
QARun
 Character-Based Testing

Getting Started Guide
Release 4.7

   BETA RELEASE



Please direct questions about QARun 
or comments on this document to:

QARun Technical Support
Compuware Corporation

31440 Northwestern Highway
Farmington Hills, MI  48334-2564

1-800-538-7822

Outside the USA and Canada, please contact
your local Compuware office or agent.

© 1996-2000 Compuware Corporation. All rights reserved. Unpublished - rights reserved under the Copyright 
Laws of the United States. 

U.S. GOVERNMENT RIGHTS

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in Compuware 

Corporation license agreement and as provided in DFARS 227.7202-1(a) and 227.7202-3(a) (1995), 

DFARS 252.227-7013(c)(1)(ii)(OCT 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR 52.227-14 

(ALT III), as applicable. Compuware Corporation.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF 
COMPUWARE CORPORATION. USE, DISCLOSURE, OR REPRODUCTION IS PROHIBITED WITHOUT 
THE PRIOR EXPRESS WRITTEN PERMISSION OF COMPUWARE CORPORATION. ACCESS IS 
LIMITED TO AUTHORIZED USERS. USE OF THIS PRODUCT IS SUBJECT TO THE TERMS AND 
CONDITIONS OF THE USER’S LICENSE AGREEMENT WITH COMPUWARE CORPORATION.

Compuware, QARun, QACenter, QADirector, WebCheck, and QALoad are trademarks or registered trademarks 
of Compuware Corporation.

Acrobat® Reader copyright © 1987-1998 Adobe Systems Incorporated. All rights reserved. Adobe, Acrobat, and 
Acrobat Reader are trademarks of Adobe Systems Incorporated.

CICS, OS/2, and REXX are trademarks of International Business Machines Corporation.

All other company or product names are trademarks of their respective owners.

Doc. CWQUGST4F
April 04, 2000

ii

   BETA RELEASE



   BETA RELEASE

     iii

Table of Contents

Introduction ......................................................................................................................................................... vii

Who Should Read This Guide .....................................................................................................................  viii

Related Publications ....................................................................................................................................  viii

World Wide Web Information.......................................................................................................................  ix

QARun Terminology......................................................................................................................................  ix

Getting Help..................................................................................................................................................... x

Chapter 1.  Introducing Testbed .......................................................................................................................  1-1

Starting Testbed ...........................................................................................................................................  1-2

The Testbed Main Window...................................................................................................................  1-2

Using Testbed ..............................................................................................................................................  1-4

Connecting to Sessions and Logging On ..............................................................................................  1-4

Busy Indicator .......................................................................................................................................  1-5

Disconnecting from Sessions ................................................................................................................  1-6

Chapter 2.  Building a Synchronized Driver Script .........................................................................................  2-1

Driver Scripts ........................................................................................................................................  2-2

Exercise 1 — Creating a Driver Script ........................................................................................................  2-3

Starting QARun .....................................................................................................................................  2-3

Configuring QARun ..............................................................................................................................  2-3

Getting Started ......................................................................................................................................  2-9

Learning the Script ..............................................................................................................................  2-10

Stop Learning the Script......................................................................................................................  2-11

The Resulting Script............................................................................................................................  2-12

Understanding the Script.....................................................................................................................  2-13

Running the Script...............................................................................................................................  2-15

Analyzing the Results .........................................................................................................................  2-16

Exercise Summary ..............................................................................................................................  2-16

Exercise 2 — Implementing Basic Synchronization .................................................................................  2-17

Synchronization...................................................................................................................................  2-17

Getting Started ....................................................................................................................................  2-20

Learning the Script ..............................................................................................................................  2-20

Defining Events and Arrived At Statements .......................................................................................  2-21

Understanding the Script.....................................................................................................................  2-24



iv     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Continuing the Exercise ......................................................................................................................  2-24

Closing Testbed...................................................................................................................................  2-25

The Resulting Script............................................................................................................................  2-26

Running the Script...............................................................................................................................  2-27

Analyzing the Results .........................................................................................................................  2-27

Exercise Summary ..............................................................................................................................  2-28

Exercise 3 — Synchronizing Scripts Using System Variables..................................................................  2-29

Changing Configuration Options ........................................................................................................  2-30

Getting Started ....................................................................................................................................  2-31

Learning the Script and Defining Not Found Screen Events ..............................................................  2-31

Defining the Not Found Screen Event ................................................................................................  2-32

The Resulting Script............................................................................................................................  2-35

Modifying the Script ...........................................................................................................................  2-35

The Resulting Script............................................................................................................................  2-39

Saving the Script .................................................................................................................................  2-39

Exercise Summary ..............................................................................................................................  2-39

Exercise 4 — Completing the Driver Script..............................................................................................  2-40

Changing Configuration Options ........................................................................................................  2-40

Getting Started ....................................................................................................................................  2-40

Learning the Script ..............................................................................................................................  2-41

Closing Testbed...................................................................................................................................  2-43

The Resulting Script............................................................................................................................  2-44

Modifying the Script ...........................................................................................................................  2-44

Running the Script...............................................................................................................................  2-46

Analyzing the Results .........................................................................................................................  2-46

Advanced Logging Techniques...........................................................................................................  2-48

Exercise Summary ..............................................................................................................................  2-51

Chapter 3.  Building Test Scripts......................................................................................................................  3-1

Exercise 5 — Using Text Checks ................................................................................................................  3-2

Getting Started ......................................................................................................................................  3-2

Learning the Script ................................................................................................................................  3-3

Defining the Text Check .......................................................................................................................  3-4

Continue Learning the Script ..............................................................................................................  3-10

The Resulting Script............................................................................................................................  3-11

Running the Script...............................................................................................................................  3-11

Analyzing the Results .........................................................................................................................  3-12

Exercise Summary ..............................................................................................................................  3-12

Exercise 6 — Using Clock Checks To Test Performance .........................................................................  3-13

Changing Configuration Options ........................................................................................................  3-13

Getting Started ....................................................................................................................................  3-14

Learning the Script ..............................................................................................................................  3-14

Defining Events and Arrived At Statements .......................................................................................  3-15

Defining the Clock Check ...................................................................................................................  3-17

The Resulting Script............................................................................................................................  3-18



     v

   BETA RELEASE

Modifying the Script ...........................................................................................................................  3-19

Additional Script Modifications..........................................................................................................  3-20

Running the Script...............................................................................................................................  3-21

Analyzing the Results .........................................................................................................................  3-21

Exercise Summary ..............................................................................................................................  3-22

Exercise 7 — Using External TestData Files ............................................................................................  3-23

Getting Started ....................................................................................................................................  3-23

Learning the Script ..............................................................................................................................  3-24

Understanding Data-Driven Scripts ....................................................................................................  3-26

Modifying the Script ...........................................................................................................................  3-28

The Resulting Script............................................................................................................................  3-30

Exercise Summary ..............................................................................................................................  3-30

Exercise 8 — Inserting Bitmap Checks.....................................................................................................  3-31

Getting Started ....................................................................................................................................  3-31

Learning the Script ..............................................................................................................................  3-32

The Resulting Script............................................................................................................................  3-35

Saving the Script .................................................................................................................................  3-35

Exercise Summary ..............................................................................................................................  3-35

Exercise 9 — Inserting Script Dialog Boxes .............................................................................................  3-36

Getting Started ....................................................................................................................................  3-36

Creating the Dialog .............................................................................................................................  3-37

