Login redirection is enabled automatically when a client application
connects to a server that supports this feature.

Note When a client application connects to a server that is configured to
redirect clients, the login time may increase because the login process is
restarted whenever a client connection is redirected to another server.

Connection migration

The connection migration feature allows a server in a Cluster Edition
environment to dynamically distribute load, and seamlessly migrate an existing
client connection and its context to another server within the cluster. This
feature enables the Cluster Edition environment to achieve optimal resource
utilization and decrease computing time. Because migration between servers is
seamless, the connection migration feature also helps create a high availability
(HA), zero-downtime environment. Connection migration is enabled
automatically when a client application connects to a server that supports this
feature.

Note Command execution time may increase during server migration. Sybase
recommends that you increase the command timeouts accordingly.

Connection failover in Cluster Edition

Connection failover allows a client application to switch to an alternate
Adaptive Server if the primary server becomes unavailable due to an
unplanned event, like power outage or a socket failure. In the Adaptive Server
Cluster Edition, client applications can failover numerous times to multiple
servers using dynamic failover addresses.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 55

With high availability enabled, the client application does not need to be
configured to know the possible failover targets. Adaptive Server keeps the
client updated with the best failover list based on cluster membership, logical
cluster usage and load distribution. During failover, the client refers to the
ordered failover list while attempting to reconnect. If the driver successfully
connects to a server, the driver internally updates the list of host values based
on the list returned. Otherwise, the driver throws a connection failure
exception.

See “Using failover in high availability systems” on page 74.

Enabling Cluster Edition connection failover

Using the Adaptive
Server ODBC Driver
user interface
(Windows only)

You can enable the Cluster Edition connection failover in the Adaptive Server
ODBC Driver through its user interface.

❖ Using the user interface to enable extended failover

1 Open the Adaptive Server Enterprise dialog box.

2 Go to the Connection tab.

3 Select Enable High Availability.

4 (Optional) Enter alternate servers and ports in the Alternate Servers field
using this format:

server1:port1,server2:port2,...,serverN:portN;

In establishing a connection, the Adaptive Server ODBC Driver first attempts
to connect to the primary host and port defined in the General tab of the
Adaptive Server Enterprise dialog box. If Adaptive Server ODBC Driver fails
to establish a connection, it then searches through the list of hosts and ports
specified in the Alternate Servers field.

Using the Adaptive
Server ODBC Driver
connection string

To use the connection string to enable the connection failover in Adaptive
Server ODBC Driver, set the HASession connection string property to 1. You
can use SQLDriverConnect to specify a connection string. For example:

Driver=AdaptiveServerEnterprise;server=server1;
port=port1;UID=sa;PWD=;HASession=1;
AlternateServers=server2:port2,...,serverN:portN;

Using distributed transactions

56 Adaptive Server Enterprise ODBC Driver

The preceding example defines server1 and port1 as the primary server and
port. If Adaptive Server ODBC Driver fails to establish connection to the
primary server, and alternate servers are defined, it searches through the
ordered list of servers and ports specified in the Alternate Servers field until a
connection is established or until the end of the list is reached.

Using the unixODBC
Driver Manager (UNIX
only)

If you are linking to the unixODBC Driver Manager, edit the Adaptive Server
ODBC datasource template, odbc.ini, and reinstall the datasource using the
unixODBC command line tool:

odbcinst -i -s -f dsn_template_file

where dsn_template_file is the complete path to the Adaptive Server ODBC
datasource template file.

Using the Adaptive
Server ODBC Driver
or the Sybase
iAnywhere ODBC
Driver Manager

If you are directly linking to the Adaptive Server ODBC Driver or the Sybase
iAnywhere ODBC Driver Manager, modify the odbc.ini file to add the
alternate servers. For example:

ODBC Data Source UserID=sa
Password= Driver=Adaptive
Server Enterprise Server=sampleserver
Port=4100
Database=pubs2
UseCursor=1
HASession=1
AlternateServers=server2:port2,server3:port3;

Note The list of alternate servers specified in the GUI or the connection string
is used only during initial connection. After the connection is established with
any available instance, and if the client supports high availability, the client
receives an updated list of the best possible failover targets from the server.
This new list overrides the specified list.

Using distributed transactions
This section describes how you can use Adaptive Server ODBC Driver to
participate in two-phase commit transactions. This feature is supported only on
Microsoft Windows and requires that Microsoft Distributed Transaction
Coordinator (MS DTC) be the transaction coordinator managing two-phase
commit.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 57

Sybase supports all of these programming models:

• Applications using MS DTC directly

• Applications using Sybase EAServer

• Applications using Microsoft Transaction Server (MTS) or COM+

Programming for MS DTC

❖ Programming using Microsoft Distributed Transaction Coordinator
(MS DTC)

1 Connect to MS DTC by using the DtcGetTransactionManager function.
For information about MS DTC, see Microsoft Distributed Transaction
Coordinator documentation.

2 Call SQLDriverConnect or SQLConnect once for each Adaptive Server
connection to establish.

3 Call the ITransactionDispenser::BeginTransaction function to begin an MS
DTC transaction and to obtain an OLE Transaction object that represents
the transaction.

4 Call SQLSetConnectAttr one or more times for each ODBC connection you
want to enlist in the MS DTC transaction. SQLSetConnectAttr must be
called with an attribute of SQL_ATTR_ENLIST_IN_DTC and a ValuePtr of
the Transaction object (obtained in step 3).

5 Call SQLExecDirect one or more times for each insert or update SQL
statement.

6 Call the ITransaction::Commit function to commit the MS DTC transaction.
The Transaction object is no longer valid.

To perform a series of MS DTC transactions, repeat steps 3 through 6.

To release the reference to the Transaction object, call the ITransaction::Release
function.

Using distributed transactions

58 Adaptive Server Enterprise ODBC Driver

To use an ODBC connection with an MS DTC transaction and then use the
same connection with a local Adaptive Server transaction, call
SQLSetConnectAttr with a ValuePtr of SQL_DTC_DONE to unenlist the
connection from the transaction.

Note Also, you can call SQLSetConnectAttr and SQLExecDirect separately for
each Adaptive Server, instead of calling them as suggested in steps 4 and 5.

Programming components deployed in Sybase EAServer,
MTS, or COM+

The following procedure describes how to create components that participate
in distributed transactions in Sybase EAServer, MTS, or COM+.

❖ Programming components deployed in Sybase EAServer, MTS or COM+

1 Call SQLDriverConnect once for each Adaptive Server connection you
want to establish.

2 Call SQLExecDirect once for each insert or update SQL statement.

3 Deploy your component to MTS, and configure the transaction attributes
as needed.

The transaction coordinator creates a distributed transaction as needed, and the
component that uses the Adaptive Server ODBC Driver automatically enlists
in the global transaction. Then, the transaction coordinator commits or rolls
back the distributed transaction.

Connection properties for distributed transaction support

The following describes the Connection properties:

• Distributed Transaction Protocol (DistributedTransactionProtocol) – to
specify the protocol used to support the distributed transaction, either XA
Interface standard or MS DTC OLE Native protocol, select the Distributed

Transaction Protocol in the ODBC Data Source dialog, or set the property
DistributedTransactionProtocol = OLE native protocol in the connection
string. The default is XA.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 59

• Tightly Coupled Transaction (TightlyCoupledTransaction) – when a
distributed transaction using two resource managers points to the same
Adaptive Server, it is a “Tightly Coupled Transaction.” Under these
conditions, if you do not set this property to 1, the distributed transaction
may fail.

To summarize, if you open two database connections to the same Adaptive
Server and then enlist these connections in the same distributed transaction,
you must set TightlyCoupledTransaction=1. To set this property, select the
Tightly Coupled Transaction in the ODBC Data Source dialog box, or pass the
property TightlyCoupledTransaction=1 in the connection string.

 Warning! Enlistment with SQLSetConnectAttr returns a SQL_ERROR if the
connection has already begun a local transaction, either by using
SQLSetConnectAttr with the SQL_AUTOCOMMIT_OFF or by executing the
BEGIN TRANSACTION statement explicitly using SQLExecDirect.

Using directory services
Directory services allow the Adaptive Server ODBC Driver to get connection
and other information from a central LDAP server; then, it uses this
information to connect to an Adaptive Server. It uses a property called
Directory Service URL (DSURL), that indicates which LDAP server to use.

LDAP as a directory service

Lightweight Directory Access Protocol (LDAP) is an industry standard for
accessing directory services. Directory services allow components to look up
information by a distinguished name (DN) from an LDAP server that stores
and manages server, user, and software information that is used throughout the
enterprise or over a network.

LDAP defines the communication protocol and the contents of messages
exchanged between clients and servers. The LDAP server can store and
retrieve information about:

• Adaptive Server, such as IP address, port number, and network protocol

• Security mechanisms and filters

Using directory services

60 Adaptive Server Enterprise ODBC Driver

• High-availability companion server name

See the Adaptive Server Enterprise System Administration Guide for more
information.

You can use these access restrictions when configuring the LDAP server:

• Anonymous authentication – all data is visible to any user.

• User name and password authentication – Adaptive Server uses the default
user name and password from the file.

User name and password authentication properties establish and end a session
connection to an LDAP server.

Note The LDAP server can be located on a different platform from the one on
which Adaptive Server or the clients are running.

Using directory services

To use directory services, add the following properties to ConnectString:

DSURL=ldap://SYBLDAP:389/dc=sybase,dc=com??one?sybase
Servername=MANGO

The URL is an LDAP URL and uses LDAP libraries to resolve the URL.

To support high availability on the LDAP server, the DSURL accepts multiple
URLs, separated by a semicolon:

DSURL={ldap://SYBLDAP:389/dc=sybase,dc=com??one?sybase
Servername=MANGO};

The provider attempts to get the properties from the LDAP servers in the order
specified. For example:

ldap://hostport/dn[?attrs[?scope[?filter[?userdn?userp
ass]]]]

where:

• hostport is a host name with an optional portnumber, for example,
SYBLDAP1:389.

• dn is the search base, for example, dc=sybase,dc-com.

• attrs is a comma-separated list of attributes requested from the LDAP
server. You must leave it blank. Data Provider requires all attributes.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 61

• scope is one of three strings:

• base (the default) searches the base.

• one searches immediate children.

• sub searches the sub-tree.

• filter is the search filter, which is, generally, the sybaseServername. You
can leave the search filter blank and set the datasource or server name
property in the ConnectionString.

• userdn is the user’s distinguished name (dn). If the LDAP server does not
support anonymous login, you can set the user’s dn here, or you can set the
DSPrincipal property in the ConnectionString.

• userpass is the password. If the LDAP server does not support anonymous
login, you can set the password here, or you can set the DSPassword
property in the ConnectionString.

The URL can contain sybaseServername, or you can set the property Server

Name to the service name of the LDAP Sybase server object.

The following properties are useful when using Directory Services:

• DSURL – set to LDAP URL. The default is an empty string.

• Server – the service name of the LDAP Sybase server object. The default
is an empty string.

• DSPrincipal – the user name to log in to the LDAP server if it is not a part
of DSURL and the LDAP server does not allow anonymous access.

• DSPassword or Directory Service Password – the password to authenticate
on the LDAP server if it is not a part of DSURL and the LDAP server does
not allow anonymous access.

Enabling directory services

This section describes how to enable directory services on the platform you are
using.

Microsoft Windows

❖ Enabling directory services on Microsoft Windows

1 Launch the ODBC DataSource Administrator.

Using directory services

62 Adaptive Server Enterprise ODBC Driver

2 Select the datasource that you want to use and choose Configure.

3 Click the Connection tab.

4 In the Directory Service Information group, provide the complete URL in
the URL field. You can also provide the user name in the User ID field and
the LDAP Service Name in the Service Name Field, to log in to the LDAP
server.

Linux

❖ Enabling directory services for Linux

Install the following packages:

• openldap-2.0 (runtime)

• openldap-devel-2.0

The Adaptive Server ODBC Driver attempts to load a file named libldap.so,
but to create a symbolic link with this file, you must install the openldap-devel
package. The openldap runtime package does not create the symbolic link.

If you are linking to the unixODBC Driver Manager:

1 Edit the Adaptive Server ODBC datasource template, odbc.ini.

2 Reinstall the datasource using the unixODBC command line tool:

odbcinst -i -s -f <dsn template file>

where dsn template file is the complete path to the Adaptive Server ODBC
datasource template file.

If you are directly linking to the Adaptive Server ODBC Driver, modify the
odbc.ini file. For example:

[sampledsn]
Description=Sybase ODBC Data Source
UserID=sa
Password= Driver=Adaptive
Server Enterprise Server=sampleserver
Port=4100
Database=pubs2
UseCursor=1
DSURL=ldap://SYBLDAP1:389/dc=sybase,dc=com??one?sybase
Servername=MANGO

CHAPTER 3 Supported Adaptive Server Features

Users Guide 63

Bookmark and bulk support
Sybase supports bookmarks and SQL bulk operations for the ODBC Driver.

