To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

Recovering Digital Evidence from Linux Systems

Philip Craiger, Ph.D.
Assistant Director for Digital Evidence
National Center for Forensic Science &
Department of Engineering Technology

University of Central Florida

ABSTRACT

As Linux kernel-based operating systems gain market share there will be an
inevitable increase in Linux systems that law enforcement agents must
process at cybercrime scenes. The skills and expertise required to recover
evidence from Microsoft Windows-based systems do not necessarily translate
to Linux systems. Although the procedures required to identify, recover, and
examine evidence on Windows and Linux systems may appear similar at an
abstract level, the “devil is in the details” as they say. This paper provides an
introduction to digital forensic procedures to recover evidence from Linux
systems. In particular we demonstrate: methods of identifying and recovering
deleted files from disk and volatile memory; identifying notable and Trojan
files; finding hidden files; and files with renamed extensions. All procedures
are accomplished with Linux command line utilities and require no special or
commercial tools. We close by describing a taxonomy of digital artifacts that
1s appropriate to serve as the basis for an automated method of identifying
and recovering digital evidence in large-scale data systems.

Introduction
As Linux kernel-based operating systems gain market share there will be an inevitable
increase in Linux systems that law enforcement agents must process at cybercrime scenes. The
skills and expertise required to recover evidence from a Microsoft Windows-based system do not
necessarily translate to the same tasks on a Linux system. Although the procedures required to
identify, recover, and examine evidence on these systems may appear similar at an abstract level,

the “devil is in the details” as they say. For instance, the Microsoft NTFS, FAT, and Linux

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

EXT2/3 file systems work differently enough that understanding one tells you little about how
the other functions.

In this paper we demonstrate digital forensics procedures for Linux systems using Linux
command line utilities. Although not as user-friendly -- or expensive -- as commercial tools,
these utilities allow the forensic examiner to accomplish the same tasks as their more expensive
counterparts, and in addition, support the recovery of evidence from live as well as powered-
down systems. The ability to gather evidence from a running system is particularly important as
evidence in RAM can be lost if a forensics first responder does not prioritize the collection of
live evidence.

The forensic procedures we demonstrate include:

1. Several methods of identifying and recovering deleted files from:

(a) RAM

(b) magnetic media

2. Identifying notables files and Trojans
3. Finding:

(a) hidden files

(b) renamed files (files with renamed extensions)

(c) warez

We begin by describing recovering deleted files from RAM on a live (running) Linux
system. Because Linux systems are usually employed as servers, most of the demonstrations are

directed toward activities and techniques that intruders are known to use after breaking into a

system.

Recovering Files from RAM

A deleted file whose contents have been overwritten on disk may still be recovered. For

instance, an intruder may execute a program and then delete it from disk to hide its existence.

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

This happens, for example, when an intruder opens a backdoor on the victim’s system by
running the nercat utility, then deleting it from the disk after it 1s executed. As long as the
program remains running in memory it can be recovered. The file is recoverable because the
Linux kernel uses a pseudo file system to track the general state of the system, including running
processes, mounted file systems, kernel information, and several hundred other pieces of critical
system information [WARO3]. This information is kept in virtual memory and is accessible
through the /proc directory. The listing below shows the contents of the /proc directory on a

running Linux system. Each of the numbered directories below corresponds to the process

identification number (PID) of a process running in memory.

1ls /proc

1 4 4513 4703 4777 execdomains mdstat swaps
1693 40 4592 4705 acpi f meminfo 5YS

2 4045 4593 4706 asound filesystems misc

2375 41 4594 4708 buddyinfo fs mm sysvipc
2429 4163 4595 4709 Dbus ide modules tty
2497 4166 4596 4712 cmdline interrupts mounts uptime
2764 4186 4597 4713 config.gz iomem mtrr version
29 42 4620 4715 cpufreg ioports net vmstat
2915 4225 4659 4716 cpuinfo irg partitions

3 4237 4660 4719 crypto kallsyms scsi

3221 4406 4686 4721 devices kcore self

3237 4418 4689 4723 diskstats kmsg slabinfo

3884 4436 4691 4725 dma loadavg splash

39 4449 4694 4727 driver locks stat

To illustrate the recovery of a deleted file, say that an intruder has downloaded a
password cracker and is attempting to crack system passwords -- a very common goal for an
intruder. The intruder runs the john password cracker with a list of passwords in a file called
‘pass.” The intruder subsequently deletes both the executable and the text file containing the

passwords, the executable remains running in memory until the process is killed.

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.
The ps command displays running processes. The listing below shows the executable

‘John’ has been called with the ‘pass’ file at 10:10AM, has been running for 22 seconds, and is

owned by root.
ps aux | grep john

root 5288 97.9 0.0 1716 616 pts/2 R+ 10:10 0:22 ./john pass

According to the listing above the executable’s process ID (PID) is 5288. The directory
/proc/5288 will contain information regarding the running process, as displayed in the listing

below.

1ls -al /proc/5288

total 0O

dr-xr-xr-x 3 root root 0 Jan 17 10:11
dr-zxr-xr-x 108 root root 0 Jan 17 04:00 ..
dr-xr-xr-x 2 root root 0O Jan 17 10:12 attr
-r-——-———-—-- 1 root root 0 Jan 17 10:12 auxv
—r==r==I=- 1 root root 0 Jan 17 10:11 cmdline
lrwxrwxrwx 1 root root 0 Jan 17 10:12 cwd =-> /j
e 1 root root 0 Jan 17 10:12 environ
lrwxrwxrwx 1 root root 0 Jan 17 10:12 exe -> /j/john (deleted)
dr-x------ 2 root root 0 Jan 17 10:11 £d
—rW--—————-— 1l root root 0 Jan 17 10:12 mapped base
—-r--r—-r-- 1 root root 0 Jan 17 10:12 maps
—rw--—————-— 1 root root 0 Jan 17 10:12 mem
-r=--r--r-- 1l root root 0 Jan 17 10:12 mounts
-“rw-r--r-- 1 root root 0 Jan 17 10:12 oom ad]
-r--r—-r-- 1 root root 0 Jan 17 10:12 oom score
1TWXITWXTWX 1 root root 0 Jan 17 10:12 root -> /
-r--r—--r-—- 1 root root 0 Jan 17 10:11 stat
—I==r==r=-—--— 1 root root 0 Jan 17 10:12 statm
-r--r—--r-—- 1 root root 0 Jan 17 10:11 status
dr-xr-xr-x 3 root root 0 Jan 17 10:12 task
-r--r—-—-r-- 1 root root 0 Jan 17 10:12 wchan