Adding Dialog Controls ......................................................................................................................  3-38

The Resulting Dialog Definition .........................................................................................................  3-44

Modifying the Driver Script................................................................................................................  3-45

The Resulting Script............................................................................................................................  3-46

Additional Script Modifications..........................................................................................................  3-46

Exercise Summary ..............................................................................................................................  3-48

Chapter 4.  Using Driver and Test Scripts Together .......................................................................................  4-1

Exercise 10 — Using the Run Command....................................................................................................  4-2

Getting Started ......................................................................................................................................  4-2

Modifying the Driver Script..................................................................................................................  4-3

The Resulting Script..............................................................................................................................  4-4

Running the Script Against a New Testbed Version ............................................................................  4-6

Analyzing the Results ...........................................................................................................................  4-7

Exercise Summary ..............................................................................................................................  4-10

Index ....................................................................................................................................................................  I-1



vi     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE



   BETA RELEASE

    vii

Introduction

This guide is designed for new QARun users who intend to test character-based applica-

tions running through a Windows 95 or Windows NT terminal emulator. This guide 

describes the basic testing principles involved in using QARun to test a character-based 

application. As you complete the exercises contained in this guide, you will become 

familiar with QARun testing concepts through a comprehensive tutorial that is designed 

to assist you in building a complete test system. The exercises presented in this manual 

are designed to take you from the most basic testing principles through the more advanced 

testing concepts using QARun. 

This manual is divided into the following chapters:

• “Chapter 1. Introducing Testbed”: This chapter provides an overview of the sam-

ple target application (Testbed) and introduces you to Testbed’s basic menus and 

toolbar buttons. 

• “Chapter 2. Building a Synchronized Driver Script”: This chapter provides an 

introduction to the concepts of driver scripts and synchronization techniques. It also 

provides step-by-step procedures designed to help you create the driver script that 

will be used in future exercises. 

• “Chapter 3. Building Test Scripts”: This chapter provides an overview of 

QARun’s more powerful testing capabilities. As you complete the step-by-step exer-

cises contained in this chapter, you will learn how to use checks, testdata files, and 

user-defined dialog boxes to build robust test scripts.

• “Chapter 4. Using Driver and Test Scripts Together”: This chapter provides 

step-by-step instructions that assist you in combining the driver and test scripts that 

you created in previous exercises. This chapter also discusses the final test element 

— how to run your scripts against a new version of the target application and inter-

pret the test results.

The concepts required to test graphic user interface (GUI) applications are covered in the 

QARun GUI Testing Getting Started Guide. You should refer to that document for intro-

ductory information related to testing GUI applications.



viii     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Who Should Read This Guide

The QARun Character-Based Testing Getting Started Guide is intended for new QARun 

users who will be using QARun to test character-based applications. This guide provides 

a comprehensive QARun tutorial.

We designed and organized the information in this guide to help novice users gain a basic 

understanding of the test-building process using QARun. This guide does not contain 

extensive reference or theoretical information. You can find that information in the online 

help facility, in the QARun User’s Guide, and in the QARun Language Reference Manual.

We assume that you have some familiarity with basic Microsoft Windows navigation. If 

this isn’t the case, familiarize yourself with the documentation accompanying your copy 

of Microsoft Windows before reading this guide.

Related Publications

In addition to the QARun Character-Based Testing Getting Started Guide, the QARun 

documentation set includes the following other publications as well as a complete online 

help facility. 

• QACenter Installation and Configuration Guide provides licensing instructions, 

step-by-step installation procedures, and database selection information.

• QARun GUI Testing Getting Started Guide provides a “hands on” tutorial designed 

to take you from the most basic principles of testing GUI testing principles through 

the more advanced testing concepts using QARun. 

• QARun User’s Guide provides a complete reference to using QARun. It provides a 

basic product and component overview and explains how to configure the system, 

create scripts, define test conditions (checks), and view the results of a test run. 

• QARun Language Reference Manual provides a reference to the commands avail-

able for use in your QARun scripts. It contains detailed information specific to com-

mand syntax, variants, operation, and script examples. It is intended for experienced 

QARun users who wish to exploit the scripting language to develop robust, sophisti-

cated test procedures.

• QARun Online Help provides help information. If you press the F1 key while using 

the software, you can obtain dialog-sensitive online help. If you encounter any 

problems that cannot be resolved, contact QARun Technical Support.

• The online Bookshelf provides access to the complete QARun documentation set in 

Adobe Acrobat PDF format. The Bookshelf is installed automatically with the 

QARun program files. You can access the Bookshelf by selecting Bookshelf from 

the QARun program group. The book  opens in Adobe Acrobat Reader. 



Introduction     ix

   BETA RELEASE

Viewing and Printing Online Books

QARun’s online books are provided in PDF format, so you need Adobe Acrobat Reader 

3.0 or above to view them. To install the Adobe Acrobat Reader, click Install Adobe 

Acrobat Reader on the QACenter CD, or go to Adobe’s Web site at www.adobe.com.

You can access the online books from the documentation bookshelf. For example, if you 

have QARun installed and you wish to access the QARun User’s Guide, click the 

taskbar’s Start button and choose Programs>Compuware>QARun >QARun Books> 

QARun Bookshelf. Select the QARun User’s Guide from the list.

Because PDF is based on PostScript, a PostScript printer is the most reliable way to print 

the online books. In most cases, you can also print PDF files to PCL printers. If you 

cannot print the PDF files to your printer, refer to Adobe’s web site at www.adobe.com 

for troubleshooting information.

World Wide Web Information

To access Compuware Corporation’s site on the World Wide Web, point your browser at 

http://www.compuware.com. The Compuware site provides a variety of product and 

support information.

FrontLine Support Web Site: You can access online technical support for Compuware 

products via our FrontLine support Web site at http://frontline.compuware.com. 

FrontLine provides fast access to critical information about your QACenter product. You 

can read or download documentation, frequently asked questions, and product fixes, or e-

mail your questions or comments. The first time you access FrontLine, you are required 

to register and obtain a password.

QARun Terminology

The following terms are used throughout the QARun Character-Based Testing Getting 

Started Guide.

Target Application: The system under test.

Scripts: Step-by-step instructions that specify how the target application should be 

tested.

Test Site: A point in the target application where testing begins.

Driver Script: A QARun script that drives the target application to a test site. A driver 

performs no testing.



x     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Test Script: A QARun script that is called by the driver script when a test site is reached. 

A test script performs some actions and then executes a “check” that compares the target’s 

response to the actions with the expected response.

Check: Definition of the correct response of the target application to the given input. A 

check may be called by single or multiple test scripts.

Getting Help

At Compuware, we strive to make our products and documentation the best in the 

industry. Feedback from our customers helps us maintain our quality standards. If you 

need support services, please obtain the following information before calling 

Compuware’s 24-hour product support hotline:

• The name, release (version), and build number of the QARun product. This infor-

mation is displayed when you select the About command from your product’s Help 

menu. The name and release are also on the covers of the product documentation.

• Installation information, including installed options, whether the product uses local 

or network databases, whether it is installed in the default directories, whether it is a 

standalone or network installation, and whether it is a client or server installation.

• Environment information, such as the operating system and release on which the 

product is installed, memory, hardware/network specifications, and the names and 

releases of other applications that were running.

• The location of the problem in the QARun product software and the actions taken 

before the problem occurred.

• The exact product error message, if any.

• The exact application, licensing, or operating system error messages, if any.

• Your Compuware client, office, or site number, if available.