Bulk insertions that use SQLBulkOperations with the option of SQL_ADD and
cursor positioned updates and deletions using SQLSetPos (SQL_UPDATE,
SQL_DELETE, SQL_POSITION). For instructions on using SQL_ADD and
SQLSetPos, refer to the ODBC Programmer’s Reference found in the Microsoft

Developer Network library at http://msdn.microsoft.com.

Bulk-load support
The Adaptive Server ODBC Driver supports bulk-load interface for fast
insertions of large sets of rows to Adaptive Server. This interface is invoked
when SQLBulkOperations is used with the SQL_ADD option and the
EnableBulkLoad connection property is set. Two types of bulk loading are
supported:

• Array Inserts – you can use this type of bulk-loading within a single or
multistatement transaction; the database connection can be set to
autocommit off.

• Bulk Copy – this is supported only in single statement transactions, and
you must to ensure that:

• The database connection is set to autocommit on.

• The select into/bulkcopy option on Adaptive Server is turned on.

If the target table meets the criteria for high-speed version of bulk copy,
Adaptive Server inserts the rows using this version of bulk copy.

Note Using the bulk copy mode with the select into/bulkcopy option
enabled affects the recoverability of the database. After the bulk copy
operation is complete, the system administrator must dump the database to
ensure its future recoverability.

The following table guides you on what bulk-load option to use.

Bulk-load support

64 Adaptive Server Enterprise ODBC Driver

Table 3-1: Bulk-load option usage

See the Adaptive Server Enterprise Utility Guide for information about the
implications of enabling select into/bulkcopy and the conditions under which
high-speed or logged bulk copy is used.

EnableBulkLoad
connection property

Enable or disable bulk-load support using the EnableBulkLoad connection
property:

• 0 – the default value, which disables bulk load.

• 1 – enables bulk load using array insert.

• 2 – enables bulk load using the bulk copy interface.

• 3 – enables bulk load using the fast logged bulk copy interface.

Alternatively, use the Sybase-specific SQL_ATTR_ENABLE_BULK_LOAD

connection attribute to set EnableBulkLoad programmatically. The attribute accepts

the same values as EnableBulkLoad. For example:

sr = SQLSetConnectAttr(hdbc, SQL_ATTR_ENABLE_BULK_LOAD,
(SQLPOINTER)3, SQL_IS_INTEGER);

Performance
considerations

Although this feature does not require special configuration on the server, a
larger page size and network packet size significantly improves performance.
Depending on the client memory, using larger batches also improves
performance.

Use case Additional consideration

Bulk-load

option to use Note

Insertion of single or
small number of rows.

None

Insertion of large batch
of rows.

The batch is part of a
multistatement transaction.

Array Inserts Rows are inserted faster
than when bulk load is
disabled.

You cannot enable the Adaptive
Server select into or bulkcopy
option because of recoverability
considerations.

Array Inserts Rows are inserted faster
than when bulk load is
disabled.

The batch is a single transaction
and the Adaptive Server
select into/bulkcopy option is
enabled.

Bulk Copy Adaptive Server can use
high-speed bulk copy,
which is faster than array
inserts. The performance of
Bulk Copy is still slightly
faster than Array Inserts
even if high-speed bulk
copy is not used.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 65

Limitations Triggers are ignored on tables selected for bulk loading.

Enabling bulk load

❖ Enabling bulk load using the ODBC Data Source Administrator user
interface

1 Open the Data Source Name (DSN) Configure window from the ODBC
Data Source Administrator.

2 Select the Advanced tab.

3 Select the appropriate option under “Enable Bulk Load.”

The default value of EnableBulkLoad connection property is 0, which
means insert commands are used.

❖ Enabling bulk load using the ODBC connection string

1 Use SQLDriverConnect to specify a connection string.

2 Set the EnableBulkLoad connection string property to 0, 1, 2, or 3, as
appropriate. For example:

Driver=AdaptiveServerEnterprise;server=server1;
port=port1;UID=sa;PWD=;EnableBulkLoad=1;

Support for Mainframe Connect and DirectConnect for
z/OS Option

Adaptive Server ODBC Driver by Sybase supports Mainframe Connect
DirectConnect™ for z/OS Option through the ServiceName and BackEndType
configuration properties.

ServiceName configuration property

The ServiceName property specifies the service name used to connect to the
host. ServiceName can hold any string value. Its default value is an empty
string ("").

DSN Migration tool

66 Adaptive Server Enterprise ODBC Driver

BackEndType configuration property

The BackEndType configuration property specifies the target type of the DSN
you are defining. The ODBC Driver can communicate with multiple targets
including database systems like Adaptive Server and gateways to non-Sybase
database systems. Currently, the Adaptive Server ODBC Driver supports these
back-end types:

• ASE (default)

• MFC Gatewayless

• DC DB2 Access Service

• DC TRS

• Replication Server

Replication Server connection support

Adaptive Server Enterprise ODBC Driver can connect to Replication Server to
monitor and administer the server. Only valid Replication Server
Administration commands sent by the ODBC Driver are supported by
Replication Server. Set the BackEndType connection property to
Replication Server for Replication Server connections.

DSN Migration tool
The ODBC DSN Migration tool can help you migrate from the Data Direct
ODBC driver to the Adaptive Server ODBC Driver by Sybase.

Using the migration tool

The dsnmigrate tool uses switches to control which DSNs are migrated. From
the command line, enter:

dsnmigrate.exe [/?|/help] [l|/ul|/sl][/a|/ua|/sa]
[[/dsn|/udsn|/sdsn]=dsn] [/suffix=suffix]

CHAPTER 3 Supported Adaptive Server Features

Users Guide 67

All DSNs that are converted are renamed to “<dsn>-backup” before the
conversion is completed. When the new Sybase DSNs are created and the
conversion is completed, the name is changed to“<dsn>,” which allows
existing applications to continue to run without any modifications.

Conversion switches

Table 3-2 lists and describes the switches used in the conversion.

Table 3-2: Conversion switches

Password encryption
By default, the Adaptive Server ODBC Driver sends plain-text passwords over
the network to Adaptive Server for authentication. However, the Adaptive
Server ODBC Driver also supports symmetrical and asymmetrical password
encryption; you can change the default behavior of and encrypt your password
before it is sent over the network.

Switches Description of results

/?,/h,/help Lists and describes the switches. The list also appears if you call
dsnmigrate with no command line arguments.

/l Displays a list of all Sybase Data Direct user and system DSNs.

/ul Displays a list of all Sybase Data Direct user DSNs.

/sl Displays a list of all Sybase Data Direct system DSNs.

/a Converts all Sybase Data Direct user and system DSNs.

/ua Converts all Sybase Data Direct user DSNs.

/sa Converts all Sybase Data Direct system DSNs.

/dsn Converts specific Sybase Data Direct user or system DSNs.

/udsn Converts specific Sybase Data Direct user DSNs.

/sdsn Converts specific Sybase Data Direct system DSNs.

dsn The name of the DSN to be converted.

/suffix An optional switch that changes the way DSNs are named. If this
switch is used, the original DSN is retained and the new DSN is
named “<dsn>-<suffix>.”

suffix The suffix that is used to name the new DSN.

Password encryption

68 Adaptive Server Enterprise ODBC Driver

The symmetrical encryption mechanism uses the same key to encrypt and
decrypt the password, whereas an asymmetrical encryption mechanism uses
one key (the public key) to encrypt the password and another key (the private
key) to decrypt the password. Because the private key is not shared across the
network, the asymmetrical encryption is considered more secure than
symmetrical encryption. When password encryption is enabled, and the server
supports asymmetric encryption, this format is used instead of symmetric
encryption.

You can encrypt login and remote passwords using the Sybase Common
Security Infrastructure (CSI). CSI 2.6 complies with the Federal Information
Processing Standard (FIPS) 140-2.

Enabling password encryption

To enable password encryption, you must set the EncryptPassword connection
property, which specifies whether the password is transmitted in encrypted
format. When password encryption is enabled, the password is sent over the
wire only after a login is negotiated; the password is first encrypted and then
sent. The EncryptPassword values are:

• 0 – use plain text password. This is the default value.

• 1 – use encrypted password. If encryption is not supported, return an error
message.

• 2 – use encrypted password. If encryption is not supported, use plain text
password.

Note To use the password encryption feature, you must have a server that
supports password encryption, such as Adaptive Server 15.0.2. Asymmetrical
encryption requires additional processing time and may cause a slight delay in
login time.

Password encryption on Microsoft Windows

❖ Encrypting passwords on Microsoft Windows

1 Launch the ODBC DataSource Administrator.

2 Select the datasource you want to use and choose Configure.

3 Click the Advanced tab.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 69

4 Select EncryptPassword.

You can use the EncryptPassword connection property in a call to
SQLDriverConnect.

Note You can only use the user interface to set EncryptPassword to 0 or 1. To
set EncryptPassword to 2, use a connection string.

Password encryption on UNIX

To link to the unixODBC Driver Manager, edit the datasource template and
reinstall the datasource using the unixODBC command line tool:

odbcinst -i -s -f dsn template file

where dsn template file is the complete path to the Adaptive Server ODBC
datasource template file.

If you are directly linking to the Adaptive Server ODBC Driver or the Sybase
iAnywhere ODBC Driver Manager, modify the odbc.ini file.

This is an example of an odbc.ini datasource template file:

[sampledsn]
Description=Sybase ODBC Data Source
UserID=sa
Password=
Driver=Adaptive Server Enterprise
Server=sampleserver
Port=4100
Database=pubs2
UseCursor=1
EncryptPassword=1

Password expiration handling
Every company has a specific set of password policies for its database system.
Depending on the policies, the password expires at a specific date and time.
Unless the password is reset, the Adaptive Server ODBC Driver connected to
a database throws password expired errors and suggests that the user change
the password using isql. The password expiration handling feature allows users
to change their expired passwords using the Adaptive Server ODBC Driver.

Using SSL

70 Adaptive Server Enterprise ODBC Driver

Changing the
password through the
connection string
properties

Set these two connection string properties:

• OldPassword – the current password. If OldPassword contains a value that
is not null or an empty string, the current password is changed to the value
contained in PWD.

• PWD – contains the value of the password. If OldPassword is set and is not
null, PWD contains the value of the current password. If OldPassword does
not exist, or is null, PWD contains the value of the new password.

Changing the
password through a
dialog box

A change password dialog is activated when “SQLDriverConnect with
SQL_DRIVER_PROMPT” is set to true. In this dialog, enter the current
password and the new password.

Using SSL
Secure Sockets Layer (SSL) is an industry standard for sending wire- or
socket-level encrypted data over client-to-server and server-to-server
connections. Before the SSL connection is established, the server and the client
negotiate and agree upon a secure encrypted session. This is called the “SSL
handshake.”

Note Additional overhead is required to establish a secure session, because
data increases in size when it is encrypted; it also requires additional
computation to encrypt or decrypt information. Under normal circumstances,
the additional I/O accrued during the SSL handshake can make user login 10
to 20 times slower.

SSL handshake When a client application requests a connection, the SSL-enabled server
presents its certificate to prove its identity before data is transmitted.
Essentially, the SSL handshake consists of the following steps:

1 The client sends a connection request to the server. The request includes
the SSL (or Transport Layer Security, TLS) options that the client
supports.

2 The server returns its certificate and a list of supported cipher suites, which
includes SSL/TLS support options, the algorithms used for key exchange,
and digital signatures. Cipher suites are preferential lists of key-exchange
algorithms, hashing methods, and encryption methods used by the SSL
protocol.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 71

3 A secure, encrypted session is established when both client and server
have agreed upon a cipher suite.

Cipher suites During the SSL handshake, the client and server negotiate a common security
protocol through a cipher suite.

By default, the strongest cipher suite supported by both the client and the server
is the cipher suite used for the SSL-based session. Server connection attributes
are specified in the connection string or through directory services such as
LDAP.

The Adaptive Server ODBC Driver and Adaptive Server support the cipher
suites that are available with the SSL Plus library API and the cryptographic
engine, Security Builder, both from Certicom Corp.

Note The following list of cipher suites conform to the Transport Layer
Security (TLS) specification, which is an enhanced version of SSL 3.0, and an
alias for the SSL version 3.0 cipher suites.