Directory /proc/5288 contains several files, the most important of which is ‘exe,” which

is a symbolic link (note the ‘I’ in the very first column of the permissions) to the running

4

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

password cracker. The operating system (helpfully) displays a note indicating that the file was
deleted from disk. Nevertheless, we can recover the file by copying the ‘exe” from the directory

to a separate directory.
t cp /proc/5288/exe ./john.recovered
md5sum ./john.recovered ./john.original

83219704dedécd%9a534baf7320aebb7b ./jochn.recovered
83219704ded6cd9ab34baf7320aebb7b ./jchn.original

In the example above we copied the ‘exe’ from /proc/5288 to another directory, and then
compared the MD5 hash of the executable with a hash of a known copy of John. We see the
hashes are the same, indicating that we successfully recovered the file. This method of file

recovery works for any type of file as long the process remains in memory.

Accessing Unallocated Space

The contents of a deleted file will remain on disk until overwritten. For recovery
purposes, “time is of the essence” as the disk space composing a deleted file is marked as
reusable (free) by the operating system, and the space can be reused by the operating system at

any time.

Once a file is deleted — by a user or the operating system — the blocks composing the
deleted file are a part of unallocated space, and cannot be casily accessed at the file system level.
There are two methods of accessing unallocated space. The preferred method depends upon: a)
whether it is possible to shutdown the machine without disrupting users and/or business, and b)
the partition on which the files resided.

If it is possible to power down the system, the forensic examiner can reboot the machine

with a bootable Linux CD, and use the UNIX/Linux dd utility to create a bitstream duplicate of

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

the partition on which the deleted file(s) resides. (See Appendix for a description of this
procedure). The advantage to this method is the shutdown of the machine prevents files from
being overwritten. A frequently occurring problem is that business managers are reluctant to
powerdown a critical business system because it can take several hours for large (100GB+) hard
drives, potentially disrupting customers.

A second method of accessing unallocated space is more efficient and relies on the
assumption that partition on which the deleted file resides is on a separate partition from the
operating system. For instance, on Linux servers it is common practice -- although not required -
- to create separate partitions for directories that are volatile, such as the /var directory that stores
log files, and the /home directory that stores user directories and files. If an examiner must

recover a file from, say, the /home directory, she can unmount the /home partition and access it

as a physical device through its entry in the /dev directory.

Recovering Files by Type

We can manually recover a file by searching unallocated space for the file’s header,
which is located at the beginning of a file. For instance, say we know that an intruder deleted a
directory containing several hundred bitmap graphics. We can search through unallocated space
for a sector beginning with “BM,” the signature for a bitmap graphic. When found we can
manually recover the file using the Linux dd command. The success of this procedure is assumes
that: a) we can identify header information; b) the file has not been overwritten; and c) the file is
not fragmented. If the file is fragmented, we will only be able to recover part of the file, as we

will be unable to identify the blocks that previously comprised the file.

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

In this demonstration we have an image (or unmounted partition) that contains several
deleted *.jpg files. First we must identify the first sector of each *jpg file, which we do by
searching for the text ‘JFIF,” commonly found in a *.jpg file. Figure 1 shows a starting sector
for a deleted *.jpg file. (Note: The only part of the header required for a *.jpg file are the first
three bytes: ffdgff. In experiments we found that deleting the ‘JFIF’ in the header does not

prevent applications from accurately identifying the type of file, although removing any of the

first three bytes does.)

[v] root@gheera:/pc

File Edit View Terminal Tabs Help

005e400: ffd8 ffe?® 0010 4a46 4946 0001 0101 004bN 9. K [+
005e410: 004b 0000 ffdb 0043 0005 0304 0404 0305 .K..... Covovaois

005e420: 0404 0405 0505 0607 OcOB 0707 0707 OfOb
005e430: 0b09 Ocll 0f1Z2 1211 O0f11 1113 161c 1713
005e440: 141a 1511 1118 2118 1ald 1dif 1fi1f 1317 Yenenaneny
005e450: 2224 221e 241c 1lelf 1leff dbOO 4301 0505 “S".5....... C...
005e460: 0507 0607 0e08 080e 1eld 1114 1ele 1lelec.....
005e470: 1ele 1lele 1lele 1lele 1ele 1ele 1lele 1ele
005e480: 1lele 1lele 1lele 1lele 1lele 1lele 1ele 1lele
005e490: 1ele 1lele 1ele 1ele 1ele 1ele 1ele ffc®
005e4a0: 0011 0801 5901 ee03 0122 0002 1101 0311Y...."......
005e4b0: 01ff c400 1400 0100 0202 0301 0100 OO0
005e4cO: 0000 0000 0000 0O0O 0804 0503 0709 0102ccevvnn.
005e4d0: ffc4 0057 1000 0103 0303 0104 0704 0407 ... W............