QARun Technical Support

Compuware Corporation

31440 Northwestern Highway 

Farmington Hills, MI 48334-2564

1-800-538-7822



   BETA RELEASE

     1-1

Chapter 1.   Introducing Testbed

The subsequent sections of this guide describe how to use QARun to perform practical 

exercises that are common testing requirements. To complete these exercises, you must 

first create a testing scenario that includes an application-under-test (the target appli-

cation), a driver script, and various test scripts.

The QARun installation process loads a demonstration application called Testbed, which 

is used as the target application for the examples that follow in this manual. Testbed is 

designed to look like a “mainframe” application which is accessed via a Windows-based 

terminal emulator. However, Testbed is not an actual mainframe application. Its purpose 

is simply to demonstrate the features of QARun. The Testbed application includes screens 

that set up communications parameters, userIDs and passwords, and buttons to connect 

and disconnect from the mainframe session. There is, of course, no real communication 

to a remote computer — Testbed just simulates the situation.

Testbed is delivered in two versions. Testbed Version 1 (the default for most exercises) is 

used to develop a QARun test system. This system is then used to test Testbed Version 2 

and to reveal any differences between the two versions of the application.

This chapter is designed to acquaint you with Testbed’s primary functions and operations. 

After completing this chapter, you will be ready to begin the exercises described in 

“Exercise 1 — Creating a Driver Script”.



1-2     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Starting Testbed

Use the following procedure to start Testbed:

1. Start the target application, Testbed:

Although QARun can execute an application from anywhere in the system, the best 

way to launch the target is to use the Start button on the taskbar.

• Click the Start button on the taskbar and choose Run from the menu. At the 

Run dialog box, enter Testbed’s directory location. The default path is:

C:\Program Files\Compuware\QARun\Demos\Testbed.exe

• Click OK.

2. Click OK. Testbed appears as shown in Figure 1-1.

The Testbed Main Window

Testbed’s main window is shown in Figure 1-1. The main window contains a menu bar, 

a toolbar, and a status bar. In later exercises, when you use QARun’s Identify utility to 

interrogate this window, the window will be recognized as MainWindow.

Figure 1-1. Testbed’s Main Window

Menu Options

The following menus are available from Testbed’s menu bar:

File menu The File menu commands are used to create a new session, open 

an existing session, save the current session, print the current 

session, and exit Testbed.

Menu Bar

Toolbar

Status Bar



Introducing Testbed     1-3

   BETA RELEASE

Session menu The Session menu commands are used to enter user 

information, connect or disconnect the current session from the 

mainframe, and configure the current session.

Tools menu The Tools menu commands are used to transfer a file from the 

current session and activate WordPad or Notepad.

Help menu The Help menu commands are used to activate Testbed’s online 

help and to review information about Testbed.

Toolbar Options

The Testbed toolbar contains many buttons. The toolbar buttons that are necessary to 

complete the exercises in this guide are actually functional. If the toolbar buttons are not 

required to complete the exercises, they will be non-functional. The following table 

provides a brief overview of Testbed’s toolbar buttons that you will use as you complete 

the exercises in this guide:

Button Function

New Session button. This button starts a 

new Testbed session.

Connect Session button. This button con-

nects the current session to the mainframe.

Disconnect Session button. This button dis-

connects the current mainframe session.

Help Contents button. This button activates 

the contents page of the Testbed help sys-

tem.



1-4     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Using Testbed

Before you begin testing, you need to learn the basic operations of the target application, 

Testbed. Make sure that Testbed Version 1 is running. If it isn’t, refer to “Starting 

Testbed” on page 1-2.

Connecting to Sessions and Logging On

The VIRTUAL MACHINE/SYSTEM PRODUCT screen is Testbed’s logon screen 

and is frequently referred to simply as the logon screen throughout this guide.

2. Use the following information to complete the necessary fields to logon to Testbed: 

a. Type CW in the USERID field and press Tab.

b. Type PASS in the PASSWORD field and press Enter.

After logging on, Testbed’s MAIN MENU screen displays:

1. When Testbed’s main window is open, click the Connect button. The VIRTUAL 

MACHINE/SYSTEM PRODUCT logon screen displays:



Introducing Testbed     1-5

   BETA RELEASE

This screen displays a list of options that can be accessed by pressing the function 

keys at the bottom of each screen. 

3. Press the Escape key to return to the previous screen.

Busy Indicator

As Testbed moves between screens or processes instructions, a “busy indicator” (also 

called the “system light”), displays at the bottom of the screen. In Testbed, the busy 

indicator is “X SYSTEM.”

When the busy indicator is displayed, Testbed cannot accept further input from the 

keyboard. If you try to enter data while the busy indicator is showing, Testbed issues the 

error message “X-f” on the status line. Testbed cannot continue processing until the error 

message is cleared. To clear the error message, press the F11 function key.



1-6     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Disconnecting from Sessions

To properly disconnect from a Testbed session, you must return to Testbed’s logon screen. 

Use the following procedure to disconnect from a Testbed session. 

1. Each time you press the Escape key, Testbed exits the current screen. Press the 

Escape key as many times as necessary to return to the logon screen. 

Remember to wait for the “X SYSTEM” busy indicator to clear before you press 

Escape key again.

4. From the File menu, choose Exit close Testbed.

2. Click the Disconnect Button from the logon screen’s toolbar.

3. When the system prompts you to confirm the disconnection, click Yes. Testbed 

clears the emulation screen.



   BETA RELEASE

     2-1

Chapter 2.   Building a Synchronized Driver Script

The following exercises teach you how to create a driver script that runs the target appli-

cation, Testbed.

This chapter contains the following exercises that will help you understand how to build 

and implement a complete driver script:

• “Exercise 1 — Creating a Driver Script” demonstrates the synchronization prob-

lems that can occur when automating character-based applications. The remaining 

exercises explain how to overcome these problems to build a robust driver script.

• “Exercise 2 — Implementing Basic Synchronization” explains some basic synchro-

nization techniques and demonstrates how to use Wait events and Arrived At state-

ments as a basic means of synchronization.

• “Exercise 3 — Synchronizing Scripts Using System Variables” demonstrates how 

to create an external script that contains synchronization commands and system 

variables as a more reliable synchronization method. The exercise explains how to 

include this external script in each individual test script.

• “Exercise 4 — Completing the Driver Script” demonstrates how to create a new 

driver script that contains AutoWait logic as the synchronization technique.



2-2     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Driver Scripts

A driver script merely “drives” the target application to the proper point to begin a test 

(called a test site) and then calls the individual test scripts that begin testing the test site. 

When the test script finishes, the driver script regains control and proceeds to the next test 

site. A driver script does not conduct any actual testing; the testing is actually done by the 

test scripts that are called by the driver script. 

The following illustration demonstrates how a driver script interacts with test scripts.

A well-designed test script returns the target application to the original test site before 

completion. This ensures that:

• Driver scripts can always pick up from where they left off.

• You can add or remove tests at a test site without modifying the driver path.

Start

Test Site 1

Test Site 2

Test Site 4

Test Site 3

Driver Script

Test

Script A

Test

Script B

Test Script C

Test

Script D

Test

Script E

Driver Scripts, Test

Scripts and Test Sites



Building a Synchronized Driver Script     2-3

   BETA RELEASE

Exercise 1 — Creating a Driver Script

The quickest way to understand how QARun learns to drive an application is to try it out. 