These are the cipher suites, ordered from the strongest to the weakest,
supported in Adaptive Server OBDC Driver:

• TLS_RSA_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_WITH_RC4_128_SHA

• TLS_RSA_WITH_RC4_128_MD5

• TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA

• TLS_DHE_DSS_WITH_RC4_128_SHA

• TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA

• TLS_RSA_WITH_DES_CBC_SHA

• TLS_DHE_DSS_WITH_DES_CBC_SHA

• TLS_DHE_RSA_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT1024_WITH_RC4_56_SHA

• TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA

• TLS_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA

• TLS_RSA_EXPORT_WITH_RC4_40_MD5

• TLS_RSA_EXPORT_WITH_DES40_CBC_SHA

Using SSL

72 Adaptive Server Enterprise ODBC Driver

• TLS_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

• TLS_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

For more specific information about the SSL handshake and the SSL/TLS
protocol, see the Internet Engineering Task Force Web site at http://www.ietf.org.

For a complete description of cipher suites, go to the IETF organization Web site

at http://www.ietf.org/rfc/rfc2246.txt.

SSL security levels in Adaptive Server ODBC Driver

In Adaptive Server ODBC Driver, SSL provides the following levels of
security:

• When the SSL session is established, user name and password are
transmitted over a secure, encrypted connection.

• When establishing a connection to an SSL-enabled server, the server
authenticates itself—proves that it is the server you intended to contact—
and an encrypted SSL session begins before any data is transmitted.

• A comparison of the server certificate’s digital signature can determine if
any information received from the server was modified in transit.

Validating the server by its certificate

Any Adaptive Server OBDC Driver client connection to an SSL-enabled
server requires have a certificate file, which consists of the server’s certificate
and an encrypted private key. The certificate must also be digitally signed by a
signing/certification authority (CA). Adaptive Server OBDC Driver client
applications establish a socket connection to Adaptive Server similar to the
way that existing client connections are established. Before any user data is
transmitted, an SSL handshake occurs on the socket when the network
transport-level connect call completes on the client side and the accept call
completes on the server side.

To make a successful connection to an SSL-enabled server:

1 The SSL-enabled server must present its certificate when the client
application makes a connection request.

2 The client application must recognize the CA that signed the certificate. A
list of all “trusted” CAs is in the “trusted roots file.”

CHAPTER 3 Supported Adaptive Server Features

Users Guide 73

The trusted roots file The list of known and trusted CAs is maintained in the trusted roots file. The
trusted roots file is similar in format to a certificate file, except that it contains
certificates for CAs known to the entity (such as client applications, servers,
network resources, and so on). The system security officer adds and deletes
trusted CAs using a standard ASCII-text editor.

The application program specifies the location of the trusted roots file using the
TrustedFile=trusted file path property in the ConnectString. A trusted roots file
with the most widely used CAs (thawte, Entrust, Baltimore, VeriSign, and
RSA) is installed in a file located at $SYBASE/config/trusted.txt.

For more information about certificates, see the Open Client Client-Library/C

Reference Manual.

Enabling SSL connections

To enable SSL for Adaptive Server ODBC Driver, add Encryption=ssl and
TrustedFile=<filename> (where filename is the path to the trusted roots file) to
the ConnectString. The Adaptive Server ODBC Driver then negotiates an SSL
connection with the Adaptive Server.

Note Adaptive Server must be configured to use SSL. For more information
on SSL, see the Adaptive Server Enterprise System Administration Guide.

Microsoft Windows

Before you enable SSL, you must set the TrustedFile property in the connection
string to the file name of the trusted roots file. The file name should contain the
path to the file as well.

❖ Enabling SSL connections

1 Set the Encryption property in the connection string to ssl.

2 Launch the ODBC DataSource Administrator.

3 Select the datasource name (DSN) you would like to use and choose
Configure.

4 Click the Connection tab.

5 Select UseSSL in the Secure Socket Layer Group.

6 Provide the complete path to the trusted roots file in the TrustedFile field.

Using failover in high availability systems

74 Adaptive Server Enterprise ODBC Driver

UNIX

❖ Enabling SSL connections

1 Start the unixODBC Driver Manager odbcinst utility.

2 Open an existing datasource template or create a new one.

3 To the datasource template, add:

Encryption=ssl

TrustedFile=<filename>line

4 Reinstall the datasource using:

odbcinst -i -s -f dsn template file

where dsn template file is the complete path to the Adaptive Server ODBC
datasource template file.

If you are linking directly to the Adaptive Server ODBC Driver or the Sybase
iAnywhere ODBC Driver Manager, modify the odbc.ini file.

This is an example of the odbc.ini datasource template file:

[sampledsn]
Description=Sybase ODBC Data Source
UserID=sa
Password=
Driver=Adaptive Server Enterprise
Server=sampleserver
Port=4100
Database=pubs2
UseCursor=1
Encryption=ssl
TrustedFile=<SYBASE>/config/trusted.txt

Using failover in high availability systems
A high availability cluster includes two or more machines that are configured
so that if one machine (or application) is interrupted, the second machine
assumes the workload of both machines. Each of these machines is called one
node of the high availability cluster. A high availability cluster is used in an
environment that must always be available, such as a banking system to which
clients must connect continuously, 365 days a year.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 75

The machines in Figure 3-1 are configured so that each machine can read the
other machine's disks, although not at the same time. (All of the disks that are
failed-over should be shared disks).

Figure 3-1: High availability cluster using failover

For example, if Adaptive Server 1 is the primary companion server, and it fails,
Adaptive Server 2, as the secondary companion server, reads its disks (disks 1
– 4) and manages any databases on them until Adaptive Server 1 can be
restarted. Any clients connected to Adaptive Server 1 are automatically
connected to Adaptive Server 2.

Failover allows Adaptive Server to work in a high availability cluster in
active-active or active-passive configuration.

Using failover in high availability systems

76 Adaptive Server Enterprise ODBC Driver

During failover, clients connected to the primary companion using the failover
property automatically reestablish their network connections to the secondary
companion. Failover can be enabled by setting the connection property
HASession to “1” (default value is “0”). If this property is not set, the session
failover does not occur, even if the server is configured for failover. You must
also set SecondaryServer (the IP address or the machine name of the secondary
Adaptive Server) and SecondaryPort (the port number of the secondary
Adaptive Server) properties. See Adaptive Server Enterprise Using Sybase

Failover in a High Availability System for information about configuring your
system for high availability.

When the Adaptive Server ODBC Driver detects a connection failure with the
primary Adaptive Server, it first tries to reconnect to the primary. If it cannot
reconnect, it assumes that a failover has occurred. Then, it automatically tries
to connect to the secondary Adaptive Server using the connection properties set
in SecondaryServer, and SecondaryPort.

Confirming a
successful failover

If a connection to the secondary server is established, the Adaptive Server
ODBC Driver returns SQL_ERROR for the function return code. To confirm a
successful failover, examine the SQLState and NativeError messages for values
of “08S01” and “30130” respectively. The error message returned on such
failover is:

“Connection to Sybase server has been lost, you have
been successfully connected to the next available HA
server. All active transactions have been rolled back.”

You can access these values by calling SQLGetDiagRec on the
StatementHandle. Then, the client must reapply the failed transaction with the
new connection. If failover occurs while a transaction is open, only changes
that were committed to the database before failover are retained.

Verifying an
unsuccessful failover

If the connection to the secondary server is not established, the Adaptive Server
ODBC Driver returns SQL_ERROR for the function return code. To confirm
that failover did not occur, examine the SQLState and NativeError for values of
“08S01” and “30131.” The error message returned on an unsuccessful failover
is:

“Connection to Sybase server has been lost,
connection to the next available HA server
also failed. All active transactions
have been rolled back”.

You can access these values by calling SQLGetDiagRec on the
StatementHandle.

To code for a failover:

CHAPTER 3 Supported Adaptive Server Features

Users Guide 77

/* Declare required variables */
....
/* Open Database connection */
....
/* Perform a transaction */
...
/* Check return code and handle failover */
if(retcode == SQL_ERROR)
{

retcode = SQLGetDiagRec(stmt, 1,
sqlstate,&NativeError, errmsg,100, NULL);

if(retcode == SQL_SUCCESS ||
retcode == SQL_SUCCESS_WITH_INFO)

{
if(NativeError == 30130)
{
/* Successful failover retry transaction*/
...
}

else if (NativeError == 30131)
{

/* Failover failed. Return error */
...

}
}

}

Microsoft Windows

❖ Using failover on Microsoft Windows

1 Launch the ODBC DataSource Administrator.

2 Select the datasource you want to use and choose Configure.

3 Click the Connection tab.

4 Select Enable High Availability in the High Availability Information
Group.

5 Provide the failover server name in the Server Name field.

6 Provide the failover server port in the Server Port field.

Kerberos authentication

78 Adaptive Server Enterprise ODBC Driver

UNIX

If you are linking to the unixODBC Driver Manager, edit the datasource
template and reinstall the datasource using the unixODBC command line tool:

odbcinst -i -s -f dsn template file

where dsn template file is the complete path to the Adaptive Server ODBC
datasource template file.

If you are directly linking to the Adaptive Server ODBC Driver or Sybase
iAnywhere ODBC Driver Manager, modify the odbc.ini file.

This is an example of the odbc.ini datasource template file:

[sampledsn]
Driver=Adaptive Server Enterprise
Server=sampleserver
Port=4100
UserID=sa
Password=
Database=pubs2
HASession=1
SecondaryHost=failoverserver
SecondaryPort=5000

Kerberos authentication
Kerberos is an industry standard network authentication system that provides
simple login authentication as well as mutual login authentication. It is used for
single sign-on across various applications in extremely secure environments.
Instead of passing passwords around the network, a Kerberos server holds
encrypted versions of the passwords for users as well as available services.

In addition, Kerberos uses encryption to provide confidentiality and data
integrity.

Adaptive Server and the Adaptive Server ODBC Driver provide support for
Kerberos connections. The Adaptive Server ODBC driver specifically
supports MIT, CyberSafe, and Active Directory (key distribution centers,
called KDCs).

CHAPTER 3 Supported Adaptive Server Features

Users Guide 79

Process overview

The Kerberos authentication process works as follows:

1 A client application requests a “ticket” from the Kerberos server to access
a specific service.

2 The Kerberos server returns the ticket, which contains two packets, to the
client: The first packet is encrypted using the user password. The second
packet is encrypted using the service password. Inside each of these
packets is a “session key.”

3 The client decrypts the user packet to get the session key.

4 The client creates a new authentication packet and encrypts it using the
session key.

5 The client sends the authentication packet and the service packet to the
service.

6 The service decrypts the service packet to get the session key and decrypts
the authentication packet to get the user information.

7 The service compares the user information from the authentication packet
with the user information that was also contained in the service packet. If
the two match, the user has been authenticated.

8 The service creates a confirmation packet that contains service specific
information, as well as validation data contained in the authentication
packet.

9 The service encrypts this data with the session key and returns it to the
client.

10 The client uses the session key obtained from the user packet it received
from Kerberos to decrypt the packet and validates that the service is what
it claims to be.

In this way, the user and the service are mutually authenticated. All future
communication between the client and the service (in this case, the Adaptive
Server database server) will be encrypted using the session key. This
successfully protects all data sent between the service and client from
unwanted viewers.

Kerberos authentication

80 Adaptive Server Enterprise ODBC Driver

Requirements

To use Kerberos as an authentication system, you must configure Adaptive
Server Enterprise to delegate authentication to Kerberos. See the Adaptive

Server Enterprise System Administration Guide.

If Adaptive Server has been configured to use Kerberos, any client that
interacts with Adaptive Server must have a Kerberos client library installed.
This varies for operating system vendors, as follows:

• On Microsoft Windows, the Active Directory client library comes
installed with the operating system.

• CyberSafe and MIT client libraries are available for Microsoft Windows
and Linux.

For additional information, refer to vendor documentation.

Enabling Kerberos authentication

To enable Kerberos authentication for the Adaptive Server ODBC Driver, add
the following connection properties:

AuthenticationClient=<one of 'mitkerberos'
or 'cybersafekerberos' or 'activedirectory'>
and ServerPrincipal=<Adaptive Server name>

where <Adaptive Server name> is the logical name or the principal as
configured in the key distribution center (KDC). The Adaptive Server ODBC
Driver uses this information to negotiate Kerberos authentication with the
configured KDC and Adaptive Server.

The Kerberos client libraries are compatible across various KDCs. For
example, on Linux you can set AuthenticationClient equal to mitkerberos, even
if your KDC is a Microsoft Active Directory.

If you want the Kerberos client to look for the Ticket Granting Ticket (TGT) in
another cache, you might want to specify the userprincipal property.