005e4e0: 0904 0900 0001 0002 0304 0511 0612 2113 T,
005e4f0: 0714 2231 1516 3741 5176 b409 2332 7124 .."1..7AQu..H2q5
:. &
b —

Figure 1. Start of JPG File on Disk as Viewed with a Hex Viewer

Figure 1 shows that the file starts at 0x5e400 (hex). We convert this to decimal, 386,048,
and divide by 512 (the number of bytes in sector) resulting in 754, which is the starting sector

number of the file, i.e., from the beginning of the image.

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

Under many circumstances we won’t know the exact size of a deleted file, requiring us to
make an educated guess as to its size. If we guess too low and under recover the file, viewing
the file in its application will show that too few sectors were recovered, and the file will not
appear complete. If we recover too many sectors, we have an over recovery. In our experience
recovering too many sectors does not harm the file. Once we recover the file we can view it in
the appropriate application to determine the accuracy of our guess.

We use the UNIX/Linux dd command to carve the file from the image. We specify the
input file to be our image (if=image.dd), and we choose a name for the recovered file
(of=recoveredl.jpg). We must specify the starting sector to begin carving. According to
our earlier calculation the image starts at physical sector 754. The default block size in dd 1s 512
bytes, which we will leave as is. Finally we must specify the number of consecutive blocks to

recover. In this instance we will guess 30 blocks of size 512 bytes each, so we are recovering

files of size 15K.
dd if=image.dd of=recoveredl.jpg skip=754 count=30
30+0 records in

30+0 records out

file recoveredl.jpg
recoveredl.jpg: JPEG image data, JFIF standard 1.01

We successfully recovered 30 consecutive sectors per file. The file command shows we

recovered the header successfully. Figure 2 shows the recovered file.

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Informatio Professionals.

i

G e s S S] Lt i i i e o

T T VL T el Y VT Tl T Tl i T T T G Y YT
eV Vi Y v Y i VR S R R 1
SR E S R R R i R T R e R e A R e T
e Vi Y v Y i VR R R R i
SR E S R R R i R T R e R e A R e T
e Vi Y v Y i VR R R R i
SR E S R R R i R T R e R e A R e T
e Vi Y v Y i VR R R R i
SR R e e e e R e e A e e
wila R R R SR R TR SR B BT R T ST AR BT i Sl e R U e S e
SR E S R R R i R T R e R e A R e T
e Vi Y v Y i VR R R R i
SR E S e R R i R T A e R e R R e T
e Vi v Y i VR R R A

Figure 2. File Under Recovery.

As Figure 2 demonstrates, we have under estimated the file size, resulting in recovery of

only half the file. We increased the count to 100 (50K file size) resulting in Figure 3.

dd if=image.dd of=recovered?.jpg skip=754 count=100
10040 records in
100+0 records out

Figure 3. File Over Recovery

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.
The actual file size of the file was 29K. As Figure 3 demonstrates an over recovery does
nothing to harm the file contents, and the file is readable as long as its contents are sequential.
This recovery method can be used with any type of file, as long as the file’s header

information remains intact. The success of this method depends, again, on the lack of file

fragmentation and some luck as to whether any blocks of the file have been reused.

A General File Recovery Procedure

If a file’s header has been overwritten and the file is primarily text, we can use a more
general recovery procedure that only requires that we know some keywords for which to search,
and of course, that the file has not been completely overwritten.

For this demonstration we will recover the Linux general log file /var/log/messages.
This file is often targeted by an intruder as it will contain evidence of the intruder’s tracks.
Novice intruders will delete the entire file, which is clearly evidence to an administrator that an
intrusion occurred. In contrast, skilled intruders will surgically remove lines that point to their
break-in, keeping the remaining contents.

To recover the log file we must identify keywords contained in the file. Ideally we
identify keywords that are unique to the file, thus reducing the number of false-positive hits. For
this example we are likely to encounter some false-positives because log files are rotated on a
frequent basis, so our search is likely to pick up keywords from previous versions of the log file.

We unmount the partition that contains the directory /var where messages resides. This
is simple if /var is on its own partition:

umount /dev/hdal

10

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.
If /wvar is on the same partition as the root directory we will need to reboot the system

using a Linux bootable CD such as Knoppix (www.knoppix.com), Local Area Security

(www.localareasecurity.com) or Helix (www.e-fense.com), and perform the procedures from the

boot disk [CRAO05].

Next use we use grep to search for the keywords on the physical device (unmounted
partition). We are using the physical device because we must access unallocated space through
the physical device:

grep -ia -f keywords -C 2 /dev/hda3

The flag ‘1’ specifies a a case insensitive search. The flag ‘a’ specifies to treat the input
(contents of the physical device /dev/hda3) as ASCII text; if we don’t then grep will only
indicate whether the file contains the keyword or not. The flag ‘f” specifies that what follows is a
text file that contains a list of keywords for which to search. We are essentially conducting a
simultaneous search for multiple keywords, which we might use, for example, if we are unsure
as to exactly what keywords our deleted file contains. The flag ‘C 2” specifies that we want two
lines of context — two lines before and after a keyword hit. Finally we specify the physical
device to search which contained the /var directory.

For this demonstration we assume that the attacker made several unsuccessful attempts to
log into the root account -- a common occurrence in an intrusion. These unsuccessful login
attempts will be noted in the messages log file.