The purpose of this first exercise is to build a simple driver script. During this exercise 

you will generate a script that starts Testbed, connects to a session, logs on at the main 

screen, and selects an option from the menu screen. You will use QARun’s Learn function 

to generate the script. Before you begin learning the script, however, you’ll need to 

change a few of QARun’s configuration options in order to ensure that your test scripts 

resemble the examples provided throughout this guide.

Starting QARun

Use the following procedure to launch QARun and to log on to the QARun database:

2. If your userID has been added to the User Table, select your name from the User 

name drop-down list and enter your password in the Password field.

If you are using the software for the first time, type Admin to log on. The default 

password for this user is “Admin”. You should change this password once you have 

logged on to prevent unauthorized access.

3. Click OK to log on.

Configuring QARun

Before you begin creating the driver script, you need to change some of QARun’s config-

uration options. Changing these options will make your resulting driver script more 

closely resemble the examples in the following exercises and allow you to test other 

versions of Testbed. Specifically, you’ll need to change these options:

• Script Editor — You will change the amount of time QARun will wait for an event 

to occur, and you will change the way that the event is inserted into your script. In 

addition, it is necessary to change the default script’s text and change the way 

1. Start QARun by clicking the taskbar Start button and choosing 

Programs>Compuware>QARun from the Start menu. 

Choose the QARun icon. The QARun splash screen displays followed by the 

QARun Log On dialog box:



2-4     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

QARun learns pauses between your actions. You will also tell QARun to Learn 

image selections as mouse-clicks.

• Object Map — Because you will eventually use the test scripts created using 

Testbed Version 1 to test Testbed Version 2, it is important that any information 

found in the screen attach names that relates to the product’s version is ignored. To 

accomplish this, you will create a significant fields mask that tells QARun not to 

recognize the attach name’s title as a significant field in the Object Map.

The procedures that follow describe how to create and use a significant field mask 

so that each window that is learned from Testbed ignores the product’s version.

You must change the specific configuration options described below in order to generate 

scripts that closely resemble the examples provided throughout this guide; however, if 

you wish, you may also change some of the Script Editor’s general configuration options 

to suit your personal preferences. For example, you may change the fonts and colors used 

in the Script Editor, and you may also change the way the Script Editor behaves when it 

is active. If you wish to alter any of these general configuration options, refer to the 

section on configuring the Script Editor in the QARun User’s Guide.

Changing Configuration Options

Use the following procedure to change the Script Editor’s configuration options:

3. Click the Editor tab and double-click the Wait Event Timeout option.

4. If necessary, type 30 in the New value field and click OK. The Configure dialog 

box re-appears.

1. Click the Editor button on the Modules toolbar to open the Script Editor.

2. From the Script Editor’s Options menu, choose Configure. The Configure dialog 

box displays.



Building a Synchronized Driver Script     2-5

   BETA RELEASE

5. Clear the Use Wait Timeout check box. Clearing this option inserts events into 

your script without requiring you to use the If...Else event logic. In later exercises, 

you will turn this option on and create the event logic that is typically found in more 

robust scripts.

6. Click the Default Script tab.

QARun’s default script allows you to specify information that is automatically 

placed into each subsequent script that is created. By default, QARun provides error 

handling text in the default script, but you can change the default script to anything. 

In future exercises, you’ll use the default script to make function calls.

7. Error handling will not be used for the exercises that follow. Remove all infor-

mation from the default script except the following code:

Function Main

<c>

End Function ; Main

8. Click OK.

Changing Learn Settings

3. Click the Timings tab and double-click the Pause Threshold option.

1. Click the Editor button on the Modules toolbar to open the Script Editor.

2. From the Script Editor’s Options menu, choose Learn Settings. The Configure 

Learn Settings dialog box displays.



2-6     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

4. If necessary, type 0 in the New value field to and click OK.

The Pause Threshold value is the amount of time that QARun will wait before learn-

ing pauses between learned actions into the script. Setting the value to 0 tells 

QARun not to Learn your pauses, so your scripts replay as fast as possible.

5. Click the General tab and ensure that the BitmapSelects and TypeToControl 

check boxes are cleared.

Changing the Significant Fields Mask

Because you will eventually use the test scripts created using Testbed Version 1 to test 

Testbed Version 2, it is important that any information found in the screen attach names 

that relates to the product’s version is ignored. To accomplish this, you will create a 

significant fields mask that tells QARun not to recognize the attach name’s title as a 

significant field in the Object Map.

Use the following procedure to create and use an Object Map significant fields mask:

2. From the Options menu, choose Significant Fields Masks. The Significant Fields 

Masks dialog box displays:

1. Click the Object Map button on the Module’s toolbar. The Object Map window 

displays.



Building a Synchronized Driver Script     2-7

   BETA RELEASE

3. Click the Add button to add a new mask name. The QARun dialog box displays.

4. In the Add mask name field, type the name Testbed and click OK. 

5. Click the Significant Fields tab. The following information displays:

This dialog box allows you to specify the fields that will be considered when objects 

are learned using the mask you are creating.

6. Clear the Title and Parent title check boxes.

7. Click the Signature tab. The following information displays:



2-8     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

This dialog box allows you to specify the modules, classes, and window types that 

the mask’s significant fields selections will be applied to. For the purposes of this 

exercise, you want to apply the mask settings to Testbed’s windows.

8. In the Module group, click the Add button, type TESTBED.EXE in the Name of 

module field, and click OK.

9. Click the Mask Selection tab to tell QARun to use the Testbed mask you just 

created.

10. In the Available masks list, select Testbed and click the Select button. The Testbed 

mask should now appear in the Selected masks list.

This tells QARun to use the Testbed mask when learning objects from the 

Testbed.exe module and to use the Default Mask mask when learning any objects 

that do not belong to the Testbed.exe module.

11. Click OK to save the significant fields mask and return to the Object Map display.

12. From the Object Map’s Options menu, choose Configure. The Configure dialog 

box displays:



Building a Synchronized Driver Script     2-9

   BETA RELEASE

13. Select the Use Significant Fields Mask Table check box and click OK.

14. Close the Object Map.

Getting Started

Now that you have changed QARun’s configuration options, you are ready to begin the 

exercise. This exercise is designed to create a simple driver script. 

Exercise Prerequisites: Before beginning this exercise you must have completed the 

following prerequisites:

• Installed QARun properly

• Changed QARun’s configuration options (see page 2-3)

• Closed any open QARun scripts.

Testing Requirements: The following test elements are created during this exercise:

• Script named Example 1 Script.

You should allow 10–15 minutes to complete this exercise.



2-10     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Learning the Script

Use the following procedure to create a new script for this exercise:

4. Start the target application, Testbed Version 1:

Although QARun can execute an application from anywhere in the system, the saf-

est way to launch the target is to use the Start button on the taskbar.

• Click the Start button on the taskbar and choose Run from the menu. In the 

Run dialog box, enter Testbed’s directory location. The default path is:

"C:\Program Files\Compuware\QARun\Demos\TESTBED.EXE" -v1

• Click OK.

6. Logon to Testbed:

a. Type CW in the USERID field and press Tab.

b. Type PASS in the PASSWORD field and press Enter.

After logging on, Testbed’s MAIN MENU screen displays.

1. Start QARun and click the New button on the toolbar. The New dialog box displays.

2. Select Script from the Create new list and click OK. The Script window opens and 

shows the default information for a new script.

3. Click the Learn Script button on the toolbar. QARun minimizes, allowing clear 

access to the desktop.