If you use SQLDriverConnect with the SQL_DRIVER_NOPROMPT,
ConnectString appears similar to the following:

"Driver=Adaptive Server Enterprise;UID=sa;
PWD='';Server=sampleserver;
Port=4100;Database=pubs2;
AuthenticationClient=mitkerberos;
ServerPrincipal=MANGO;”

CHAPTER 3 Supported Adaptive Server Features

Users Guide 81

Microsoft Windows

❖ Enabling Kerberos for login authentication on Microsoft Windows

1 Start the Microsoft Windows ODBC Data Source administrator.

2 Select the Sybase Adaptive Server Enterprise ODBC Driver.

3 Select the User DSN/ System DSN tab and click the datasource that you
would like to modify, or choose Add New Data Source.

4 On the Security tab, select Use Active Directory under the Kerberos
Authentication Client.

5 Enter the name of the server principal in the Server Principal edit box. This
name should match the name of the Adaptive Server configured in the
KDC.

UNIX

❖ Enabling Kerberos for login authentication on UNIX

If you are linking to the UNIX ODBC Driver Manager:

1 Open an existing datasource, or create a new datasource template.

2 Add the following to the datasource template:

Authentication= mitkerberos
(or cybersafekerberos) ServerPrincipal=<MANGO>
to enable Kerberos Login Authentication.

where: <MANGO> is the name of the principal server used to authenticate
sign-ons.

3 Reinstall the datasource using the odbcinst utility at the command line:

odbcinst -i-s -f ${datasourcetemplatefile}

If you are linking directly to the Adaptive Server ODBC Driver or the Sybase
iAnywhere ODBC Driver Manager, modify the odbc.ini file directly.

Following is an example of how the odbc.ini datasource template file should
look after you modify it:

[sampledsn]
Description=Sybase ODBC Data Source
UserID=sa
Password=
Driver=Adaptive Server Enterprise
Server=sampleserver

Kerberos authentication

82 Adaptive Server Enterprise ODBC Driver

Port=4100
Database=pubs2
UseCursor=1
AuthenticationClient=mitkerberos
ServerPrincipal=MANGO

Obtaining an initial ticket from the key distribution center

To use Kerberos authentication, you must generate an initial ticket called
Ticket Granted Ticket (TGT) from the key distribution center. The procedure
to obtain this ticket depends on the Kerberos libraries being used. For more
information, refer to the vendor documentation.

❖ Generating TGTs for the MIT Kerberos client library

1 Start the kinit utility at the command line:

% kinit

2 Enter the kinit user name, such as your_name@YOUR.REALM.

3 Enter the password for your_name@YOUR.REALM, such as
my_password. When you enter your password, the kinit utility submits a
request to the Authentication Server for a TGT.

The password is used to compute a key, which in turn is used to decrypt
part of the response. The response contains the confirmation of the
request, as well as the session key. If you entered your password correctly,
you now have a TGT.

4 Verify that you have a TGT by entering the following at the command line:

% klist

The results of the klist command should be:

Ticket cache: /var/tmp/krb5cc_1234
Default principal: your_name@YOUR.REALM
Valid starting Expires Service principal
24-Jul-95 12:58:02 24-Jul-95 20:58:15 krbtgt/YOUR.REALM@YOUR.REALM

Explanation of results Ticket cache The ticket cache field tells you which file contains your
credentials cache.

Default principal The default principal is the login of the person who owns
the TGT (in this case, you).

CHAPTER 3 Supported Adaptive Server Features

Users Guide 83

Valid starting/Expires/Service principal The remainder of the output is a
list of your existing tickets. Because this is the first ticket you have requested,
there is only one ticket listed. The service principal
(krbtgt/YOUR.REALM@YOUR.REALM) shows that this ticket is a TGT. Note
that this ticket is good for approximately 8 hours.

Logging without ODBC Driver Manager tracing
Adaptive Server ODBC Driver allows logging of calls to ODBC APIs without
using ODBC Driver Manager tracing. This is useful when the driver manager
is not used or when running on a platform that does not support tracing.

To enable this feature on Microsoft Windows, use the LOGCONFIGFILE
environment variable or the Microsoft Windows registry. To enable on Linux,
use LOGCONFIGFILE.

When using LOGCONFIGFILE, set the environment variable to the full path
of the ODBC log’s configuration file. LOGCONFIGFILE overrides any
existing registry entry.

When using the Microsoft Windows registry, create an entry called
LogConfigFile in HKEY_CURRENT_USER\Software\Sybase\ODBC or
HKEY_LOCAL_MACHINE\Software\Sybase\ODBC, and set its value to the
full path of the ODBC log’s configuration file. For example:

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Sybase\ODBC]
"LogConfigFile"="c:\\temp\\odbclog.properties"

To disable logging, delete or rename the LogConfigFile value.

Note The value specified in HKEY_CURRENT_USER overrides any value set
in HKEY_LOCAL_MACHINE.

Log configuration file

The configuration file controls the format and location of the ODBC log file.
In this example, the line in bold specifies where the log file is saved:

Logging without ODBC Driver Manager tracing

84 Adaptive Server Enterprise ODBC Driver

log4cplus.rootLogger=OFF, NULL

log4cplus.logger.com.sybase.dataaccess.odbc.api=TRACE, ODBCTRACE
log4cplus.additivity.com.sybase.dataaccess.odbc.api=false

log4cplus.logger.com.sybase.dataaccess.odbc.api.parameter=TRACE, ODBCTRACE
log4cplus.additivity.com.sybase.dataaccess.odbc.api.parameter=false

log4cplus.logger.com.sybase.dataaccess.odbc.api.returncode=TRACE, ODBCTRACE
log4cplus.additivity.com.sybase.dataaccess.odbc.api.returncode=false

log4cplus.appender.NULL=log4cplus::NullAppender

log4cplus.appender.ODBCTRACE=log4cplus::FileAppender
log4cplus.appender.ODBCTRACE.File=c:\temp\odbc.log

log4cplus.appender.ODBCTRACE.layout=log4cplus::PatternLayout
log4cplus.appender.ODBCTRACE.ImmediateFlush=true
log4cplus.appender.ODBCTRACE.layout.ConversionPattern=%d{%H:%M:%S.%q} %t %p

%-25.25c{2} %m%n

Dynamic logging support without ODBC driver manager tracing

Starting with Adaptive Server Enterprise ODBC Driver 15.7 ESD #4, you can
dynamically enable or disable the application logging during application
execution by setting the SQL_OPT_TRACE environment attribute. Valid
values are 0 (default) to disable or 1 to enable.

// enable logging
SQLSetEnvAttr(0, SQL_OPT_TRACE, (SQLPOINTER)1,

SQLINTEGER);
// disable logging
SQLSetEnvAttr(0, SQL_OPT_TRACE, (SQLPOINTER)0,

SQLINTEGER);

• Dynamic logging is enabled and disabled globally and affects all
connections regardless of when they were opened and whether they are
part of the environment handle used to set SQL_OPT_TRACE.

• By default, the log is written to the sybodbc.log file in the current
directory. Use the SQL_OPT_TRACEFILE environment attribute to set a
different file/path.

• Setting the LOGCONFIGFILE environment variable or registry value
enables logging for the entire duration of application execution and
overrides SQL_OPT_TRACE.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 85

• If an ODBC Driver Manager is being used, setting SQL_OPT_TRACE
turns on the Driver Manager tracing and has no impact on driver tracing.

• The client application can use a null handle when linking directly against
the driver or an allocated handle when using Driver Manager tracing.

• log4cplus configuration file cannot be used with SQL_OPT_TRACE.

TDS protocol capture
Use the ProtocolCapture connection string to capture Tabular Data Stream™
(TDS) packets exchanged between an ODBC application and the Server for
debugging purposes. This property is enabled by specifying the capture file
prefix.

ProtocolCapture takes effect immediately, so that TDS packets exchanged
during connection establishment are written to a unique filename generated
using the specified file prefix. TDS packets are written to the file for the
duration of the connection. Use Ribo and other protocol translation tools to
interpret the TDS capture files.

For example, to specify tds_capture as the TDS capture file prefix, type:

Driver=AdaptiveServerEnterprise;server=server1;
port=port1;UID=sa;PWD=;ProtocolCapture=tds_capture;

The first connection generates tds_capture0.tds, the second connection
generates tds_capture1.tds, and so forth.

Note Captured TDS protocol data saved to a file contains sensitive user
authentication information and may contain confidential company or customer
data. To protect this confidential data from unauthorized or accidental
disclosure, the files containing captured data must be properly protected using
file permissions or encryption.

Dynamic control of TDS protocol capture

Use the SQL_ATTR_TDS_CAPTURE connection attribute of Adaptive
Server Enterprise ODBC Driver to allow pause (SQL_CAPTURE_PAUSE)
and resume (SQL_CAPTURE_RESUME) of the TDS protocol capture.

ODBC data batching without binding parameter arrays

86 Adaptive Server Enterprise ODBC Driver

// pause protocol capture
SQLSetConnAttr(hDBC, SQL_ATTR_TDS_CAPTURE,

(SQLPOINTER) SQL_CAPTURE_PAUSE, SQLINTEGER);

// resume protocol capture
SQLSetConnAttr(hDBC, SQL_ATTR_TDS_CAPTURE,

(SQLPOINTER) SQL_CAPTURE_RESUME, SQLINTEGER);

By default, TDS protocol capture operates for the duration of the connection
when the ProtocolCapture connection property is set for the connection. Using
SQL_ATTR_TDS_CAPTURE (with the ProtocolCapture connection property
set) allows the application to selectively pause and resume TDS protocol
capture for desired segments of program execution.

SQL_ATTR_TDS_CAPTURE can be set after a connection handle is
allocated. It is not an error to pause or resume TDS protocol capture before a
connection is established or for a connection that is not using TDS protocol
capture. Pausing or resuming TDS protocol capture may be delayed by the
driver to ensure the integrity of the capture stream. This ensures the write of
full PDU packets for accurate capture consumption by Ribo and other protocol
translator utilities.

Do not set SQL_ATTR_TDS_CAPTURE for applications that need to capture
all TDS packets for a connection.

ODBC data batching without binding parameter arrays
When the same SQL statement is executed for different parameter values,
client applications normally bind parameter arrays and execute each set of
parameters using SQLExecute, SQLExecuteDirect, and SQLBulkOperations. In
binding arrays to SQL parameters, memory for the array is allocated, and all
data is copied to the array before the SQL statement is executed. This can lead
to inefficient use of memory and resources when processing high volume of
transactions. This behavior is seen with Adaptive Server ODBC Driver
versions earlier than 15.7.

In Adaptive Server ODBC Driver 15.7 or later, client applications can use
SQLExecute to send parameters in batches to Adaptive Server, without binding
the parameters as arrays. SQLExecute returns SQL_BATCH_EXECUTING
until the last batch of parameters has been sent and processed. It returns the
status of the execution after the final batch of parameters has been processed.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 87

A call to SQLRowCount is valid only after the final SQLExecute statement has
completed.

Managing data batches

Use SQL_ATTR_BATCH_PARAMS, a Sybase-specific connection attribute,
to manage the batches of parameters sent to Adaptive Server. Set
SQL_ATTR_BATCH_PARAMS using SQLSetConnectAttr.

Values:

• SQL_BATCH_ENABLED – informs Adaptive Server ODBC Driver to
batch the parameters. When in this state, the driver sends an error if a
statement other than the statement being processed—the first statement
executed after setting SQL_ATTR_BATCH_PARAMS to
SQL_BATCH_ENABLED—by SQLExecute is executed on the
connection.

• SQL_BATCH_LAST_DATA – specifies that the next batch of parameters
is the last batch, and that the parameters contain data.

• SQL_BATCH_LAST_NO_DATA – specifies that the next batch of
parameters is the last batch, and to ignore the parameters.

• SQL_BATCH_CANCEL – informs the Adaptive Server ODBC Driver to
cancel the batch and to roll back the transactions.

Only uncommitted transactions can be rolled back.

• SQL_BATCH_DISABLED – (default value) Adaptive Server ODBC
Driver returns to this state after processing the last batch of parameters.
You cannot manually set SQL_ATTR_BATCH_PARAMS to this value.