The results of our search are displayed below:

Dec 18 19:12:59 gheera messagebus: messagebus startup succeeded

Dec 18 19:13:00 gheera cups-config-daemon: cups-config-daemon startup
succeeded

Dec 18 19:13:09 gheera gdm(pam unix) [2727]: authentication failure; logname=
uid=0 euid=0 tty=:0 ruser= rhost= user=schmoopie

11

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

Dec 18 19:13:
Dec 18 19:13:

by (uid=0)

Dec 20 18:33:

uid=0 euid=0

Dec 21 18:16:

uid=0 euid=0

Dec 22 17:38
Dec 22 17:38

uid=0 euid=0
Dec 22 17:49
Dec 22 17:49
by (uid=0)

13 gheera gdm-binary[2727]: Couldn’t authenticate user
16 gheera gdm(pam unix) [2727]: session opened for user

29 gheera gdm(pam unix) [2752]: authentication failure;

tty=:0 ruser= rhost= user=schmoopie
55 gheera gdm(pam unix) [2750]: authentication failure;
tty=:0 ruser= rhost= user=schmoopie

:21 gheera kernel: 1p0: using parport0 (polling).
:21 gheera kernel: 1p0: console ready
Dec 22 17:49:

33 gheera gdm(pam_unix) [2756]: authentication failure;
tty=:0 ruser= rhost= user=schmoopie

:36 gheera gdm-binary[2756]: Couldn’t authenticate user
:48 gheera gdm(pam unix) [2756]: session opened for user

schmoopie

logname=

logname=

logname=

schmoopie

The keywords are in bold. It appears that user ‘schmoopie’ unsuccessfully attempted to

log in as root on December 18, 19, 21, and 22. Note the two lines of context both before and

after each search hit. In practice we would not want such a limited result: We would rather

recover the entire contents of the log file, which we could to do by requesting a much larger

value for context, e.g., -C 100. Because we do not know a priori how large the file is this will be

trial and error effort.

12

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

Recovering Files from EXT2 Formatted Disks

A final recovery method assumes that the file system is EXT2, a somewhat common
Linux file system (although it is being replaced by more efficient journaling file systems). In
this method we can use the system debugger to find and recover the file. For this example, say a
recently terminated employee deleted an important file from his directory under /home. (Not an
uncommon event for terminated employees.) Say we are informed that the file was a zip archive.
We must determine the hard drives geometry, including the number of partitions, how the
partitions are formatted, before we begin the file recovery process. The Linux command fdisk
-1 provides this information:

fdisk -1

Disk /dev/hda: 30.0 GB, 30005821440 bytes
16 heads, 63 sectors/track, 58140 cylinders
Units = cylinders of 1008 * 512 = 516096 bytes

Device Boot Start End Blocks Id sSystem
/dev/hdal 1 41613 20972826 83 Linux
/dev/hda2 57147 58140 500976 f W95 Ext’d (LBR)
/dev/hda3 41613 52020 5245222+ 83 Linux
/dev/hdas 57147 58140 5009444+ 82 Linux swap

We see that we have a single 30GB IDE hard drive with four partitions. The first partition
(/dev/hdal) is a primary partition formatted in EXT2. The second partition (/dev/hda?2) is an
extended partition (hence the Ext'd notation) containing two logical partitions, one an EXT?2 file
system (/dev/hda3) and the second a Linux swap file (/dev/hda5).

Next we need to know which directories are mounted on which partitions. We run the

mount command which displays this information.

13

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

mount | column -t

/dev/hdal on / type ext?2 (rw,acl,user xattr)
proc on /proc Lype proc (rw)

tmpfs on /dev/shm type tmpfs (rw)

devpts on /dev/pts type devpts (rw,mode=0620,gid=5)
/dev/hda3 on /home type ext2 (rw,acl,user xattr)

/dev/hdec on /media/cdrom type subfs
(ro,nosuid,nodev, fs=cdfss, procuid, iocharset=utf8g)

The mount command shows us that the /home directory is mounted on /dev/hda3 device.
We unmount the /home directory, or remount it read-only so that there is no possibility of
overwriting the deleted file. The more quickly this can be done the better; as the file has a good
chance of being overwritten the longer the partition remains mounted. To unmount the directory,
we issue the command:
umount /home

We use the debugger debugfs to open the partition and recover the deleted file. In the
debugger we execute the 1sdel command to display inode information on all the deleted files
on the partition. (An inode is a data structure that holds file metadata. See [CRA99] and

[BUCO03] for more information on inodes.)

debugfs /dev/hda3

debugfs 1.35 (28-Dec-2004)
debugfs: 1lsdel

Inode Owner Mode Size Blocks Time deleted

272319 0 100755 3383328 828/ 828 Thu Dec 23 23:45:22 2004
1 deleted inodes found.

lines 1-3/3 (END)

The 1sdel command indicates that a file represented by inode number 272319 was
deleted on December 23 and was of size 3MB (comprising 828 blocks). Once we have the inode

number we can get more detailed information with the stat command:

14

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International

Association of Information Professionals.
debugfs: stat <272319>

Inode: 27231% Type: regular Mode: 0755 Flags: 0x0 Generation: 92194859
User: 0 Group: 0 Size: 3383328

File ACL: O Directory ACL: 0

Links: 0 Blockcount: 6624

Fragment: Address: 0 Number: 0 Size: 0O
ctime: 0Ox4lcb%ee?2 —-- Thu Dec 23 23:45:22 2004
atime: 0x41ckhk9d68 -- Thu Dec 23 23:39:04 2004
mtime: 0x41ch9d68 -- Thu Dec 23 23:39:04 2004
dtime: 0Oxdlch%ee? —-- Thu Dec 23 23:45:22 2004
BLOCKS:

{0-11):582122-582133, (IND):582134, (1l2-826):582135-582949
TOTAL: 828

The stat command provides us with a variety of information, including the modified,
accessed, changed, and deleted date and times of the deleted file. (Unlike NTFS and FAT file
systems, the Linux EXT2 file system tracks a file’s deleted date and time.) The stat command
also shows us the number of direct, indirect, and doubly indirect blocks under the BLOCKS
section. (For a more thorough explanation of the EXT2 file system see [CRA99], [BUCO03], and
[PARO4]). It appears that all blocks are intact, i.e., no blocks have been overwritten, meaning we
can recover the entire file. The dump command takes as argument an inode number and a name
to call the recovered file:

debugfs: dump <272319> hda3.recovered

Once we exit the debugger we determine the recovered file’s type with the file

command. The file command uses the header information to determine the type of file.