5. When Testbed appears, click the Connect button on Testbed’s toolbar. The Testbed 

logon screen appears:



Building a Synchronized Driver Script     2-11

   BETA RELEASE

7. Press the F1 key to access the CUSTOMER MASTER MAINTENANCE MENU 

screen

8. Press the Esc key to return to Testbed’s MAIN MENU.

11. From the File menu, choose Exit to close Testbed.

Stop Learning the Script

Use the following procedure to stop learning the driver script:

1. To stop learning, press the Learn Hotkey, {Alt {F10}}.

Hotkeys allow you to access QARun’s major functions (control Learn, create 

events, create checks, etc.) while Learn is active. The Hotkey isn’t learned in the 

script or by any other application. 

If the key combination assigned to the hotkey is already used by your target applica-

tion, you can change the hotkey assignment by selecting Configure from the Script 

Editor’s Options menu.

2. After you press the Learn Hotkey to stop learning, QARun reappears and displays 

the contents of the captured script in the Script Editor’s window.

9. Click the Disconnect button from the logon screen’s toolbar.

10. When the system prompts you to confirm the disconnection, click Yes. Testbed 

clears the emulation screen.



2-12     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

The Resulting Script

After you turn Learn off, QARun displays the contents of the script. Your script should 

resemble the following example:

Function Main

Attach "PopupWindow~1"

Button "Start", 'Left SingleClick'

PopupMenuSelect "Run..."

Attach "Run PopupWindow"

ComboText "&Open:", 

"""C:\Program Files\Compuware\QARun\Demos\TESTBED.EXE"" -v1"

Button "OK", 'Left SingleClick'

Attach "Testbed for Windows V1.00  MainWindow"

Attach "Testbed for Windows V1.00  ChildWindow~1"

MouseClick 186, 20, 'Left SingleClick

Attach "Testbed for Windows V1.00 Connected MainWindow"

Type "CW{Tab}PASS{Return}"

Type "{F1}"

Type "{Esc}"

Attach "Testbed for Windows V1.00 Connected ChildWindow~1"

MouseClick 239, 31, 'Left SingleClick'

Attach "Testbed for Windows PopupWindow"

Button "&Yes",'Left SingleClick'

Attach "Testbed for Windows V1.00  MainWindow"

MenuSelect "File~Exit"

End Function ; Main

Note

Your script results may vary slightly from the above example if your QARun system 

configuration is different from the one used to Learn the example script or if you learned 

extra mouse clicks.



Building a Synchronized Driver Script     2-13

   BETA RELEASE

Understanding the Script

The script you just learned is comprised of seven basic sections that merit explanation:

• Including a default script header

• Attaching to the target application’s window

• Running the target application

• Maximizing the target application

• Connecting to the target application

• Submitting keystrokes to the target application

• Closing the target application.

This section explains how each action was recorded in QARun’s script language. The 

following is a descriptive breakdown of the script.

The Default Script Header: A script may contain a header block. The header block 

contains any information that you define on the Default Script tab in the Script Editor’s 

Configuration dialog box.

Each time you create a new script, QARun automatically copies any data from the Default 

Script tab to the new script’s header block. You can use the header block to insert 

descriptive notes (inserted as comments) into your scripts without affecting the script’s 

execution. In the exercises that follow, you will eventually insert Include statements into 

the Default Script to call synchronization logic. This way, you won’t have to manually 

insert the logic into each individual test script.

Attaching to a Window: The attach name is probably the most important item in 

QARun’s scripting language. By attaching to a specific window, QARun ensures that its 

actions are directed to the correct recipient. QARun’s Attach command is similar to you 

clicking on a window to bring it into focus. Because there may be many windows on the 

screen when a script is replayed — including windows that weren’t there when the script 

was originally recorded, the attach name ensures that QARun finds the appropriate 

window and makes it the active window for the commands that follow. 

Scripts that are designed to test GUI applications contain many more Attach statements 

because a GUI application’s windows are continuously appearing and disappearing from 

the screen. In contrast, scripts that are intended to test character-based applications 

contain significantly fewer Attach statements because character-based applications are 

usually accessed via a Windows-based terminal emulator, and the terminal emulator’s 

window remains on the screen throughout the session. It is the content of the window that 

changes, rather than the actual window. 



2-14     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

A typical Attach statement resembles the following example:

Attach "PopupWindow~1"

This is the attach name for the Windows taskbar. This attach name was generated with 

object mapping turned on:

Refer to the QARun User’s Guide or the QARun Language Reference Manual for a 

complete description of the Attach command syntax.

Running the Target Application: After attaching to the taskbar, QARun learns to click 

the Start button and choose Run from the Start menu.

Button "Start", 'Left SingleClick'

PopupMenuSelect "Run..."

The Run dialog box opens automatically. QARun must first attach to this window, and 

then it can send keystrokes and mouse clicks to it:

Attach "Run PopupWindow"

ComboText "&Open:", 

"""C:\Program Files\Compuware\QARun\Demos\TESTBED.EXE"" -v1"

Button "OK", 'Left SingleClick'

Connecting to the Target Application: The first line from the script excerpt shown 

below tells QARun to attach to the Testbed toolbar. The attach name shows that the 

toolbar is the first “child” window of the main Testbed window.

Attach "Testbed for Windows V1.00  ChildWindow~1"

MouseClick 186, 20, 'Left SingleClick'

The script also shows a MouseClick statement, rather than the Button command that you 

might expect (like the Button statement that was generated when the OK button was 

used). This is because Testbed’s toolbar is an example of a non-standard control. In this 

particular case, Testbed’s toolbar buttons are not real buttons. They are bitmaps (pictures) 

that are treated by Testbed as if they were buttons when you click them.

There are many types of non-standard controls. When QARun encounters a non-standard 

control, it automatically switches from its object-oriented method of learning to the literal 

recording of mouse-clicks and keystrokes. 

Note

The example scripts throughout these exercises contain attach names that are generated 

by the Object Map. These names are typically shorter and easier to read than the 

complete attach name.



Building a Synchronized Driver Script     2-15

   BETA RELEASE

Sending Keystrokes to the Target Application: Before QARun can begin entering the 

appropriate userID and password to logon to Testbed, it must first attach to the Testbed 

logon screen. The first line from the script excerpt shows how QARun attaches to the 

Testbed logon screen.

Attach "Testbed for Windows V1.00 Connected MainWindow"

Type "CW{Tab}PASS{Return}"

Type "{F1}"

The remaining two lines from the script show how the system learns the keystrokes for 

entering the userID and password. QARun learns the keystrokes typed to Testbed as Type 

commands. Keys that are not characters are enclosed in curly braces (for example, the Tab 

key is shown as {Tab}).

Closing the Target Application: Finally, Testbed is closed by choosing Exit from the 

File menu.

MenuSelect "File~Exit"

Running the Script

When you run the script, all the actions that you just learned will be replayed. Before 

attempting to run the script, close all active versions of Testbed. Use the following 

procedure to run the driver script from QARun:

Caution

This script will begin to execute, but it will probably fail. The script is designed to fail for 

reasons described in “Analyzing the Results” on page 2-16. Later exercises will amend 

the script so that it runs properly. 

1. Click the Run button on QARun’s toolbar. The Summary Info dialog box displays 

the first time the script is run:



2-16     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

2. Enter a file name for the script such as Example 1 Script (conventional Windows 

long file names are supported) and click OK. The Run Script dialog box displays.