Examples

Example 1 Sends a batch of parameters to the server without binding
parameter arrays:

// Setting the SQL_ATTR_BATCH_PARAMS attribute to start
// the batch
sr = SQLSetConnectAttr(dbc, SQL_ATTR_BATCH_PARAMS,

(SQLPOINTER)SQL_BATCH_ENABLED, SQL_IS_INTEGER);
printError(sr, SQL_HANDLE_DBC, dbc);

ODBC data batching without binding parameter arrays

88 Adaptive Server Enterprise ODBC Driver

// Bind the parameters. This can be done once for the entire batch
sr = SQLBindParameter(stmt, 1, SQL_PARAM_INPUT,

SQL_C_LONG, SQL_INTEGER, l1, 0, &c1, l1, &l1);
sr = SQLBindParameter(stmt, 2, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_LONGVARCHAR, l2, 0, buffer, l2, &l2);
}

// Run a batch of 10 for (int i = 0; i < 10; i++)
{

c1 = i;
memset(buffer, 'a'+i, l2);
sr = SQLExecDirect(stmt, insertStmt, SQL_NTS);
printError(sr, SQL_HANDLE_STMT, stmt);

}

Example 2 Ends and closes a batch:

// Setting the SQL_ATTR_BATCH_PARAMS attribute to end
// the batch
sr = SQLSetConnectAttr(dbc, SQL_ATTR_BATCH_PARAMS,

(SQLPOINTER)SQL_BATCH_LAST_NO_DATA, SQL_IS_INTEGER);
printError(sr, SQL_HANDLE_DBC, dbc);

// Call SQLExecDirect one more time to close the batch
// - Due to SQL_BATCH_LAST_NO_DATA, this will not
// process the parameters
sr = SQLExecDirect(stmt, insertStmt, SQL_NTS);
printError(sr, SQL_HANDLE_STMT, stmt);

Considerations

• The parameter batching is enabled only when the HomogeneousBatch

connection parameter is set to a value other 0. When HomogeneousBatch is set
to 2 and EnableBulkLoad is not 0, simple insert statements are executed
using ASE bulk insert protocol. If a non-insert statement is executed or if
a more complex insert statement is executed, then ASE batch protocol is
used.

• This feature supports only statements and stored procedures that do not
return a result set or have an output parameter.

• Asynchronous mode is not supported. While in batch mode, it is invalid
for the application to execute any statement on the same connection other
than the one being batched.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 89

• SQL_DATA_AT_EXEC is not supported. Bind LOB parameters as
normal parameters.

• When batching data without binding parameter arrays and
SQL_ATTR_PARAM_STATUS_PTR is set, Adaptive Server ODBC
Driver retrieves the number of array elements from the StringLength
parameter to SQLSetStmtAttr, and not from
SQL_ATTR_PARAMSET_SIZE.

Bulk insert support for ODBC data batching

Starting with 15.7 ESD #4, the ODBC data batching without binding parameter
arrays feature supports inserting batches using Bulk Insert protocol. Set the
EnableBulkLoad connection property to the desired bulk level (1, 2, or 3), and
HomogeneousBatch connection property to 2.

For example, add ;enablebulkload=3;homogeneousbatch=2 in the
connection string and simple insert statements executed in a batch are
converted to fast-logged bulk insert statements.

Alternatively, set the connection properties programmatically using the
SQL_ATTR_HOMOGENEOUS_BATCH and
SQL_ATTR_ENABLE_BULK_LOAD connection attributes to achieve the
same result:

sr = SQLSetConnectAttr(hdbc,
SQL_ATTR_HOMOGENEOUS_BATCH, (SQLPOINTER)2,
SQL_IS_INTEGER);
sr = SQLSetConnectAttr(hdbc,
SQL_ATTR_ENABLE_BULK_LOAD, (SQLPOINTER)3,
SQL_IS_INTEGER);

ODBC deferred array binding

90 Adaptive Server Enterprise ODBC Driver

ODBC deferred array binding
Adaptive Server Enterprise ODBC Driver now provides the extended
SQLBindColumnDA() and SQLBindParameterDA() APIs that allow applications
to bind all columns or parameters with a single API call. When you use these
APIs, the pointers to column buffer or parameter buffer are reevaluated for
each SQLExecute() or SQLExecDirect() call. Therefore, the application is able
to change the buffers without another SQLBindCol() or SQLBindParameter()
call. Because the calls to bind new pointers can be expensive, using the new
extended APIs improves application performance where the same statement
needs to be executed many times. Applications may also be able to save some
memory copy operations by changing the buffer pointers before executing a
query such that data is read from where available or copied to where needed.

SQLBindColumnDA()

Description Binds a buffer to a set of column markers.

Syntax SQLRETURN SQLBindColumnDA(
SQLHSTMT StatementHandle,
SQLSMALLINT* TargetTypes,
SQLSMALLINT* Precisions,
SQLSMALLINT* Scales,
SQLPOINTER* TargetValuePtrs,
SQLLEN* BufferLengths,
SQLLEN** StrLens_or_Inds,
SQLUSMALLINT Columns)

Parameters StatementHandle

[Input] Statement handle.

TargetTypes

[Input] The C types of TargetValuePtrs. A copy of the array is made. The only
way to update the C type of a column is to call this function again.

Precisions

[Deferred Input] The precision to use for this column buffer.

Scales

[Deferred Input] The scale to use for this column buffer.

TargetValuePtrs

CHAPTER 3 Supported Adaptive Server Features

Users Guide 91

[Deferred Input/Output] Pointers to the data buffers to bind to the columns. The
elements of the array must be non-NULL.

BufferLengths

[Deferred Input] Length of the TargetValuePtrs buffers in bytes.

StrLens_or_Inds

[Deferred Input/Output] Pointer to the length/indicator buffers to bind to the
columns.

Columns

[Input] The number of columns bound.

SQLBindParameterDA()

Description Binds a buffer to a set of parameter markers.

Syntax SQLRETURN SQLBindParameterDA(
SQLHSTMT StatementHandle,
SQLSMALLINT* InputOutputTypes,
SQLSMALLINT* ValueTypes,
SQLSMALLINT* ParameterTypes,
SQLULEN* ColumnSizes,
SQLSMALLINT* DecimalDigits,
SQLPOINTER* ParameterValuePtrs,
SQLLEN* BufferLength,
SQLLEN** StrLens_or_IndPtrs,
SQLUSMALLINT Parameters)

Parameters StatementHandle

[Input] Statement handle.

InputOutputTypes

[Input] The types of the parameters. A copy of the array is made. The only way
to update the InputOutputType of a parameter is to call this function again.

ValueTypes

[Input] The C datatypes of the parameters. A copy of the array is made. The
only way to update the ValueType of a parameter is to call this function again.

ParameterTypes

ODBC deferred array binding

92 Adaptive Server Enterprise ODBC Driver

[Input] The SQL datatypes of the parameters. A copy of the array is made. The
only way to update the ParameterType of a parameter is to call this function
again.

ColumnSizes

[Input] The size of the columns or expressions of the corresponding parameter
markers. A copy of the array is made. The only way to update the ColumnSize
of a parameter is to call this function again.

DecimalDigits

[Input] The decimal digits of the column or expression of the corresponding
parameter markers. A copy of the array is made. The only way to update the
DecimalDigits of a parameter is to call this function again.

ParameterValuePtrs

[Deferred Input/Output] An array of pointers to the buffers for the parameters’
data. The elements of the array must be non-NULL.

BufferLength

[Deferred Input] An array of buffer lengths.

StrLens_or_IndPtrs

[Deferred Input] An array of pointers to the buffers for the parameters’ length.

Parameters

[Input] The number of parameters bound.

Usage

• You cannot mix standard bindings and deferred array bindings.

• All bindings must be cleared out when switching between standard
bindings and deferred array bindings.

• When using deferred array bindings, all columns or parameters must be
bound in order without omission using a single API call because a
subsequent call to SQLBindColumnDA() or SQLBindParameterDA()
replaces the values from the previous call.

• The SQLExecute() and SQLExecDirect() functions can now return the
errors of SQLBindParameter() related to BufferLength if
SQLBindParameterDA() is used to bind the parameters.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 93

• The SQLFetch() function can now return the errors of SQLBindCol() related
to BufferLength if SQLBindColumnDA() is used to bind the columns.

• SQLBindColumnDA() and SQLBindParameterDA() cannot be used with
ODBC Driver Managers since the feature utilizes a non-standard API call.

• SQLSetDescField() usage limitations: Some values of FieldIdentifier are
not be allowed when deferred array bindings are used. For example,
SQL_DESC_DATA_PTR returns an error because the application should
change the ValuePtr array to change the application buffer used. Any
FieldIdentifier that would update an SQLBindCol() or SQLBindParameter()
field would return an error when deferred array bindings are used.

Sample program

The dabinding sample program demonstrates this feature.

Suppressing additional row format information
Use the SuppressRowFormat2 connection string property to force Adaptive
Server to send data using the TDS_ROWFMT byte sequence where possible
instead of the TDS_ROWFMT2 byte sequence. TDS_ROWFMT contains less
data than TDS_ROWFMT2—which includes catalog, schema, table, and
column information—and can result in better performance for many small
select operations. Because the server sends reduced result set metadata when
SuppressRowFormat2 is set to 1, some information is not available to client
programs. If your application relies on the missing metadata, you should not
enable this property.

Values:

• 0 – the default value; TDS_ROWFMT2 is not suppressed.

Suppressing row format metadata

94 Adaptive Server Enterprise ODBC Driver

• 1– forces the server to send data in TDS_ROWFMT where possible.

Note You should not use the SuppressRowFormat2 connection string property
with an ODBC program that uses the SQLBulkOperations API. Enabling
SuppressRowFormat2 suppresses information that SQL bulk operations
requires and will result in an error.

Note When you are connecting to Adaptive Server 15.7 ESD #1 or later, the
SuppressRowFormat2 property should be considered obsolete. Use the
SuppressRowFormat connection property instead for better performance
results and lesser restrictions.

Suppressing row format metadata
You can improve the performance of repeatedly executed queries with the
Adaptive Server ODBC driver by instructing Adaptive Server to suppress row
format metadata (TDS_ROWFMT or TDS_ROWFMT2) for queries that are
re-executed in a session. Adaptive Server 15.7 ESD#1 and later supports row
format metadata suppression.

To suppress row format metadata, use the SuppressRowFormat connection
string property.

The valid SuppressRowFormat connection string property values are:

• 0 – row format metadata is not suppressed.

• 1– the default value; Adaptive Server will not send row format metadata
where possible.

Note You can suppress row format metadata only if the connected Adaptive
Server supports this feature. If the SuppressRowFormat parameter is set to 1
but the connected Adaptive Server does not support the suppression of row
format metadata, Adaptive Server ignores the parameter.

Example This ODBC connection string causes row format metadata to be suppressed:

DSN=sampledsn;UID=user;PWD=password;;DynamicPrepare=1;
SuppressRowFormat=1;

CHAPTER 3 Supported Adaptive Server Features

Users Guide 95

Suppressing parameter format metadata
You can improve the performance of prepared statements with the ODBC
driver by suppressing parameter format metadata when the prepared
statements are re-executed. Adaptive Server 15.7 ESD#1 and later supports
parameter format metadata suppression.

To suppress parameter format metadata, set the DynamicPrepare connection
property to 1, and then use the SuppressParamFormat connection string
property.

The valid SuppressParamFormat connection string property values are:

• 0 – parameter format metadata is not suppressed in prepared statements.

• 1– the default value; parameter format metadata is suppressed where
possible.

Note You can suppress parameter format metadata in prepared statements only
if the connected Adaptive Server supports this feature. If the DynamicPrepare
and SuppressParamFormat parameters are both set to 1 but the connected
Adaptive Server does not support the suppression of parameter format
metadata, Adaptive Server ignores the parameter settings.

Example This ODBC connection string causes parameter format metadata to be
suppressed in prepared statements:

DSN=sampledsn;UID=user;PWD=password;;DynamicPrepare=1;
SuppressParamFormat=1;

Releasing locks at cursor close
Adaptive Server extends the declare cursor syntax to include the
release_locks_on_close option, which releases shared cursor locks at isolation
levels 2 and 3 when a cursor is closed. Adaptive Server ODBC Driver
accordingly supports the release-lock-on-close semantics.

To apply this functionality to all read-only cursors created on an Adaptive
Server ODBC Driver connection, set the ReleaseLocksOnCursorClose
connection property to 1. The default ReleaseLocksOnCursorClose value is 0.

select for update support

96 Adaptive Server Enterprise ODBC Driver

Settings applied through the ReleaseLocksOnCursorClose connection property
is static and cannot be changed after the connection has been established. This
setting takes effect only when connected to a server that supports
release_locks_on_close.

For information about release_locks_on_close, see the Adaptive Server
Enterprise Reference Manual: Commands.

select for update support
Adaptive Server supports select for update, which can lock rows for subsequent
updates within the same transaction, and supports exclusive locks for updatable
cursors. See Chapter 2, "Queries: Selecting Data from a Table" in the Adaptive
Server Enterprise Transact-SQL Users Guide.

This functionality is automatically available to clients when the for update
clause is added to a select statement and to any updatable cursors opened
within the clients.

Variable-length rows in data-only locked tables
Versions of Adaptive Server earlier than 15.7 configured for 16K logical page
sizes could not create data-only locked (DOL) tables with variable-length rows
if a variable-length column began more than 8191 bytes after the start of the
row. This limitation has been removed starting in Adaptive Server 15.7. See
Chapter 2, "Data Storage” in the Adaptive Server Enterprise Performance and

Tuning Series: Physical Database Tuning.

