
LDAP and the iPhone

Part 1, Harnessing UNIX libraries for iOS development

Skill Level: Intermediate

David M. Syzdek (syzdek@bindlebinaries.com)
Software developer
Bindle Binaries

22 Feb 2011

A multitude of libraries have been written for UNIX® systems. Many of those libraries
have been released using open source licenses that allow a library's source code to
be reused in new projects. By porting an existing library to a new platform, a
developer may be able to save the time it would take to duplicate the development
work to achieve the same functionality on the new platform. This is the first of a
two-part article series on porting the OpenLDAP client libraries to the iOS. Part 1
walks the reader through the steps of importing the OpenLDAP source code into
Xcode and building two static libraries for the iOS. Using the Xcode project created in
Part 1, Part 2 will guide the reader through the creation a simple iOS application that
executes basic queries to an LDAP server using the OpenLDAP libraries.

Introduction

The introduction of the iPhone onto the cell phone market brought along a deluge of
mobile applications in the iTunes store. With a great number of applications
duplicating core functionality, it is easy for a new application to become buried
among its competitors. For an application to stick out to a consumer, it is becoming
increasingly necessary to add features not supported by competing applications;
however, writing new functionality from scratch can be costly in terms of
development time and labor. Understanding how to port libraries originally written for
UNIX® systems may allow a developer to cut costs and release an application to
market faster.

iOS, the operating system used by the iPhone, is built upon a UNIX core and

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 1 of 15



applications for iOS are compiled using GCC, the same compiler used by the
majority of UNIX systems. This means that most libraries written for UNIX systems
can be ported to the iPhone with some time and effort.

This article walks you through the steps of porting a library to the iPhone that is
normally built in an environment with Autoconf and Make. Although not an extensive
explanation of porting from packages built with GNU tools, this article should provide
the needed bread crumbs for developers who have some knowledge of GNU tools to
port a package into Xcode and to iOS platforms.

Getting started

The examples used in this article were tested using iOS SDK 4.1 on Mac OS X
10.6.4 and OpenLDAP 2.4.22. Although this article was written using the iOS SDK
4.1, it should work for future versions of the iOS SDK with little if any changes. The
source files and project files for the examples are available in a zip file in the
Download section.

The iPhone SDK is used to compile mobile applications for the iPhone OS platform.
The SDK provides documentation, an IDE, and simulator for testing mobile
applications (see Resources for download information).

OpenLDAP is a free and open source implementation of the Lightweight Directory
Access Protocol. The implementation includes libraries that provide access to X.500
directory services using LDAP over TCP (see Resources for download information).

Preparing OpenLDAP source code

Xcode is the IDE that is included with the iPhone SDK. It contains templates and
documentation for building applications and libraries for the iOS platform. To make
navigating the source tree for OpenLDAP easier, we will first import the source code
into an Xcode project. To create a new Xcode project for the iOS platform, open
Xcode and select New Project from the File menu on the menu bar. This should
open a new dialog that has three panels (see Figure 1). Since the project will be
used to compile the OpenLDAP client library, the project should be created with the
static library template. On the left panel, select Library under the iPhone OS
heading. From the top right panel, select Cocoa Touch Static Library. Click
Choose to continue.

Figure 1. New Project dialog in Xcode

developerWorks® ibm.com/developerWorks

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 2 of 15



The dialog in Figure 2 is used to set the name for the Xcode project.

Figure 2. Dialog for adding existing files to Xcode project

ibm.com/developerWorks developerWorks®

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 3 of 15



Xcode will create the library's name by pre-pending lib and appending .a to the
project name. So to create a library with the name of libldap.a, the project name
needs to be set to ldap. Type a name into the Save As box and click Save. This will
create a directory that contains the initial files for the project.

Now that the project is created, the source code from OpenLDAP can be imported.
Download the source code from the OpenLDAP project page and extract the tar file
it into the Xcode project folder. From the Project menu on the menu bar select Add
to Project. From the file browser that opens, select the folder within the Xcode
project, which contains the source code for OpenLDAP, and click the Add button. A
new dialog box should appear. Make sure the option "Recursively create groups for
any added folders" is selected and unselect ldap from the list of targets. Click the
Add button to finish adding the source code to the project. A new group with the
name of the OpenLDAP directory should now be in the project's Groups & Files

developerWorks® ibm.com/developerWorks

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 4 of 15



panel of Xcode's main project window.