file hda3.recovered

hda3.recovered: Zip archive data, at least v1.0 to extract
Our recovered file 1s a ZIP archive, as expected. ~We determine the success of our
procedure by comparing the hash of our recovered file with the hash of the original file (which

we happen to have for our demonstration here). The hashes match indicating that we successfully

15

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

recovered the file. (Or when an MD35 doesn’t exist of the original, simply ‘unzipping’ the file, in
1s case.)

mdSsum original.file.zip hda3.recovered

ed9%abbb2353call26c3658ch976a2dad original.file.zip
ed9%a6bb2353ca7l26c3658cb%76a2dad hda3.recovered

The success of this procedure depends on a number of critical factors. First is the time
interval between when the file is deleted and attempted recovery. The longer the time between
deletion and recovery, the more likely part or the entire file will be overwritten. A second factor
is file size. Smaller files (that fit in the direct blocks) have a higher probability of being

recovered than larger files that may also require the use of indirect and doubly indirect blocks.

Identifying Notable Files and Trojans

The two primary goals of intruders are to effectuate a break in, and to remain on the
victim’s system as long as possible. Remaining hidden on the system is usually accomplished by
installing a rootkit. A rootkit replaces several important system files with ‘Trojaned’ versions.
The Trojaned versions work like the original system files with the exception that they fail to
display any traces of the intruder, such as running processes, open files or open sockets. Utilities
that are commonly Trojaned include ps (to display system processes), netstat (to display sockets
and network connections), and fop (display process information sorted by activity), among
others.

A simple way to identify Trojaned files is through a hash analysis. A hash analysis
compares the one-way cryptographic hashes of “notable” files with hashes of files on the system.

If two hashes match it indicates that a file has been replaced with a Trojaned version. Below we

16

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.
show the contents of a file containing MD5 hashes of several Trojaned versions of Linux

utilities.

cat rootkit.md5

e25684245306fbage37117a52elcdce5 netstat
7728c15d89£27e376950£96a7510bEf0f ps
9e3ca%9002efbdad4e008d451d6ad57553 ben
4d957974e91£f8f3bc757e3bdb657blcd core

Next we compare these hashes to those of the utilities on the hard drive. The mdSdeep
utility (mdSdeep.sourceforge.net) is freeware that takes a file that contains MDS5 hashes and
compares them recursively to the hashes of files on a system. This is demonstrated in the listing

below.

md5deep -r -m rootkit.md5 /

/bin/netstat
/bin/ps

According to the hash analysis ps and netstat have been replaced with Trojaned versions.
We are certain that the two files were replaced with Trojaned versions because their MD35 hashes
matched exactly the MDS5 hashes of known Trojaned files.

A second method of identifying Trojans is by comparing inode numbers of files within a
directory. An inode number that is substantially out-of-sequence with the inode numbers of other
files in a directory could be an indication that the file has been replaced.

When a file is saved to the hard drive it is assigned an inode number. Files that are saved
in short succession will have inode numbers that are consecutive or nearly so. This is
demonstrated below, which displays a directory listing of the contents of the /bin directory,

sorted by inode number (located in the first column).

17

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.
1s —ali /bin |

130085
130086
130087
130088
130089
130090
130091
130092
130093
130094
130095
130096
130097
130098
130099
130100
569988
569990

increasing sequence of inode numbers. It is clear we have an abnormality with the inode numbers

for the ps and netstat commands.

Trojan was installed well after the original file the Trojan’s inode number will be higher than that
of the original file. Thus, a simple method of identifying Trojans is looking for inode numbers
that are ‘outliers,” particularly for those files that are likely to be part of a rootkit. As
demonstrated above, the ps and netstat have inode numbers that are significantly out-of-sequence
with the inode numbers of the other files, indicating the possibility that the original utility was

replaced with a Trojan version. This is not a guarantee, unlike the hash analysis above, that the

“IrWXEIYr=Xr-—x
—IWXI—XIr—X
—IWHI-XI—-X
“IrWXEI—XIr—X
—IWHI—XI—X
—FWXIr—XIr—x
—IWXIXr—-XIr—-x
—IWXEI—XI—X
—IWXI=XIr—X
“IrWXEIYr=Xr-—x
—IWXI—XIr—X
—IWHI-XI—-X
—IrWHIr—Xr—x
—IWHI—XI—X
—FWXIr—-xXr-x
—IF—XIr-Xr—-x
=IrWXEr-=Xr-=x
“IWXI—Xr-Xx

sort

1

HREREFRPRRRRRPRRRRRRRBRBRRR

root
root
root
root
root
rpm

root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
rpm

root
root
root
root
root
root
root
root
root
root
root
root

2680
47252
253148
25060
16792
82944
59100
15516
161380
16556
26912
10804
307488
15064
23072
8972
76633
92110

Nowv
Jun
Jun
Oct
Oct
Now
Oct
Oct
Oct
Oct
Oct
Sep
Sep
Aug
Oct
Oct
Jun
Jan

4 00:48
2004
2004

15

W]
(U]

=

SV
W oy U W = oUW

=N

11:
11:
21:
11:
11:
09:
11:
11:
08:
126
09:
11:
10:

17

50
50
54
50
50
25
50
50
49

14
50
19

2004
2004

doexec
ed
pgawk
mkdir
echo
rpm

cp
unlink
tar
rmdir
In
hostname
tcsh

mt
mknod
mktemp
ps
netstat

The order in which the files were saved to the hard disk is clear as shown by the

A file’s inode number will change when it is replaced with a different file. Because the

files are known Trojan horses. Regardless, further scrutiny is warranted.