ODBC clients do not need special configuration to use this feature. When
connected to Adaptive Server version 15.7 that has been configured to receive
wide DOL rows, these clients automatically insert records using the wide
offset. An error message is received if a client attempts to send a wide DOL
row to an earlier version of Adaptive Server, or to a 15.7 Adaptive Server for
which the wide DOL row option is disabled.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 97

Nonmaterialized columns
The bulk insert routines in the Adaptive Server ODBC Driver version 15.7 and
later can handle nonmaterialized columns in Adaptive Server 15.7. Earlier
versions of the Adaptive Server ODBC Driver cannot perform bulk inserts of
data into Adaptive Server when a table definition contains nonmaterialized
columns. Adaptive Server will raise an error when earlier versions of the
Adaptive Server ODBC Driver attempt to perform bulk inserts into
nonmaterialized columns.

Large Object (LOB) support
Adaptive Server ODBC Driver supports using Large Object (LOB) datatypes
— text, unitext, and image as:

• LOB columns with in-row storage

In Adaptive Server, LOB columns that are marked for in-row are stored in-
row when there is adequate memory to hold the entire row. When the size
of a row increases over its defined limit due to an update to any column in
it, the LOB columns which are stored in-row are moved off-row to bring
it within the limits. See Chapter 21, "In-Row Off-Row LOB" in the
Adaptive Server Enterprise Transact-SQL Users Guide.

The bulk insert routines in Adaptive Server ODBC Driver support the in-
row and off-row storage of text, image, and unitext LOB columns in
Adaptive Server. Bulk insert routines from earlier client versions always
store LOB columns off row.

• LOB objects as parameters of stored procedures

Adaptive Server ODBC Driver supports using text, unitext, and image as
input parameters in stored procedures and as parameter marker datatypes.

Large Object (LOB) locator support

98 Adaptive Server Enterprise ODBC Driver

Large Object (LOB) locator support
Adaptive Server ODBC Driver supports large object (LOB) locators. A LOB
locator contains a logical pointer to LOB data rather than the data itself,
reducing the amount of data that passes through the network between Adaptive
Server and its clients.

Adaptive Server ODBC Driver clients cannot use LOB locators unless
connected to an Adaptive Server that supports it. Adaptive Server has server
support for LOB locators.

Note When you are using LOB locators, retrieving a large result set that
includes LOB data on each row may impact your application's performance.
Adaptive Server returns a LOB locator as part of the result set and, to obtain
LOB data, Adaptive Server ODBC Driver must cache the remaining result set.
Sybase recommends that you keep result sets small, or that you enable cursor
support to limit the size of data to be cached.

Enabling LOB locator support

To enable LOB locator support in Adaptive Server ODBC Driver, establish a
connection to Adaptive Server with the EnableLOBLocator connection
property set to 1. When EnableLOBLocator is set to 0, the default value, the
Adaptive Server ODBC Driver cannot retrieve a locator for a LOB column.
When enabling LOB Locators, the connection should be set to autocommit off.

You must also include the sybasesqltypes.h file in your program. The
sybasesqltypes.h file is located in the include directory, under the ODBC
installation directory.

Note LOB Locators can be used reliably when the application is linked
directly to the driver. When a driver manager is used and LOB Locators are
used, some driver managers may restrict the use of vendor defined C and SQL
Types and the application may encounter an "Unsupported Type" error.

ODBC datatype mapping for locator support

The ODBC datatype mapping for the Adaptive Server locator datatypes are:

CHAPTER 3 Supported Adaptive Server Features

Users Guide 99

Supported conversions

The supported conversions for the Adaptive Server locator datatypes are:

ODBC API methods that support LOB locators

• SQLBindCol – TargetType can be any of the ODBC C locator datatypes.

• SQLBindParameter – ValueType can be any of the ODBC C locator
datatypes. ParameterType can be any of the ODBC SQL locator datatypes.

• SQLGetData – TargetType can be any of the ODBC C locator datatype.

• SQLColAttribute – the SQL_DESC_TYPE and
SQL_DESC_CONCISE_TYPE descriptors can return any of the ODBC
SQL locator datatype.

• SQLDescribeCol – the datatype pointer can be any of the ODBC SQL
locator datatypes.

See Microsoft ODBC API Reference.

Implicit conversion of prefetched LOB data

When Adaptive Server returns a LOB locator, use SQLGetData and
SQLBindCol to retrieve the underlying prefetched LOB data by binding the
column to SQL_C_CHAR or SQL_C_WCHAR for text locators, or to
SQL_C_BINARY for image locators.

ASE Datatype ODBC SQL Type ODBC C Type

text_locator SQL_TEXT_LOCATOR SQL_C_TEXT_LOCATOR

image_locator SQL_IMAGE_LOCATOR SQL_C_ IMAGE_LOCATOR

unitext_locator SQL_UNITEXT_LOCATOR SQL_C_ UNITEXT_LOCATOR

SQL_C_TEXT_

LOCATOR

SQL_C_IMAGE_

LOCATOR

SQL_C_UNITEXT_

LOCATOR

SQL_TEXT_LOCATOR X

SQL_IMAGE_LOCATOR X

SQL_UNITEXT_LOCATOR X

SQL_LONGVARCHAR

SQL_WLONGVARCHAR

SQL_LONGVARBINARY

LEGEND: x = supported conversion.

Large Object (LOB) locator support

100 Adaptive Server Enterprise ODBC Driver

Set the SQL_ATTR_LOBLOCATOR attribute to enable or disable locators in
a connection. If EnableLOBLocator has been specified in the connection
string, SQL_ATTR_LOBLOCATOR is initialized with the value of
EnableLOBLocator, otherwise, it is set to SQL_LOBLOCATOR_OFF, the
default value. To enable locators, set the attribute to
SQL_LOBLOCATOR_ON. Use SQLSetConnectAttr to set the attribute’s value
and SQLGetConnectAttr to retrieve its value.

Use SQLSetStatementAttr to set SQL_ATTR_LOBLOCATOR_FETCHSIZE
to specify the size—in bytes for binary data and in characters for character
data—of the LOB data to retrieve. The default value, 0, indicates that
prefetched data is not requested, while a value of -1 retrieves the entire LOB
data.

Note If the underlying LOB data size of the column being retrieved exceeds
the prefetched data size that you have set, native error 3202 is raised when an
ODBC client attempts to directly retrieve the data. When this happens, the
client can retrieve the complete data by calling SQLGetData to obtain the
underlying locator and perform all of the operations available on locators.

Example 1 Retrieves an image locator using SQLGetData when the
prefetched data represents the complete LOB value:

//Set Autocommit off
SQLRETURN sr;
sr = SQLSetConnectAttr(dbc, SQL_ATTR_AUTOCOMMIT,

(SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

//Enable LOB Locator for this exchange
sr = SQLSetConnectAttr(dbc, SQL_ATTR_LOBLOCATOR, (SQLPOINTER)SQL_LOCATOR_ON,

0);

// Set size of prefetched LOB data
sr = SQLSetStatementAttr(stmt, SQL_ATTR_LOBLOCATOR_FETCHSIZE,
(SQLPOINTER)32768, 0);

//Get a locator from the server
SQLLEN lLOBLen = 0;
Byte cBin[COL_SIZE];
SQLLEN lBin = sizeof(CBin);
unsigned char cLOC[SQL_LOCATOR_SIZE];
SQLLEN lLOC = sizeof(cLOC);

int id = 4;
SQLLEN l1 = sizeof(int);

CHAPTER 3 Supported Adaptive Server Features

Users Guide 101

SQLLEN idLen = sizeof(int);
sr = SQLBindParameter(stmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, idLen,

0, &id, idLen, &idLen);

printError(sr, SQL_HANDLE_STMT, stmt);

//Execute the select statement to return a locator
sr = SQLExecDirect(stmt, selectCOL_SQL, SQL_NTS);
printError(sr, SQL_HANDLE_STMT, stmt);

sr = SQLFetch(stmt);
printError(sr, SQL_HANDLE_STMT, stmt);

//Retrieve the binary data (Complete Data is returned)
sr = SQLGetData(stmt, 1, SQL_C_BINARY, cBin, lBin, &lBin);
printError(sr, SQL_HANDLE_STMT, stmt);

//Cleanup
sr = SQLFreeStmt(stmt, SQL_UNBIND);
sr = SQLFreeStmt(stmt, SQL_RESET_PARAMS);
sr = SQLFreeStmt(stmt, SQL_CLOSE);

SQLEndTran(SQL_HANDLE_DBC, dbc,SQL_COMMIT);

//Disable LOB Locator for the future
sr = SQLSetConnectAttr(dbc, SQL_ATTR_LOBLOCATOR, (SQLPOINTER)SQL_LOCATOR_OFF,

0);

Example 2 Retrieves an image locator using SQLGetData when prefetched
data represents a truncated LOB value:

//Set Autocommit off
SQLRETURN sr;
sr = SQLSetConnectAttr(dbc, SQL_ATTR_AUTOCOMMIT,

(SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

//Enable LOB Locator for this exchange
sr = SQLSetConnectAttr(dbc, SQL_ATTR_LOBLOCATOR,

(SQLPOINTER)SQL_LOCATOR_ON, 0);

//Set size of prefetched LOB data
sr = SQLSetStatementAttr(stmt,

SQL_ATTR_LOBLOCATOR_FETCHSIZE, (SQLPOINTER)32768, 0);

//Get a locator from the server
SQLLEN lLOBLen = 0;

Large Object (LOB) locator support

102 Adaptive Server Enterprise ODBC Driver

Byte cBin[COL_SIZE];
SQLLEN lBin = sizeof(CBin);
unsigned char cLOC[SQL_LOCATOR_SIZE];
SQLLEN lLOC = sizeof(cLOC);

int id = 4;
SQLLEN l1 = sizeof(int);
SQLLEN idLen = sizeof(int);
sr = SQLBindParameter(stmt, 1, SQL_PARAM_INPUT, SQL_C_LONG, SQL_INTEGER, idLen,

0, &id, idLen, &idLen);
printError(sr, SQL_HANDLE_STMT, stmt);

//Execute the select statement to return a locator
sr = SQLExecDirect(stmt, selectCOL_SQL, SQL_NTS);
printError(sr, SQL_HANDLE_STMT, stmt);
sr = SQLFetch(stmt);
printError(sr, SQL_HANDLE_STMT, stmt);

// Retrieve the binary data(Truncated data is returned)
sr = SQLGetData(stmt, 1, SQL_C_BINARY, cBin, lBin, &lBin);

if(sr == SQL_SUCCESS_WITH_INFO)
{

SQLTCHAR errormsg[ERR_MSG_LEN];
SQLTCHAR sqlstate[SQL_SQLSTATE_SIZE+1];
SQLINTEGER nativeerror = 0;
SQLSMALLINT errormsglen = 0;

retcode = SQLGetDiagRec(handleType, handle, 1, sqlstate, &nativeerror,
errormsg, ERR_MSG_LEN, &errormsglen);

printf("SqlState: %s Error Message: %s\n", sqlstate, errormsg);

//Handle truncation of LOB data; if data was truncated call SQLGetData to
// retrieve the locator.

/* Warning returns truncated LOB data */
if (NativeError == 32028) //Error code may change
{

BYTE ImageLocator[SQL_LOCATOR_SIZE];
sr = SQLGetData(stmt, 1, SQL_C_IMAGE_LOCATOR, &ImageLocator,

sizeof(ImageLocator), &Len);
printError(sr, SQL_HANDLE_STMT, stmt);

/*
Perform locator specific calls using image Locator on a separate

CHAPTER 3 Supported Adaptive Server Features

Users Guide 103

statement handle if needed
*/

}
}

//Cleanup
sr = SQLFreeStmt(stmt, SQL_UNBIND);
sr = SQLFreeStmt(stmt, SQL_RESET_PARAMS);
sr = SQLFreeStmt(stmt, SQL_CLOSE);

SQLEndTran(SQL_HANDLE_DBC, dbc,SQL_COMMIT);

//Disable LOB Locator for the future
sr = SQLSetConnectAttr(dbc, SQL_ATTR_LOBLOCATOR, (SQLPOINTER)SQL_LOCATOR_OFF,

0);

Accessing and manipulating LOBs using locators

The ODBC API does not directly support LOB locators. An ODBC client
application must use Transact-SQL® functions to operate on the locators and
manipulate LOB values. Adaptive Server ODBC Driver introduces several
stored procedures to facilitate the use of the required Transact-SQL functions.

This section discusses how various operations can be performed on a LOB
locator. The input and output values of the parameters can be of any type that
Adaptive Server can implicitly convert to the stored procedure definitions.