3. Click OK to begin running the script. The script will begin to execute, but it will 

probably fail (see “Analyzing the Results” on page 2-50 for an explanation).

Analyzing the Results

Depending on the speed of your computer, your script is likely to get to Testbed’s logon 

screen or its MAIN MENU before Testbed beeps and locks with the “X-f” error message. 

The script will almost certainly fail to arrive at the CUSTOMER MASTER MAINTE-

NANCE MENU screen. 

The test script failed to run properly in this exercise, because QARun replayed the script 

as fast as possible, but the character-based application required processing time in order 

to complete the requested transactions. Consequently, QARun’s script statements were 

“out-of-synch” with the actual target application. In order to ensure proper script replay 

when testing character-based applications, you must implement a method of script 

synchronization. 

Exercise 2 — Implementing Basic Synchronization, describes why the script failed to 

replay and introduces you to the synchronization techniques required to effectively run 

character-based applications.

Exercise Summary

This exercise focused on creating a basic driver script using QARun’s Learn functionality. 

After completing this exercise, you should be able to successfully:

• Use QARun’s Learn function to record a script

• Read scripts and understand script Attach statements

• Run a script.

In future exercises, we’ll discuss how to synchronize the driver script and the 

target application.



Building a Synchronized Driver Script     2-17

   BETA RELEASE

Exercise 2 — Implementing Basic Synchronization

The test script failed to run properly in Exercise 1 — Creating a Driver Script, because 

QARun replayed the script as fast as possible, but the application required processing time 

in order to complete the requested transactions. Consequently, QARun’s script statements 

were “out-of-synch” with the target application.

In order to ensure proper script replay when testing character-based applications, you 

must implement a method of script synchronization. There are several different synchro-

nization methods that you can use, and you’ll find that some are more suitable than others 

— depending on the complexity of your script and the typical transaction times from your 

character-based application.

Synchronization

Let’s begin by examining the reasons why the script in Exercise 1 — Creating a Driver 

Script failed.

Typically, whenever QARun drives a GUI application, the Attach statements serve as the 

primary means of synchronization. Attaching to new windows as they appear helps 

QARun keep in step with the target application.

However, in our testing environment, the target application is not a local Windows appli-

cation, but a remote host-based application accessed via an emulator. When this is the 

case, there is only one main window. This single window remains active throughout the 

session; only the contents of the window change as you move from screen to screen. 

There are no new Attach statements to help QARun synchronize with the target.

When you are testing a character-based application, you must explicitly instruct QARun 

to wait for the target application to complete its processing before you attempt to send 

more keystrokes and mouse actions.

To replay the script successfully, synchronization instructions must be included each time 

the target application performs processing on the input received. During this processing 

time, the target is “busy” and no further input must be generated. Typically, the time that 

this processing takes is variable and depends on the complexity of the process and the 

overall load on the host system.

For example, when using Testbed as the character-based application, the system needs 

time to process the userID and password that are entered. Testbed must display the MAIN 

MENU before the F1 key is pressed. Without synchronization, the F1 request is sent 

while Testbed is busy processing the logon information — which results in the keyboard 

lockup.



2-18     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

There are several ways to build synchronization instructions into a script — from 

including simple Pauses in the script to using an advanced sequence of Events and System 

Variables. Each method has its own merits. However, some methods are more reliable 

than others. The following sections discuss these methods and their advantages and disad-

vantages.

Pauses in Scripts

One method of synchronizing QARun with a character-based application is to insert 

Pauses into the script. Inserting or learning pauses into the script is the simplest, and the 

most unreliable, method of synchronizing a script with a target application. Pauses are 

inserted directly into the script and cause the script to temporarily pause for a specified 

period of time. For example:

Pause( 2 , 'ticks' )

Pause( 5 , 'seconds' ) ; 1 tick = 1/10 second

Pauses can be manually inserted into a script or generated automatically during Learn by 

setting the Pause Threshold option on the Script Editor’s Configure dialog box. The Pause 

Threshold value is measured in seconds. Setting the pause threshold value to a positive 

number generates Pause statements each time you stop interacting with the target appli-

cation for longer than the number of seconds while learning the script. 

Advantages: No user interaction is required, and Pauses are simple to implement.

Disadvantages: Response times from remote applications are often variable. The pauses 

learned during script development may not be long enough when the script is replayed if 

the host system is running slowly due to heavy workloads. The pauses must be long 

enough to ensure that, even when the host is responding slowly, QARun does not proceed 

too soon. Unfortunately, inserting these types of long pauses wastes time when the host 

is running quickly.

Events

QARun has an “event-driven” programming language that allows you to define actions or 

system responses that QARun must wait for before continuing.

Events are QARun’s way of monitoring what is being processed in the system. QARun 

can recognize many types of events. For example:

• Text appearing on the screen

• Users typing on the keyboard

• Users making menu selections

• Windows appearing, being moved, resized, etc.

• Mouse actions

• Dates and times

• Graphics appearing on the screen.



Building a Synchronized Driver Script     2-19

   BETA RELEASE

QARun can be instructed to “Wait” for an event to occur before continuing with the script. 

It can also be instructed to react to an event “Whenever” it occurs.

Waiting for screen events — for certain text to appear on the screen — is the most reliable 

way of synchronizing with a character-based application with variable response times.

Advantages: Using events ensures that QARun does not continue to process instructions 

until the event has actually occurred. This way, variable system response times are 

automatically accounted for. Events can also be used to build “intelligence” and error 

handling into scripts, which makes scripts more robust.

Disadvantages: You must define a Wait event each time synchronization with the host 

is necessary. You must also be careful when determining the Wait event. For example, if 

the text defined in a screen event changes in the next version of the target application, the 

Wait will fail.

System Variables

QARun’s scripting language has several “system variables” that allow you to dictate how 

QARun processes scripts and reacts to the target application. When used in conjunction 

with events, these system variables help make scripts more reliable.

One particularly useful system variable is the Replay.AutoWait command. The 

Replay.AutoWait command permits the construction of automatic synchronization 

routines, which allow QARun to keep in-step with the host system using a single event 

definition.

Another useful system variable, which is used in conjunction with the Replay.AutoWait 

command, is the Replay.ActionKeys command. The Replay.ActionKeys command 

allows you to define the user actions that will trigger waiting on events.

Advantages: Using the Replay.AutoWait command means that fewer screen events need 

to be defined and synchronization is much more robust.

Disadvantages: This method of synchronization requires the system to display a reliable 

and predictable sign that it is ready to receive further input. This could be something like 

a “busy” or “keyboard locked” indicator, which is displayed when the system is 

processing and removed when it is ready for input. You could also use a screen title or ID 

that indicates the arrival at the next screen.

Implementing this method of synchronization requires that you be familiar with QARun’s 

scripting command language because you will need to do some programming.



2-20     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Getting Started

In the following exercise, you will learn how to use screen events to synchronize the 

QARun script with the target application. You will also learn how to use the Arrived At 

statement to make your scripts and log files more readable.

When complete, this driver script should start Testbed, logon to the system, and select 

several MAIN MENU options. The script should then return to the logon screen and 

disconnect the session.

Exercise Prerequisites: Before beginning this exercise you must have completed the 

following prerequisites:

• Access to the script named Example 1 Script created during “Exercise 1 — Creating 

a Driver Script”

• Close Testbed

• Close QARun.

Testing Requirements: The following test elements are created during this exercise:

• Event named VM/System Product Screen

• Event named Testbed Menu

• Event named Customer Maintenance Menu

• Event named Find Documents

• Script named Exercise 2.