The OpenLDAP source tree contains a directory that has header files that will be
included by the source files used by the libraries. Xcode needs to be configured to
tell the preprocessor to search this directory when processing #include directives.
Double-click on the project name in the Groups & Files panel of Xcode's main
project window. This should open the project info window (see Figure 3). Click in the
"Search in Build Settings" search box and type in Header Search Paths.
Double-click in the Value field to add a new search path and add
openldap-2.4.22/include.

Figure 3. Project info dialog

Preparing header files

OpenLDAP has been ported to many platforms. The OpenLDAP developers use C
header files to define system information at compile time. Normally these header
files are created by modifying template files with scripts generated from AutoConf.
Since Xcode does not use Autoconf, these files must be modified manually. The files
that must be modified are lber_types.hin, ldap_config.hin, ldap_features.hin, and
portable.hin. These files are located within the include directory within the
OpenLDAP source tree.

lber_types.hin

The file lber_types.hin contains the template for defining variable types. The
template file needs to be renamed lber_types.h. This can be accomplished by
right-clicking on the file name from within Xcode and selecting rename from the
menu. This will update Xcode's meta data for the file to treat it as a C header file.
Open the file for editing, and find the following lines shown in Listing 1.

ibm.com/developerWorks developerWorks®

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 5 of 15



Listing 1. lber_types.h

27 /* LBER boolean, enum, integers (32 bits or larger) */
28 #undef LBER_INT_T
29
30 /* LBER tags (32 bits or larger) */
31 #undef LBER_TAG_T
32
33 /* LBER socket descriptor */
34 #undef LBER_SOCKET_T
35
36 /* LBER lengths (32 bits or larger) */
37 #undef LBER_LEN_T

These lines will declare the variable types used by the library. Since the iPhone is a
32-bit platform, type int is a suitable value. Change the #undef macros to #define
and set the variable types to int (see Listing 2).

Listing 2. Adjusting for the 32-bit platform

27 /* LBER boolean, enum, integers (32 bits or larger) */
28 #define LBER_INT_T int
29
30 /* LBER tags (32 bits or larger) */
31 #define LBER_TAG_T int
32
33 /* LBER socket descriptor */
34 #define LBER_SOCKET_T int
35
36 /* LBER lengths (32 bits or larger) */
37 #define LBER_LEN_T int

The remainder of the file declares custom variable types used by the library and do
not need to be modified: ldap_config.hin.

The file ldap_config.hin contains the template for defining where the library should
search for LDAP client configuration files. Since the iOS does not allow the user to
create arbitrary files within the device's file system, the contents of the file doesn't
need to be modified. The files does need to be renamed to ldap_config.h so that the
source files do not generate errors when being compiled due to a failed include
directive. The file can be renamed using the Xcode interface in the same manner as
lber_types.hin was renamed to lber_types.h.

ldap_features.hin

ldap_features.hin contains information about which features are required by the iOS
platform and information about the current version of OpenLDAP. Re-name
ldap_features.hin to ldap_features.h and find the following lines shown in Listing 3.

Listing 3. ldap_features.h

developerWorks® ibm.com/developerWorks

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 6 of 15



23 /* OpenLDAP API version macros */
24 #undef LDAP_VENDOR_VERSION
24 #undef LDAP_VENDOR_VERSION_MAJOR
24 #undef LDAP_VENDOR_VERSION_MINOR
24 #undef LDAP_VENDOR_VERSION_PATCH

OpenLDAP uses a three part version number for each release. The version is
notated in the format of X.Y.Z where X is the major vendor version number of the
release, Y is the minor vendor version number of the release, and Z is the vendor
patch revision of the release. The value of LDAP_VENDOR_VERSION is calculated
with the formula of ((X*10,000)+(Y*100)+(Z)). For example, the
LDAP_VENDOR_VERSION for OpenLDAP 2.4.22 would be calculated using the
values shown in Listing 4.

Listing 4. Calculating the LDAP_VENDOR_VERSION

LDAP_VENDOR_VERSION_MAJOR = X = 2
LDAP_VENDOR_VERSION_MINOR = Y = 4
LDAP_VENDOR_VERSION_PATCH = Z = 22

LDAP_VENDOR_VERSION = ((X*10000)+(Y*100)+(Z))
LDAP_VENDOR_VERSION = ((2*10000)+(4*100)+(22))
LDAP_VENDOR_VERSION = (20000+400+22)
LDAP_VENDOR_VERSION = (20422)

ldap_features.h needs to be updated to reflect the version of the OpenLDAP source
code. Replace the #undef macros with #define and insert the version information.
For example, OpenLDAP 2.4.22 would result in the following modifications shown in
Listing 5.