For details about the Transact-SQL commands and functions listed here, see
See "Transact-SQL Functions" in the Adaptive Server Enterprise Reference

Manual: Building Blocks.

Initializing a text locator

Use sp_drv_create_text_locator to create a text_locator and optionally initialize
it with value. sp_drv_create_text_locator accesses the Transact-SQL function
create_locator.

Syntax sp_drv_create_text_locator [init_value]

Input Parameters init_value – a varchar or text value used to initialize the new locator.

Output Parameters None.

Result Set A column of type text_locator. The LOB that the locator references has
init_value when supplied.

Large Object (LOB) locator support

104 Adaptive Server Enterprise ODBC Driver

Initializing a unitext locator

Use sp_drv_create_unitext_locator to create a unitext_locator and optionally
initialize it with value. sp_drv_create_unitext_locator accesses the Transact-
SQL function create_locator.

Syntax sp_drv_create_unitext_locator [init_value]

Input Parameters init_value – a univarchar or unitext used to initialize the new locator.

Output Parameters None.

Result Set A column of type unitext_locator. The LOB that the locator references has
init_value when supplied.

Initializing an image locator

Use sp_drv_create_image_locator to create an image_locator and optionally
initialize it with value. sp_drv_create_image_locator accesses the Transact-
SQL function create_locator.

Syntax sp_drv_create_image_locator [init_value]

Input Parameters init_value – a varbinary or image used to initialize the new locator.

Output Parameters None.

Result Set A column of type image_locator. The LOB that the locator references has
init_value when supplied.

Obtaining complete text value from a text locator

Use sp_drv_locator_to_text which accesses the Transact-SQL function
return_lob.

Syntax sp_drv_locator_to_text locator

Input Parameters locator – text_locator to retrieve value of.

Output Parameters None.

Result Set A column containing the text value referenced by locator.

Obtaining complete unitext value from a unitext locator

Use sp_drv_locator_to_unitext which accesses the Transact-SQL function
return_lob.

Syntax sp_drv_locator_to_unitext locator

CHAPTER 3 Supported Adaptive Server Features

Users Guide 105

Input Parameters locator – unitext_locator to retrieve value of.

Output Parameters None.

Result Set A column containing the unitext value referenced by locator.

Obtaining complete image value from an image locator

Use sp_drv_locator_to_image which accesses the Transact-SQL function
return_lob.

Syntax sp_drv_locator_to_image locator

Input Parameters locator – image_locator to retrieve value of.

Output Parameters None.

Result Set A column containing the image value referenced by locator.

Obtaining a substring from a text locator

Use sp_drv_text_substring which accesses the Transact-SQL function substring.

Syntax sp_drv_text_substring locator, start_position, length

Input Parameters • locator – a text_locator that references the data to manipulate.

• start_position – an integer specifying the position of the first character to
read and retrieve.

• length – an integer specifying the number of characters to read.

Output Parameters None.

Result Set A column of type text containing the substring retrieved.

Obtaining a substring from a unitext locator

Use sp_drv_unitext_substring which accesses the Transact-SQL function
substring.

Syntax sp_drv_unitext_substring locator, start_position, length

Input Parameters • locator – a unitext_locator that references the data to manipulate.

• start_position – an integer specifying the position of the first character to
read and retrieve.

• length – an integer specifying the number of characters to read.

Output Parameters None.

Large Object (LOB) locator support

106 Adaptive Server Enterprise ODBC Driver

Result Set A column of type unitext containing the substring retrieved.

Obtaining a substring from an image locator

Use sp_drv_image_substring, which accesses the Transact-SQL function
substring.

Syntax sp_drv_image_substring locator, start_position, length

Input Parameters • locator – an image_locator that references the data to manipulate.

• start_position – an integer specifying the position of the first byte to read
and retrieve.

• length – an integer specifying the number of bytes to read.

Output Parameters None.

Result Set A column of type image containing the substring retrieved.

Inserting text at specified position

Use sp_drv_text_setdata which accesses the Transact-SQL function setadata.

Syntax sp_drv_text_setdata locator, offset, new_data, data_length

Input Parameters • locator – a text_locator that references the text column to insert into.

• offset – an integer specifying the position from which to start writing the
new content.

• new_data – varchar or text data to insert.

Output Parameters data_length – an integer containing the number of characters written.

Result Set None.

Inserting unitext at specified position

Use sp_drv_unitext_setdata which accesses the Transact-SQL function
setadata.

Syntax sp_drv_unitext_setdata locator, offset, new_data, data_length

Input Parameters • locator –a unitext_locator that references the unitext column to insert into.

• offset – an integer specifying the position from which to start writing the
new content.

• new_data – univarchar or unitext data to insert.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 107

Output Parameters data_length – an integer containing the number of characters written.

Result Set None.

Inserting an image at specified position

Use sp_drv_image_setdata which accesses the Transact-SQL function
setadata.

Syntax sp_drv_image_setdata locator, offset, new_data, datalength

Input Parameters • locator – an image_locator that references the image column to insert in.

• offset – an integer specifying the position from which to start writing the
new content.

• new_data – varbinary or image data to insert.

Output Parameters data_length – an integer containing the number of bytes written.

Result Set None.

Inserting text referenced by a locator

Use sp_drv_text_locator_setdata which accesses the Transact-SQL function
setadata.

Syntax sp_drv_text_locator_setdata locator, offset, new_data_locator,
data_length

Input Parameters • locator – a text_locator that references the text column to insert into.

• offset – an integer specifying the position from which to start writing the
new content.

• new_data_locator – a text_locator that references the text data to insert.

Output Parameters data_length – an integer containing the number of characters written.

Result Set None.

Inserting unitext referenced by a locator

Use sp_drv_unitext_locator_setdata which accesses the Transact-SQL function
setadata.

Syntax sp_drv_unitext_locator_setdata locator, offset, new_data_locator,
data_length

Input Parameters • locator –a unitext_locator that references the unitext column to insert into.

Large Object (LOB) locator support

108 Adaptive Server Enterprise ODBC Driver

• offset – an integer specifying the position from which to start writing the
new content.

• new_data_locator – a unitext_locator that references the unitext data to
insert.

Output Parameters data_length – an integer containing the number of characters written.

Result Set None.

Inserting image referenced by a locator

Use sp_drv_image_locator_setdata which accesses the Transact-SQL function
setadata.

Syntax sp_drv_image_locator_setdata locator, offset, new_data_locator,
datalength

Input Parameters • locator – an image_locator that references the image column to insert in.

• offset – an integer specifying the position from which to start writing the
new content.

• new_data_locator – an image_locator that references the image data to
insert.

Output Parameters data_length – an integer containing the number of bytes written.

Result Set None.

Truncating underlying LOB data

Use truncate lob to truncate the LOB data referenced by a LOB locator. See the
Adaptive Server Enterprise Reference Manual: Commands.

Finding character length of underlying text data

Use sp_drv_text_locator_charlength to find the character length of a LOB
column referenced by a text locator. sp_drv_text_locator_charlength accesses
the Transact-SQL function char_length.

Syntax sp_drv_text_locator_charlength locator, data_length

Input Parameters locator – a text_locator that references the text column to manipulate.

Output Parameters data_length – an integer specifying the character length of the text column
referenced by locator.

Result Set None.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 109

Finding byte length of underlying text data

Use sp_drv_text_locator_bytelength to find the byte length of a LOB column
referenced by a text locator. sp_drv_text_locator_bytelength accesses the
Transact-SQL function data_length.

Syntax sp_drv_image_locator_bytelength locator, data_length

Input Parameters locator – a text_locator that references the text column to manipulate.

Output Parameters data_length – an integer specifying the byte length of the text column
referenced by locator.

Result Set None.

Finding character length of underlying unitext data

Use sp_drv_unitext_locator_charlength to find the character length of a LOB
column referenced by a unitext locator. sp_drv_unitext_locator_charlength
accesses the Transact-SQL function char_length.

Syntax sp_drv_unitext_locator_charlength locator, data_length

Input Parameters locator – a unitext_locator that references the unitext column to manipulate.

Output Parameters data_length – an integer specifying the character length of the unitext column
referenced by locator.

Result Set None.

Finding byte length of underlying unitext data

Use sp_drv_unitext_locator_bytelength to find the byte length of a LOB column
referenced by a unitext locator. sp_drv_unitext_locator_bytelength accesses the
Transact-SQL function data_length.

Syntax sp_drv_image_locator_bytelength locator, data_length

Input Parameters locator – a unitext_locator that references the unitext column to manipulate.

Output Parameters data_length – an integer specifying the byte length of the unitext column
referenced by locator.

Result Set None.

Large Object (LOB) locator support

110 Adaptive Server Enterprise ODBC Driver

Finding byte length of underlying image data

Use sp_drv_image_locator_bytelength to finds the byte length of a LOB column
referenced by an image locator. sp_drv_image_locator_bytelength accesses the
Transact-SQL function data_length.

Syntax sp_drv_image_locator_bytelength locator, data_length

Input Parameters locator – an image_locator that references the image column to manipulate.

Output Parameters data_length – an integer specifying the byte length of the image column
referenced by locator.

Result Set None.

Finding position of a search string within the text column referenced by a
locator

Use sp_drv_varchar_charindex which accesses the Transact-SQL function
charindex.

Syntax sp_drv_varchar_charindex search_string, locator, start, position

Input Parameters • search_string – the literal, of type varchar, to search for.

• locator – a text_locator that references the text column to search from.

• start – an integer specifying the position from which to begin searching.
The first position is 1.

Output Parameters position – an integer specifying the starting position of search_string in the
LOB column referenced by locator.

Result Set None.

Finding position of a string referenced by a text locator within the text Column
referenced by another locator

Use sp_drv_textlocator_charindex which accesses the Transact-SQL function
charindex.

Syntax sp_drv_textlocator_charindex search_locator, locator, start, position

Input Parameters • search_locator – a text_locator that points to the literal to search for.

• locator – a text_locator that references the text column to search from.

• start – an integer specifying the position from which to begin searching.
The first position is 1.

CHAPTER 3 Supported Adaptive Server Features

Users Guide 111

Output Parameters position – an integer specifying the starting position of the literal in the LOB
column referenced by locator.

Result Set None.

Finding position of a search string within the unitext column referenced by a
locator

Use sp_drv_univarchar_charindex which accesses the Transact-SQL function
charindex.

Syntax sp_drv_univarchar_charindex search_string, locator, start, position

Input Parameters • search_string – the literal, of type univarchar, to search for.

• locator – a unitext_locator that references the unitext column to search
from.

• start – an integer specifying the position from which to begin searching.
The first position is 1.

Output Parameters position – an integer specifying the starting position of search_string in the
LOB column referenced by locator.

Result Set None.

Finding position of a string referenced by a unitext locator within the unitext
column referenced by another locator

Use sp_drv_unitext_locator_charindex which accesses the Transact-SQL
function charindex.

Syntax sp_drv_charindex_unitextloc_in_locator search_locator, locator, start,
position

Input Parameters • search_locator – a unitext_locator that points to the literal to search for.

• locator – a unitext_locator that references the text column to search from.

• start – an integer specifying the position from which to begin searching.
The first position is 1.

Output Parameters position – an integer specifying the starting position of the literal in the LOB
column referenced by locator.

Result Set None.

Large Object (LOB) locator support

112 Adaptive Server Enterprise ODBC Driver

Finding position of a byte sequence within the column referenced by an image
locator

Use sp_drv_varbinary_charindex which accesses the Transact-SQL function
charindex.

Syntax sp_drv_varbinary_charindex byte_sequence, locator, start, position

Input Parameters • byte_sequence – the byte sequence, of type varbinary, to search for.

• locator – an image_locator that references the image column to search
from.

• start – an integer specifying the position from which to begin searching.
The first position is 1.

Output Parameters position – an integer specifying the starting position of search_string in the
LOB column referenced by locator.

Result Set None.

Finding position of byte sequence referenced by an image locator within the
image column referenced by another locator

Use sp_drv_image_locator_charindex which accesses the Transact-SQL
function charindex.

Syntax sp_drv_image_locator_charindex sequence_locator, locator, start,
start_position

Input Parameters • sequence_locator – an image_locator that points to the byte sequence to
search for.

• locator – an image_locator that references the image column to search
from.

• start – an integer specifying the position from which to begin searching.
The first position is 1.

Output Parameters start_position – an integer specifying the starting position of the byte sequence
in the LOB column referenced by locator.

Result Set None.

Checking if a text_locator reference is valid

Use sp_drv_text_locator_valid which accesses locator_valid.

Syntax sp_drv_text_locator_valid locator

CHAPTER 3 Supported Adaptive Server Features

Users Guide 113

Input Parameters locator – the text_locator to validate.