You should allow 20–30 minutes to complete this exercise.

Learning the Script

Use the following procedure to begin learning the script:

2. Select Script from the Create new list and click OK. The Script window opens and 

contains the default information for the new script.

3. From the Options menu, choose Learn Script. QARun minimizes to allow clear 

access to the desktop.

4. Start Testbed Version 1 in the normal manner (see page 2-10, if necessary).

1. Start QARun and click the New button from the toolbar to create a new script. The 

New dialog box displays.

5. When Testbed appears, click the Connect button.



Building a Synchronized Driver Script     2-21

   BETA RELEASE

Defining Events and Arrived At Statements

This section of the exercise creates a series a screen events that QARun must wait for 

before sending the Arrived At statement to the log file. The events will be used to tell 

QARun to continue script processing after each screen is reached in the target application. 

Continue the above exercise using the following procedure:

1. When the Testbed VIRTUAL MACHINE/SYSTEM PRODUCT logon screen 

appears, press the Insert Event Hotkey, {Alt{F7}}. The Browse Events dialog box 

displays:

2. Click the New button. The New Event dialog box displays:

3. Select the Screen option and click OK. The Create Screen Event dialog box 

displays:



2-22     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

4. Enter an event name such as, VM/System Product Screen, in the Event name field.

Text entered in the Comment field will be inserted into the script as a comment pre-

ceding the event statement. Entering comments is always good practice; however, 

the sample scripts in this guide rarely include comments. If you insert comments, 

your script results will be slightly different than those documented in this book.

5. Click Next. The Identify dialog box displays:

6. Click the Identify button. QARun is minimized and Testbed becomes visible.

Position the pointer over Testbed’s MainWindow and single-click. QARun is 

restored and the window name appears in the Attach area of the Identify dialog box.

7. Click Next. The Screen Event dialog box displays:



Building a Synchronized Driver Script     2-23

   BETA RELEASE

8. Select the Use rectangle check box and click the Capture button. QARun is 

minimized and Testbed becomes visible.

9. Position the cursor at the top portion of the window text “VIRTUAL MACHINE/

SYSTEM PRODUCT”. Click-and-drag the cursor to the bottom-right corner of the 

text. Release the mouse button and the captured text displays in the text area of the 

Screen Event dialog box.

10. Click Finish. The Insert New Event dialog box displays:

This dialog box allows you to use the event in either a Wait statement or a When-

ever statement.

11. Select the Insert Arrived At check box.

12. Click the Wait button. The Arrived At dialog box displays:

13. Type VM/System Product screen as name of the Testbed screen in the Insert text 

field.



2-24     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

14. Click OK. QARun inserts the event and the LogComment statement into your 

script.

The LogComment statement causes QARun to insert an Arrived At statement into 

the Command Details column of the log file after the event occurs.

15. Press the Learn Hotkey, {Alt{F10}}, to turn Learn off and to display the captured 

script.

Understanding the Script

Let’s focus on the section of the script that looks similar to the following example:

Attach "Testbed for Windows V1.00  ChildWindow~1"

MouseClick 186, 20, 'Left SingleClick'

Wait(30, "", "VM/System Product Screen")

LogComment( "Arrived at VM/System Product Screen" )

In the first two lines of the above example, QARun attaches to Testbed’s toolbar and 

clicks the Connect button. The next line of the script tells QARun to Wait for up to a 

maximum of 30 seconds for the VM/System Product Screen event to occur.

This event waits for the text “VIRTUAL MACHINE/SYSTEM PRODUCT” to appear 

within the specific coordinates identified during capture.

The last line of the example tells QARun to insert the statement “Arrived at VM/System 

Product Screen” in the Command Details column of the log file.

Continuing the Exercise

To continue the exercise, you need to define a screen event and an Arrived At statement 

for each screen that appears in the target application.

Use the following procedure to continue learning the script:

1. Press the Learn Hotkey, {Alt{F10}}, to turn Learn on again. QARun minimizes and 

Testbed’s VIRTUAL MACHINE/SYSTEM PRODUCT logon screen is visible.

2. Logon to Testbed.

a. Type CW in the USERID field and press Tab.

b. Type PASS in the PASSWORD field and press Enter.

After pressing Enter, Testbed processes the logon information and the Testbed’s 

MAIN MENU screen displays.

3. Repeat steps 1–13 from “Defining Events and Arrived At Statements”, except this 

time, define a new screen event named Testbed Menu and capture the text “MAIN 

MENU” for this event.



Building a Synchronized Driver Script     2-25

   BETA RELEASE

4. After defining the event and inserting the LogComment, press the  F1 key from 

Testbed’s MAIN MENU screen.

5. Repeat steps 1–13 from “Defining Events and Arrived At Statements”, except this 

time, define a new event named Customer Maintenance Menu and capture the text 

“CUSTOMER MASTER MAINTENANCE MENU” for this event.

6. After defining the event and inserting the LogComment, press the Esc key to return 

to Testbed’s MAIN MENU screen.

7. Insert the previously defined Testbed Menu event (by selecting it from the Browse 

Screen Events dialog box) and a new LogComment to show that you have returned 

to Testbed’s MAIN MENU screen.

You must create a new screen event or insert an existing event each time the Testbed 

display changes.

8. After inserting the event and a new LogComment, press the F4 key from Testbed’s 

MAIN MENU screen.

9. Define another new screen event named Find Documents and capture the text 

“FIND DOCUMENTS” for this event. Insert a new LogComment.

(If necessary, refer to steps 1–13 in “Defining Events and Arrived At Statements” to 

complete this step.)

10. After inserting the screen event and a new LogComment, press the Esc key to return 

to Testbed’s MAIN MENU screen and insert the appropriate event.

Closing Testbed

1. From Testbed’s MAIN MENU screen, press the Esc key again to return to the 

VIRTUAL MACHINE/SYSTEM PRODUCT screen.

2. Again, insert the appropriate screen event and LogComment.

5. Press the Learn Hotkey, {Alt{F10}}, to turn Learn off.

Note

You must create a new screen event or insert an existing event each time the Testbed 

display changes. You may reuse previously defined events by selecting and inserting 

them from the Browse Screen Events dialog box.

3. Click the Disconnect button on Testbed’s toolbar, and click Yes in the resulting 

dialog box to confirm your choice.

4. From the File menu, choose Exit to close Testbed.



2-26     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

The Resulting Script

After completing the above steps, your test script should look very similar to the 

following example:

Function Main

Attach "PopupWindow~1"

Button "Start", 'Left SingleClick'

PopupMenuSelect "Run..."