Identifying Files with Renamed Extensions

18

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

A simple means of hiding a file is by renaming the file’s extension. For instance,
changing the file chix.jpg to homework.doc takes a file of questionable content and turns it into a
file that appears innocuous. This technique can be particularly effective within Windows because
Windows will display an icon that is based on the extension of a file, regardless as to whether a
file’s extension is a true reflection of the file’s type.

As described previously, a file’s type is reflected in its header (sometimes called

signature). A file’s header is a sign to applications as to how to handle the file. For instance, all

modern Microsoft Office files begin with the following 8-byte signatures (in bold):

0000000: dOcf 11e0 albl lael 0000 0000 0000 0000uienenoon..
0000010: 0000 0O0COC 0O000 0000 3200 0300 feff 05900 B

One way find graphic files whose extension has been changed 1s to combine three GNU
utilities: find, file, and grep. The best way to explain the procedure is through a
demonstration.

Step 1: Use the find command to find all “regular files” on the hard drive. Pipe the

results of this command to the:

Step 2: £i1e command, which displays the type of file based on header information.

Pipe the results of this command to the:

Step 3: grep command to search for graphical-related keywords.

Below we combine the three utilities to identify all graphical images that have a renamed
extension:

find / -type £ ! \(-name ‘*.Jjpg’ -0 -name ‘*.bmp’ -0 -name ‘*.png’ \) -
printd | xargs -0 file | grep —-if graphics.files

This is simpler to understand if partitioned into steps:

1. The /argument specifies the directory in which to start, here the root directory.

19

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

2. The flag -type £ specifies that we are interested in regular files as opposed to

special files such as devices or directories. The find command is recursive by
default so it is essentially recursively finding all regular files beginning at the /
(root) directory.

The exclamation mark (!) modifies the contents within the parenthesis, and
indicates that we want to process files whose extension is not *.jpg, or *.png, or
* bmp, or *.tiff.

The -print0 1s a special formatting command that 1s required to format the
output of £ind for piping to the next command.

We pipe the results — a list of files whose extension is not *.jpg, *.bmp, etc. -- to
xargs -0, which sends each file name to the file command. file evaluates
each file’s signature, returning a description of the type of file.

These results are piped to grep to search for the specific keywords that are
contained within the graphics.files file. The arguments for grep include —i for
case insensitive search, and the —f graphics.files, the file containing the list of

keywords: ‘PNG,” “GIF,’ ‘bitmap,” ‘JPEG,’ and ‘image.’

Our search identified three files with misleading names and extensions:

find / -type £ ! \(-name ‘*.jpg’ -o -name ‘*.bmp’ -0 -name ‘*.png’ \) -

printl | xargs -0 file | grep —-if graphics.files
/var/cache/exec: JPEG image data, JFIF standard 1.01
/var/log/ppp/0xl2daZ: PC bitmap data, Windows 3.x format
/var/log/ppp/README . txt: PNG image data,8-bit/color RGB

20

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

The search correctly identified three files, a *.jpg, a *.bmp, and a *.png, whose name
and/or extension were changed in an effort to obfuscate their true type. This technique will work
correctly as long as the files signature remains intact.

gThumb is a application that can use a file’s header, as opposed to its extension, to

determine the type of file. Figure 4 below demonstrates that gThumb is able to determine that

README .txt is actually a graphical image and treats it appropriately.

README .fxt

File Edit View Image Bookmarks Tools Help

4. > Ao @ |0 @ ;

" Back Forward Up Home Folders | Catalogs
var/log/ppp |
' | HEE ‘
l]
2 images (253.1 KB) | 369 x 234 pixels - 23.6 KB - 23 December 2004, 19:33

Figure 4. Files with Renamed Extensions

Identifying Hidden Files
Intruders often use the victimized computer to store files that the intruder doesn’t want to
store on his own computer. For instance, intruders have been known to upload pirated versions

of commercial software (“warez’), illegal copies of recorded music and videos, pornography, and

21

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

the like. The intruder typically creates a backdoor on the system, allowing access to the (illegal)
files that cannot be traced back easily to its source.

How does an intruder upload hundreds of large files to the victim’s computer without the
victim noticing? The intruder uses several common methods of hiding files. For instance, a file
that begins with a period (e.g., .file) is not displayed by the UNIX 1s command. Here’s an
initial directory listing:

1s

The directory appears to be empty, only the current (*.”) and parent directory (“..”) are displayed.

Now we request a ‘long” listing that includes all files in the directory.

1ls -alR

total 853

drwxr—-xr—-x 3 root root 1024 Jan 17 10:19

drwxr-xr-x 31 pc users 2280 Jan 17 10:16 ..
drwxr-xr-x 2 root root 1024 Jan 17 10:20 .lotr
—rw-r—-r-—- 1 root root 864256 Jan 17 10:19 .hackers.mpg
./.lotr:

total 2286

drwxr-xr-x 2 roct root 1024 Jan 17 10:20

drwxr-xr-x 3 root root 1024 Jan 17 10:19 ..
-rw-r--r—— 1 root root 1368064 Jan 17 10:18 .towers.mpg
-rw-r--r—-— 1 root root 958464 Jan 17 10:17 .hobbit.mpg

Adding the -a (all) -1 (long) and -R (recursive) flags show all files recursively, including
those that begin with a period. The owner may never be aware that an intruder is using his

computer as ‘free storage’ as long as the intruder 1s careful not to upload too many files.

22

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.
A user could use this manual technique to search for hidden files; however, its labor

intensive, not efficient, and prone to error. There are several applications that can be used to

check on changes or additions to the file system, Tripwire (www.tripwire.com) being the most

famous of these applications.

Alternatively, one can use the find command to locate hidden files. Too illustrate: A
common way to hide files 1s in “plain sight.” For example, make a file appear similar to a
known good file or directory, such as naming a directory . .” (that’s a period, a space, followed
by a period). A user is likely to overlook this directory as it looks similar to the current (*.”) and
parent directories (“..”), and because the user is typically not ‘primed’ to look for hidden files.