Output Parameters A bit representing one of these values:

• 0 – false, locator is invalid.

• 1 – true, locator is valid.

Result Set None.

Checking if a unitext_locator reference is valid

Use sp_drv_unitext_locator_valid which accesses locator_valid.

Syntax sp_drv_unitext_locator_valid locator

Parameters locator – the unitext_locator to validate.

Output Parameters A bit representing one of these values:

• 0 – false, locator is invalid.

• 1 – true, locator is valid.

Result Set None.

Checking if an image_locator reference is valid

Use sp_drv_image_locator_valid which accesses locator_valid.

Syntax sp_drv_image_locator_valid locator

Parameters locator – the image_locator to validate.

Output Parameters A bit representing one of these values:

• 0 – false, locator is invalid.

• 1 – true, locator is valid.

Result Set None.

Freeing or deallocating a LOB locator

Use deallocate locator. See the Adaptive Server Enterprise Reference Manual:

Commands.

Examples

Example 1 Allocates handles and establishes a connection:

Large Object (LOB) locator support

114 Adaptive Server Enterprise ODBC Driver

// Assumes that DSN has been named "sampledsn" and
// UseLobLocator has been set to 1.

SQLHENV environmentHandle = SQL_NULL_HANDLE;
SQLHDBC connectionHande = SQL_NULL_HANDLE;
SQLHSTMT statementHandle = SQL_NULL_HANDLE;
SQLRETURN ret;

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &environmentHandle);
SQLSetEnvAttr(environmentHandle, SQL_ATTR_ODBC_VERSION, SQL_ATTR_OV_ODBC3);
SQLAllocHandle(SQL_HANDLE_DBC, environmentHandle, &connectionHandle);
Ret = SQLConnect(connectionHandle, "sampledsn",

SQL_NTS, "sa", SQL_NTS, "Sybase",SQL_NTS);

Example 2 Selects a column and retrieves a locator:

// Selects and retrieves a locator for bk_desc, where
// bk_desc is a column of type text defined in a table
// named books. bk_desc contains the text "A book".

SQLPrepare(statementHandle, "SELECT bk_desc FROM books
WHERE bk_id =1", SQL_NTS);

SQLExecute(statementHandle);
BYTE TextLocator[SQL_LOCATOR_SIZE];
SQLLEN Len = 0;
ret = SQLGetData(statementHandle, SQL_C_TEXT_LOCATOR,

TextLocator, sizeof(TextLocator),&Len);

If(Len == sizeof(TextLocator))
{

Cout << Locator was created with expected size <<
Len;

}

Example 3 Determines data length:

SQLLEN LocatorLen = sizeof(TextLocator);
ret = SQLBindParameter(statementHandle, 1,

SQL_PARAM_INPUT, SQL_C_TEXT_LOCATOR,
SQL_TEXT_LOCATOR, SQL_LOCATOR_SIZE, 0, TextLocator,
sizeof(TextLocator), &LocatorLen);

SQLLEN CharLenSize = 0;
SQLINTEGER CharLen = 0;
ret = SQLBindParameter(statementHandle, 2,
SQL_PARAM_OUTPUT, SQL_C_LONG,SQL_INTEGER,0 , 0,
&CharLen, sizeof(CharLen), &CharLenSize);

CHAPTER 3 Supported Adaptive Server Features

Users Guide 115

SQLExecDirect(statementHandle,
"{CALL sp_drv_text_locator_charlength(?,?) }" , SQL_NTS);

cout<< "Character Length of Data " << charLen;

Example 4 Appends text to a LOB column:

SQLINTEGER retVal = 0;
SQLLEN Col1Len = sizeof(retVal);
SQLCHAR appendText[10]=”abcdefghi on C++”;

SQLBindParameter(statementHandle, 14,
SQL_PARAM_OUTPUT, SQL_C_SLONG, SQL_INTEGER, 0, 0, &retVal, 0, Col1Len);

SQLBindParameter(statementHandle, 21, SQL_PARAM_INPUT,
SQL_C_TEXT_LOCATOR, SQL_TEXT_LOCATOR,
SQL_LOCATOR_SIZE, 0, &TextLocator,
sizeof(TextLocator), SQL_NULL_HANDLE);

SQLBindParameter(statementHandle, 32, SQL_PARAM_INPUT,
SQL_C_SLONG, SQL_INTEGER, 0, 0, &charLen, 0, SQL_NULL_HANDLE);

SQLBindParameter(statementHandle, 43, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_CHAR, 10, 0, append_text,
sizeof(append_text), SQL_NULL_HANDLE);

SQLExecDirect(statementHandle,
"{? = CALL sp_drv_setdata_text (?, ?, ?,?) }" , SQL_NTS);

SQLFreeStmt(statementHandle, SQL_CLOSE);

Example 5 Retrieves LOB data from a LOB locator.

SQLCHAR description[512];
SQLLEN descriptionLength = 512;

SQLBindParameter(statementHandle, 1, SQL_PARAM_INPUT,
SQL_C_TEXT_LOCATOR, SQL_TEXT_LOCATOR,
SQL_LOCATOR_SIZE, 0, TextLocator,
sizeof(TextLocator), SQL_NULL_HANDLE);

SQLExecDirect(statementHandle, "{CALL sp_drv_locator_to_text(?)}", SQL_NTS);

SQLFetch(statementHandle);

SQLGetData(statementHandle, 1,SQL_C_CHAR, description,
descriptionLength, &descriptionLength)

Using server-specified packet size

116 Adaptive Server Enterprise ODBC Driver

Cout << "LOB data referenced by locator:" << description
<< endl;

Cout << "Expected LOB data:A book on C++" << endl;

Example 6 Transfers data from a client application to a LOB locator.

description = "A lot of data that will be used for a lot
of inserts, updates and deletes"; descriptionLength = SQL_NTS;

SQLBindParameter(statementHandle, 1, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_CHAR, 512, 0, description,
sizeof(description), &descriptionLength);

SQLExecDirect(statementHandle,
"{CALL sp_drv_create_text_locator(?)}", SQL_NTS);

SQLFetch(statementHandle);

SQLGetData(statementHandle, SQL_C_TEXT_LOCATOR,
TextLocator, sizeof(TextLocator),&Len);

Using server-specified packet size
Clients and servers have to be prepared to reserve memory to store the
packages used for communication between them. These packages are called
Protocol Data Units, or PDUs. Every PDU starts with an 8-byte header
containing a 2-byte, unsigned integer describing the actual size in bytes of the
current PDU (including the header itself). Clients and servers must know the
maximum size that a PDU sent by the other party could be, and this is called
the packet size. The packet size is negotiated at login time.

When connected to Adaptive Server 15.0 and later, the Adaptive Server ODBC
Driver lets the server select the packet size to optimize performance. When
connected to an earlier version of Adaptive Server, the Adaptive Server ODBC
Driver uses 512 as the packet size, unless you specify the packetsize property.
If you do not want the server to decide the packet size, you need to set
EnableServerPacketSize to 0. If you have memory restrictions, set
RestrictMaximumPacketSize to a number (in multiples of 512) so that Adaptive
Server and the Adaptive Server ODBC Driver do not negotiate a packet size
greater than the one you specified.

Users Guide 117

Glossary

American National
Standards Institution
(ANSI) code

A standardized set of numeric or alphabetic codes issued by the American
National Standards Institute (ANSI) to ensure uniform identification of
geographic entities through all federal government agencies.

Adaptive Server
Enterprise (ASE)

Adaptive Server Enterprise (ASE) is a high-performance relational
database management system for mission-critical, data-intensive
environments. It ensures highest operational efficiency and throughput on
a broad range of platforms.

Compiler A compiler is a program that translates a source program written in some
high-level programming language into machine code.

Connection string A string that specifies information about a data source and the means of
connecting to it.

Cursor A cursor is a data selector that passes multiple rows of data to the host
program, one row at a time. The cursor indicates the first row, also called
the current row of data and passes it to the host program.

Data source name (DSN) A Data Source Name (DSN) is a data structure that contains information
about a specific database that an Open Database Connectivity (ODBC)
driver needs to connect to.

Descriptor A descriptor is a collection of metadata that describes the parameters of a
SQL statement or the columns of a result set, as seen by the application or
driver.

Directory Service URL
(DSURL)

A property called Directory Service URL (DSURL) that indicates which
LDAP server to use.

Distributed Transaction
Protocol

Graphical User Interface
(GUI)

A program interface that makes use of the computer's graphics capabilities
to make the program easier to use.

ISO 8859-1 Part of the ISO/IEC 8859 series of ASCII-based standard character
encodings. It is informally referred to as Latin-1.

 Glossary

118 Adaptive Server Enterprise ODBC Driver

Kerberos
Authentication

A mechanism for authentication and mutual authentication between a client
and a server, or between one server and another server.

Lightweight
Directory Access
Protocol (LDAP)

An application protocol for accessing and maintaining distributed directory
information services over an Internet Protocol (IP) network.

Mainframe Connect
Direct Connect

Supplies the connectivity tools that allows full integration of mainframe and
LAN-based data sources.

Microsoft
Distributed
Transaction
Coordinator (MS
DTC)

A component that coordinates transactions, which span multiple resource
managers, such as databases, message queues, and file systems.

ODBC Driver
Manager

The component that manages the communications between user applications
and ODBC Drivers.

Open Database
Connectivity (ODBC)

An open standard Application Programmer Interface (API) used for accessing
a database.

Powerbuilder A popular rapid application development (RAD) tool for building object-
oriented client/server applications, the parts of which can be distributedwithin
a network.

Protocol Data Units
(PDU)

Packages used for communication between clients and servers.

Secure Sockets
Layer
(SSL)/Transport
Layer Security (TLS)

Secure Sockets Layers (SSL)/ Transport Layer Security (TLS) are
cryptographic protocols that provide communication security over the Internet.

Sybase EA Server The leading solution for distributed and Web-enabled PowerBuilder
application that leverages a new modular architecture to support custom
deployments.

Sybase iAnywhere A software entity specializing in mobility (mobile computing), management,
security and enterprise caliber database software.

Sybase Software
Development Kit
(SDK)

The Sybase Software Developer's Kit (SDK) provides a programming
interface that allows transparent access to any data source, information
application, or system services.

Unicode A computing industry standard for the consistent encoding, representation and
handling of text.

Users Guide 119

A
advanced sample 24
allocating 9
authentication 78

B
bigdatetime 28, 52
bigtime 28, 52
bound parameters 14
bulk-load support 63

C
certificate 72
CipherSuites 71
connecting to a data source 10
connection

establishing 11
how parameters work 33
introduction 31
setting attributes 12
strings 33
table of parameters 40
using parameters 40

connection functions 10
connection handle 7
conventions ix
cursor characteristics 17
cursor sample 19
cursors

choosing characteristics 17
updating and deleting rows 19

D
data

retrieving 18
data source

connecting to 10
connecting with 40
template 38

datatype mapping 27
datatypes

bigdatetime 28, 52
bigtime 28, 52

descriptor handle 8
directly executing SQL statements 13
directory services 59

using 60
Distributed Transaction Manager (DTC) 56
DSURL 60

E
EncryptPassword 67
environment handle 7
error handling 25
establishing connections 11
executing

prepared statements 15
SQL statements 12
SQL statements directly 13
SQL statements with bound parameters 14

F
failover

on UNIX 78
on Windows 77
using in high availability systems 74

Index

Index

120 Adaptive Server Enterprise ODBC Driver

H
handles 7

allocating 9
handling errors 25
handshake 70
help xi
high availability systems

using failover in 74

K
Kerberos 78

process overview 79
requirements 80
UNIX 81
Windows 81

kinit utility 82

L
LDAP 59

M
mircrosecond granularity 52

N
network authentication 78

O
ODBC

backward compatibiliity 3
conformance, conformance 2
driver manager 3
introduction 1

odbc.ini file 38
odbcversion utility 49

P
password encryption 67
prepared statements 15
process overview

Kerberos 79

R
related documents vii
requirements

Kerberos 80
result sets 17
retrieving data 18
return codes 25

S
samples

advanced 24
cursor 19
simple 18

Secure Sockets Layer (SSL)
enabling connections 73
in Adaptive Server ODBC Driver 72
using 70
validation 72

setting connections attributes 12
simple sample 18
SQL statements

executing 12
executing directly 13
executing prepared statements 15
executing with bound parameters 14

SSL see Secure Sockets Layer 70
statement handle 8
stored procedures

calling 23

T
threads 12
trusted roots file 73

Index

Users Guide 121

U
UNIX

failover on 78
Kerberos 81

updating and deleting rows through a cursor 19
utilities

odbcversion 49

V
validation 72

W
Windows

failover on 77
Kerberos 81

Index

122 Adaptive Server Enterprise ODBC Driver