Listing 5. Modifications from OpenLDAP 2.4.22

23 /* OpenLDAP API version macros */
24 #define LDAP_VENDOR_VERSION 20422
24 #define LDAP_VENDOR_VERSION_MAJOR 2
24 #define LDAP_VENDOR_VERSION_MINOR 4
24 #define LDAP_VENDOR_VERSION_PATCH 22

The rest of the file does not need to be modified.

portable.hin

Information regarding the library functions and header files that are available in the
iPhone SDK need to be set in a file named portable.hin. However, this file is very
extensive and requires digging to set correctly. Luckily, OpenLDAP uses autoconf to
perform the required tests of multiple platforms. The autoconf scripts can be used to
generate the values for portable.hin.

To use the OpenLDAP autoconf scripts, open the Terminal.app found in
/Applications/Utilities/Terminal.app. Type in the command cd and a space. Then

ibm.com/developerWorks developerWorks®

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 7 of 15



drag the folder within Xcode that contains the OpenLDAP source tree into the
terminal window (see Figure 4).

Figure 4. Showing the process of dragging the Xcode group to the
Terminal.app to obtain the path to the folder

Press Enter on the keyboard to change directories within the Terminal.app to the
location of the OpenLDAP source tree. Run the configure script with the following
flags shown in Listing 6.

Listing 6. Running the configure script

./configure CC=/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/gcc \
LD=/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/ld \
--host=arm-apple-darwin --disable-slapd --without-cyrus-sasl \
--without-tls --no-create

The flag
CC=/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/gcc

specifies the location of the compiler used by the iPhone SDK and the
LD=/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/ld

specifies the location of the linker. The flag --host=arm-apple-darwin informs
autoconf on which platform the compiled code will be used. The flag
--disable-slapd disables checks required to build the LDAP server, which ships
with OpenLDAP. The iPhone SDK does not include the Cyrus SASL library, the
OpenSSL library, or the GNU SSL/TLS library, so the flags
--without-cyrus-sasl and --without-tls disable checks for the functions
contained within these libraries. Finally, the flag --no-create prevents autoconf
from creating Makefiles and the header files. The output should look similar to the
Figure 5.

Figure 5. First few lines of the configure script running

developerWorks® ibm.com/developerWorks

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 8 of 15



Run the following to have autoconf generate portable.h from the template file
portable.hin: ./config.status
--header=include/portable.h:include/portable.hin.

Creating libldap.a

Now that the source code and the configuration files have been prepared, it is time
to tell Xcode which source files will be used by the LDAP library. Using the Xcode
interface, navigate the OpenLDAP source tree to the directory libldap (see Figure 6).

Figure 6. Location of the libldap source files within the Groups & Files panel of
Xcode

ibm.com/developerWorks developerWorks®

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 9 of 15



developerWorks® ibm.com/developerWorks

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 10 of 15



In the libldap directory, there is a file called Makefile.in that contains a list of the files
used to build libldap.a. Open Makefile.in and find the lines shown in Listing 7.

Listing 7. Makefile.in

20 SRCS = bind.c open.c result.c error.c compare.c search.c \
21 controls.c messages.c references.c extended.c cyrus.c \
22 modify.c add.c modrdn.c delete.c abandon.c \
23 sasl.c gssapi.c sbind.c unbind.c cancel.c \
24 filter.c free.c sort.c passwd.c whoami.c \
25 getdn.c getentry.c getattr.c getvalues.c addentry.c \
26 request.c os-ip.c url.c pagectrl.c sortctrl.c vlvctrl.c \
27 init.c options.c print.c string.c util-int.c schema.c \
28 charray.c os-local.c dnssrv.c utf-8.c utf-8-conv.c \
29 tls2.c tls_o.c tls_g.c tls_m.c \
30 turn.c ppolicy.c dds.c txn.c ldap_sync.c stctrl.c \
31 assertion.c deref.c

The files in this list need to be updated to be included in the ldap target. To do this,
right-click on a file from the list and select item Get Info from the menu that appears.
In the new window, select the Targets tab and click the ldap target from the Target
Memberships panel. Repeat this for the entire list of files.