There are dozens of possible combinations of periods and spaces that can be used to
create hidden directories. The following command line finds several different combinations of

periods and spaces:
find / -type d -name ‘.[.]1*!'
/var/cache/. (AUTHORS NOTE: ONE PERIOD AND TWO SPACES)
/etc/sysconfig/. ..
/usr/1lib/.

In this example we searched for directories (indicated by -fype d) whose name began with
a period and the remaining characters were either periods or spaces. The search located three

hidden directories. The name of the hidden directory found under /var/cache is a period

followed by two spaces, which makes i1t look very similar to the parent directory (*.").

23

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

Finding Warez

Warez tend to be large in size (*.mpg movies, *.mp3 music files, applications, etc.). One
can use the find -size flag to search for files larger or smaller than a specific size. In the
demonstration below we search for regular files whose name begins with a period and that are
larger than 1MB.

find / -type f -name ‘.?*’ -size +1000k

/opt/.. ./.gone-with-the-wind.mpg
/opt/.. ./.star-trek2.mpg

/opt/.. ./.star-trekl.mpg

/opt/.. ./.lotr/.two-towers.mpg

/opt/.. ./.lotr/.return-of-the-king.mpg

/windows/d/backups/pc/.y2log-2 (NOTE: These last three files are valid)
/windows/d/backups/pc/.y2log-1
/windows/d/backups/pc/.v21log-3

We can use the flags ctime (change time) or cdate (change date) flag if we know when
the intruder was on the system. For instance, say we know that an intruder was on our system
within the last 24 hours, and we suspect that he downloaded files. We search for files beginning

with a period, and whose change time was less than an hour ago (-ctime -1).

find / -type f -name ‘.?*’ -ctime -1

/opt/.. ./.gone-with-the-wind.mpg
/opt/.. ./.star-trek2.mpg

/opt/.. ./.star-trekl.mpg

/opt/.. ./.hackers.mpg

/opt/.. ./.lotr/.two-towers.mpg

/opt/.. ./.lotr/.return-of-the-king.mpg

./dev/.udev.tdb (Note: These last two files are valid system files)
./etc/lvm/.cache

In this example we believe that an intruder was on our computer less than an hour ago.

We can search for files whose change time is less than an hour (-ctime -1) from the current

24

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.
time. (To search for files greater than an hour ago the notation would be -ctime +1. For files

with changed times more than 24 hours ago we can use -ctime +24 or -cdate +1.)
Future Research

The techniques described in this paper work well in identifying and recovering digital
evidence for a large portion of the cases law enforcement agents will encounter. Changes in
technology, particularly the growth of storage capacity, are beginning to create problems for law
enforcement agencies, however. For instance, the FBI computer analysis and response team
(CART) saw a three-fold increase in cases from 1999 to 2003; the amount of data however
increased 46-fold [CRAO5]. It is not uncommon for agents to encounter servers storing terabytes
of data, equating to millions of documents, each of which is a potential piece of evidence. The
critical question for law enforcement is: which of the millions of digital artifacts is probative
‘evidence,’” and which is not?

The techniques described in this chapter do not scale well to such tremendous data
systems. Although some forensic procedures are automated — such as the hash analysis and
searches — many require manual input or human interpretation. In fact, almost no conventional
digital forensic techniques scale well to terabyte-sized systems. As the amount of data grows,
automated procedures for identifying, recovering, and examining digital evidence will be
required to process evidence in a reasonable time period.

Below we describe a taxonomy of digital artifacts that could serve as the basis for an
automated system to identify probative evidence in large-scale systems. The taxonomy
conceptualizes digital artifacts based on three attributes: a) the artifact’s contents, b) its

associated metadata, and ¢) ambient information. A digital artifact’s values for these attributes

25

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

are both digital and identifiable, that is, knowing the identifier for a digital artifact (e.g., file
name or inode number) one can identify, and therefore recover, the artifact’s contents, metadata,
and ambient information. Consequently, it is conceivable that an automated procedure can be

developed that is capable of recovering these values, obviating the need for any manual input or

interpretations.

Contents

A digital artifact’s contents can be separated into two sources: a) overt contents and b)
latent contents. Overt content conveys information directly through perception. Examples of
overt content are the text you are reading on this page, graphical images, perceptible audio, etc.
In contrast, latent content is not meant to be directly perceived. Rather, latent content often
serves the purpose of formatting overt content. For instance, the electronic version of this
document contains several hundred kilobytes of formatting, metadata, and other information that
1s not meant to be directly viewed, yet serves a distinct purpose beyond the overt content. Often

a digital artifact’s latent information exceeds its overt contents.

Metadata

Metadata is data about data. In the case of digital artifacts, it includes the time and date of
creation, modification, and last access of the file; file size; header information (i.e., the type of
file); file attributes (read-only, archive, hidden, etc.); who wrote the document (e.g., contained in
the properties sheet of documents created by certain applications), etc. The listing below

illustrates a portion of the metadata associated with the digital version of this paper.

stat IFIP.doc

File: "IFIP. dae!
Size: 311296 Blocks: 616 IC Block: 4096 regular file

26

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International

Association of Information Professionals.

Device: fd00Oh/64768d Inode: 377747 Links: 1

Access: (0664/-rw-rw-r--) Uid: (500/ pc) Gid: (500/ pc)
RAccess: 2005-01-17 12:28:18.780753080 -0500

Modify: 2005-01-17 12:28:34.151416384 -0500

Change: 2005-01-17 12:28:34.153416080 -0500

The listing above represents file system-bound metadata including the file’s size,
modified, accessed, and changed date/times, inode number, and the user ID and group 1D of the
owner of the document. As described previously, the document itself contains metadata,

including the author, the title of the document, comments, revision history, etc.