Creating liblber.a

liblber.a is a library required by libldap.a when compiling an application. The library
is included with the OpenLDAP distribution. To build the library, an Xcode target for
the library must first be created. To create the new target, right-click on the project
icon in the Groups & Files panel of Xcode. Select Add from the menu and then
select New Target from the secondary menu. A New Target wizard should appear.
Select Cocoa Touch from the panel on the left and then select Static Library from
the panel on the right. Click the Next button to continue. In the Target Name: text
box, type lber and click Finish. This should create the new library target.

liblber.a depends upon the Foundation framework. To configure the Foundation
framework, scroll to the Targets section in the Groups & Files panel of Xcode.
Expand the Targets section and double-click on the target lber. This should open the
target info window for lber. Click on the General tab and then click on the + button
below the Linked Libraries panel. From the pop-up window, select
Foundation.framework from the Device - iPhone OS 4.1 SDK section. Click the Add
button to finish adding the framework to the library.

Finally, Xcode needs to be configured with the source files to compile for liblber.a.
Using the Xcode interface, navigate the OpenLDAP source tree to the directory
liblber. In the liblber directory, there is a file called Makefile.in which contains a list of
the files used to build liblber.a.

Open Makefile.in and find the lines shown in Listing 8.

ibm.com/developerWorks developerWorks®

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 11 of 15



Listing 8. Lines from Makefile.in

21 UNIX_SRCS = stdio.c

26 SRCS= assert.c decode.c encode.c io.c bprint.c debug.c \
27 memory.c options.c sockbuf.c $(@PLAT@_SRCS)

The files in these lists need to be updated to be included in the lber target. To do
this, right-click on a file from the list and select item Get Info from the menu that
appears. In the new window, select the Targets tab and click the lber target from the
Target Memberships panel. Repeat this for all the files in the lists.

The library can be built by clicking the Build button in the Xcode toolbar. To switch
between building for the simulator or a device, choose the desired SDK from the
drop-down box labeled Overview.

Conclusion

As with most methods of software development, there are other ways to compile
ported libraries for the iOS. This article uses Xcode to perform the compiling to allow
the libraries to be easily integrated into other packages using Xcode's dependency
tracking and to allow the libraries to be easily updated with future versions of the
iPhone SDK.

Part 2 of this series will show how to create a second Xcode project adds the Xcode
project created in this article as a dependency and uses the static libraries to create
an LDAP client for the iPhone.

developerWorks® ibm.com/developerWorks

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 12 of 15



Downloads

Description Name Size Download
method

Zip file ldap.zip 836KB HTTP

Information about download methods

ibm.com/developerWorks developerWorks®

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 13 of 15



Resources

Learn

• Android and iPhone browser wars, Part 1: WebKit to the rescue (Frank Ableson,
developerWorks, December 2009): See how you can leverage the features of
mobile browsers in this developerWorks article.

• Introduction to LDAP: Part 1, Installation and simple Java LDAP programming
(Jeng Yoong Tan, developerWorks, June 2010 ): Get a general overview of
LDAP (Lightweight Directory Access Protocol).

• Start your learning with Open Source: Read this blog entry from Chris Walden
about the wealth of open source packages available for almost any job.

• For an article series that will teach you how to program in bash, see Bash by
example, Part 1: Fundamental programming in the Bourne again shell (bash)
(Daniel Robbins, developerWorks, March 2000), Bash by example, Part 2: More
bash programming fundamentals (Daniel Robbins, developerWorks, April
2000), and Bash by example, Part 3: Exploring the ebuild system (Daniel
Robbins, developerWorks, May 2000).

• Making UNIX and Linux work together (Martin Brown, developerWorks, April
2006) is a guide to getting traditional UNIX distributions and Linux® working
together.

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

• Follow developerWorks on Twitter..

• Access the Xcode Port of OpenLDAP.

• To listen to interesting interviews and discussions for software developers,
check out developerWorks podcasts.

• developerWorks technical events and webcasts: Stay current with
developerWorks technical events and webcasts.

Get products and technologies

• Get the iPhone SDK. It can be downloaded by registered ADC members.

• Check out GitHub project for iOS ports. It automates the building of OpenSSL,
Cyrus-SASL, and OpenLDAP and has been tested with SASL Auth, LDAPS,
and LDAP TLS.

• Download OpenLDAP from the project's web site.

• Get the Xcode Port of OpenLDAP.

developerWorks® ibm.com/developerWorks

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 14 of 15



• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

• Participate in developerWorks blogs and get involved in the developerWorks
community.

About the author

David M. Syzdek

David M. Syzdek has ten years experience developing UNIX software
for telecommunications companies. When the iPhone SDK was
released in 2007, he started developing applications for mobile devices
and was among the few developers to release apps during the iTunes
App Store initial launch. David currently works as an independent
developer and releases applications under the name of Bindle Binaries.

ibm.com/developerWorks developerWorks®

LDAP and the iPhone Trademarks
© Copyright IBM Corporation 2011 Page 15 of 15