Ambient Data

Finally a digital artifact can be characterized by its ambient data; ambient meaning that
which surrounds the file, either logically or physically. Ambient data may provide insight about
a digital artifact just as the environmental surroundings of a crime scene may provide clues about
the perpetrator of a crime. An interesting non digital example of ambient data used to solve a
crime was an Arizona murder case. In this case police conducted a DNA analysis on a seed from
a tree that was present at the scene of the murder and a similar seed that was found in the back of
the murder suspects pickup truck. The DNA analysis indicated that the seed from the back of the
suspect’s truck was from the same tree from scene of the murder, placing the suspect at the scene
of the crime.

Ambient information can be partitioned into the logical and the physical. Logical
ambient information refers to two characteristics: a) the place in which the file resides in the file
hierarchy, and b) the surrounding files in the directory. Physical ambient information involves
the low level information surrounding the digital artifact, that is, at the sector level. To see how
physical and logical ambient information are distinct: Files saved in short succession to a hard
drive are typically saved physically contiguous to each other (if enough contiguous disk space is

27

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.
available). However, logically the files could be located in entirely different directories.

Moreover, files in the same directory are not necessarily physically contiguous.

Identifying Digital Evidence

Once a data artifact has been catalogued according to the attributes above, an algorithmic
solution may be applied to discover relationships among the values in an attempt to identify
digital artifacts of potential probative value. Data mining techniques, statistical clustering, neural
networks, or rule-based expert systems, could serve as the inference engine of such a system,
with digital artifact's attribute values serving as the content of the system.

Statistical clustering and neural network use machine learning techniques to equate input-
output pairs or to cluster similar cases. In contrast, rule-based expert systems are built upon
manually-derived rules from human experts. An advantage to the machine-learning-based
techniques is they automatically learn the input-output pairs (inferences) based on mathematical
derivations of the differences and similarities among input-output pairs. A disadvantage of these
machine-learning techniques is that the inference mechanism between input and output is
mathematical in nature and doesn't easily lend itself to human language explanation (particularly
problematic with neural networks which can be highly non linear).

The listing below shows four simple rule-based examples that demonstrate how digital
artifacts attribute values can be used to infer a probability of the probative value of a digital
artifact.

Rule Associations
RULE 1I:
IF
Large Number of Files with Misnamed Extensions AND

Files are graphics AND
The files reside in a single directory AND

28

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics
Association of Information Professionals.

. International

OR
The file are physically contiguous
THEN
Potential evidence with probability of .65
RULE 2:
IF
Large Number of Files with Misnamed Extensions AND
The files are graphics AND
The files reside in a single directory AND
Date/time stamps close to date/time stamp of cookie for illegal web site
THEN
Potential evidence with probability of .90
RULE 3:
IF

Large number of graphics files in unallocated space
THEN
Potential evidence with probability of .05
RULE 4:
IF
Large number of graphics files in unallocated space
Cookie for illegal web site
THEN
Potential evidence with probability of .35

29

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

Appendix (Adapted from [CRA05])

dd takes as input a stream of bits, and outputs a stream of bits, making an exact physical
duplicate of a file, drive, etc. In the example below dd is reading from the device /dev/hdal, a
logical device associated with the 1" ATA (IDE) hard drive on the primary controller, and
writing it to a file we have named evidence.dd. In Linux physical devices are logically
associated with a file residing in the /dev directory. These associations are shown in Table 1.
Note that the names of the logical devices may differ between Linux distributions, or between

versions of UNIX.

#f dd if=/dev/hdal of=evidence.dd conv=ncerror,notrunc,sync

Logical Device Physical Device

/dev/hda 1" IDE hard drive on primary controller

/dev/hdal 1™ partition 1™ hard drive on primary controller
/dev/hdb 2" IDE hard drive on primary controller

/dev/hdc 1™ IDE hard drive on secondary controller

/dev/hdd5 5" partition on 2" hard drive on secondary controller
/dev/sda 1™ SCSI device

/dev/sdal 1™ partition on 1* SCSI device

/dev/cdrom 1™ CDROM drive

/dev/fd0 1* floppy disk

Table 1. Mapping from logical to physical device

The argument i f= specifies the source image, here the logical device associated with the
floppy drive. The argument of= specifies the output file’s name. The bs= argument specifies
the block size to read and write, and is optional. The default block size is 512 bytes. The conv
argument specifies other command line arguments to include. For imaging we include: a)
noerror, continue after a read error; b) notrunc, do not truncate the output in case of an error,

and c) sync, in case of a read error, pad input blocks with zeros.

30

To appear in S. Shenoi & M. Pollitt (Eds.), Advances in Digital Forensics. International
Association of Information Professionals.

References

[BUCO03] Brian Buckeye and Kevin Liston. (2003). Recovering Deleted Files in Linux.
SysAdmin. http://www.samag.com/documents/s=7033/sam0204g/sam0204g.htm.

[CRAOSa] Philip Craiger. (2005a). Computer Forensics Procedures And Methods. To appear in
H. Bigdoli (Ed.), Handbook of Information Security. John Wiley & Sons.

[CRAO05b] Philip Craiger, Mark Pollitt, & Jeff Swauger. (2005b). Digital Evidence and Digital
Forensics. To appear in H. Bigdoli (Ed.), Handbook of Information Security. John Wiley &
Sons.

[CRA99] Aaron Crane. (1999). Linux Undelete How-to
http://www.praeclarus.demon.co.uk/tech/e2-undel/html/howto.html

[HERO04] Hermelito Go. (2003). UnixGuide.net.
http://www.unixguide.net/linux/fag/04.16.shtml

[PATO3] Steve Pate (2003). UNIX Filesystems: Evolution, Design, and Implementation. New
York: Wiley

[WARO4] Trevor Warren. (2003) Exploring /proc. http://www.freeos.com/articles/2879/

31