Attach "Run PopupWindow"

ComboText "&Open:", 

"""C:\Program Files\Compuware\QARun\Demos\TESTBED.EXE"" -v1"

Button "OK", 'Left SingleClick'

Attach "Testbed for Windows V1.00  ChildWindow~1"

MouseClick 186, 20, 'Left SingleClick'

Wait(30, "", "VM/System Product Screen")

LogComment( "Arrived at VM/System Product Screen" )

Attach "Testbed for Windows V1.00 Connected MainWindow"

    Type "CW{Tab}pass{Return}"

Wait(30, "", "Testbed Menu")

LogComment( "Arrived at Testbed Menu Screen" )

Type "{F1}"

Wait(30, "", "Customer Maintenance Menu")

LogComment( "Arrived at Customer Master Maintenance Menu Screen" )

Type "{Esc}"

Wait(30, "", "Testbed Menu")

LogComment( "Arrived at Testbed Menu Screen Again" )

Type "{F4}"

Wait(30, "", "Find Documents")

LogComment( "Arrived at Find Documents Screen" )

Type "{Esc}"

Wait(30, "", "Testbed Menu")

LogComment( "Arrived at Testbed Menu Screen Again" )

Type "{Esc}"

Wait(30, "", "VM/System Product Screen")

LogComment( "Arrived at VM/System Product Screen Return" )

Attach "Testbed for Windows V1.00 Connected ChildWindow~1"

MouseClick 239, 31, 'Left SingleClick'

Attach "Testbed for Windows PopupWindow"

Button "&Yes",'Left SingleClick'

Attach "Testbed for Windows V1.00  MainWindow"

MenuSelect "File~Exit"

End Function ; Main



Building a Synchronized Driver Script     2-27

   BETA RELEASE

Running the Script

Before attempting to run the script, verify that all active versions of Testbed are closed. 

Use the following procedure to run the driver script from QARun:

2. Enter a name for the script such as Exercise 2 (conventional Windows long file 

names are supported) and click OK. The Run Script dialog box appears. 

3. Click the Edit button. The Run Environment Settings dialog box displays.

4. Click the Logging tab and ensure that the Logging and Auto Increment check 

boxes are selected.

5. Click OK. The Run Script dialog box re-appears.

6. Click OK to begin running the script.

The script should run without errors and return to the QARun Script Editor display 

when finished. If the script encounters compilation errors, an Output window dis-

plays. Compilation error messages are displayed in this window. Double-click on an 

error message to automatically view the associated line of code in the script.

Analyzing the Results

When the script finishes running, you should view the log file to verify that the script ran 

correctly.

2. Double-click on the script you just created (you may need to press the F5 key to 

refresh the display). The Log View window opens and displays the log information 

for the script.

1. Click the Run button on QARun’s toolbar. The Summary Info dialog box displays 

the first time the script is run.

1. To view the list of available logs, click the Log Browser button on the Script 

Editor’s toolbar. The Browse Logs dialog box displays.



2-28     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

The log information shows when the script ran, what it did, and when it finished. 

The Log View is configurable, and your results may display different columns than 

those shown in the above example. 

3. From the View menu, choose Grid>Column Layout and change the column layout 

to your desired specifications. Click OK.

It is possible to define a log filter file before running the script or to filter the log file 

after the script runs. Filtering is discussed in more detail in later exercises, particu-

larly when analyzing the results of checks.

Exercise Summary

This exercise focused on using screen events and Arrived At statements to synchronize 

scripts with the target application. After completing this exercise, you should be able to 

successfully:

• Define a screen event

• Insert a screen event into a Wait statement

• Create and insert an Arrived At statement

• Use Arrived At statements as LogComments

• View a script’s log

• Change the log’s column layout.

In future exercises, we’ll discuss how to avoid defining multiple events and Arrived At 

statements to synchronize scripts. Instead, you’ll learn how to use system variables and 

Whenever statements for synchronization.



Building a Synchronized Driver Script     2-29

   BETA RELEASE

Exercise 3 — Synchronizing Scripts Using System 
Variables

In “Exercise 2 — Implementing Basic Synchronization” you synchronized the script 

using a series of events that waited for specific screen information to appear. Although 

this is a very reliable synchronization method, it may require numerous event definitions 

to synchronize a script that contains many screens. 

In addition to requiring multiple event definitions, this method may produce varied 

results if the event you are waiting for appears before the emulator processes the entire 

screen image. For example, if you defined an event that waits for the Testbed version 

number to appear in the top-left portion of the screen, and the emulator builds screen 

images from left to right, then it is possible for the event definition to be satisfied before 

that screen’s processing is complete — which could cause the script and the target appli-

cation to become “out-of-sync.”

In this exercise, you will use another method of synchronization. This time, you’ll use a 

combination of system variables and events to synchronize the script and the target appli-

cation. We’ll reverse the logic, and instead of waiting for something to appear on the 

screen, we’ll wait for something to disappear from the screen. This technique requires 

defining a “not found” screen event. The emulator’s “system busy” indicator makes this 

possible.

Like most mainframe emulators, Testbed displays a system busy indicator at the bottom 

of the screen whenever it processes input. When the system is busy, the words 

“X SYSTEM” appear at the bottom of the screen. The busy indicator displays each time 

a key is pressed that causes the system to process input. Keys that invoke processing are 

called “action keys.” In Testbed, the action keys are F1, F2, F3, F4, Return, Enter, Escape.

Testbed cannot accept further keyboard input while the X SYSTEM indicator is 

displayed. Attempting to input causes the “X - f” error to appear on the screen. The 

X SYSTEM indicator makes it possible to use the Replay.ActionKeys and 

Replay.AutoWait (described below) system variables in conjunction with one single 

screen event to achieve complete synchronization with Testbed. You can use this single 

event to synchronize every screen as the script drives the application. This way, it is not 

necessary to define a unique screen event each time the screen changes.



2-30     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Replay.ActionKeys and Replay.AutoWait

The Replay.ActionKeys system variable defines the list of keys that trigger AutoWait 

processing. The Replay.ActionKeys list can contain any number of keystrokes and can 

include normal alpha keys (a, b, c), special keys (Return, Ctrl), or key combinations 

(Ctr + a, Ctrl + Alt + F1, Ctrl + a + b). Typically, the list defines the keys that cause the 

target application to begin processing data.

Replay.AutoWait is an optional system variable that specifies the length of time QARun 

should pause after typing an action key into the target application. After an action key is 

pressed, the script automatically pauses to allow time for the target application to finish 

processing, and then it executes the instructions contained in the Whenever ActionKey 

construct (if defined).

Only one active Whenever ActionKey statement is allowed per script. However, a script 

can redefine Whenever ActionKey processing by using the Whenever statement again 

with a different function.

The Whenever ActionKey statement works across multiple scripts. A parent script can 

define a Whenever Replay.ActionKey globally for all child scripts it executes, and the 

individual child scripts can redefine the Replay.ActionKey locally.

Changing Configuration Options

Before you begin creating and inserting events for this exercise, you must change some 

of the Script Editor’s configuration options. Changing the Use Wait Timeout option alters 

the way that Wait statements are pasted into the script — to allow you to check if the event 

occurred within the timeout period. Use the following procedure to change the Script 

Editor’s configuration options:

1. From the Script Editor’s Options menu, choose Configure. The Configure dialog 

box displays.

2. Click the Editor tab and ensure that the Wait Event Timeout option is set to 30.

3. Select the Use Wait Timeout check box and click OK. Selecting this option causes 

QARun to paste If … Else event logic with the Wait statement.



Building a Synchronized Driver Script     2-31

   BETA RELEASE

Getting Started

This exercise demonstrates a new, more reliable synchronization method. While imple-

menting this technique, you will establish the AutoWait processing as a separate script 

that will be “included” in all your future scripts. Using the Include command to incor-

porate scripts into other scripts allows multiple scripts to share common code and proce-

dures, and it provides a single source of script maintenance.

Exercise Prerequisites: Before beginning this exercise you must have completed the 

following prerequisites:

• Understand the concepts described in “Exercise 1 — Creating a Driver Script” and 

“Exercise 2 — Implementing Basic Synchronization”

• Change the Script Editor’s configuration options (see “Changing Configuration 

Options” on page 2-30)

• Start QARun

• Start Testbed.

Testing Requirements: The following test elements are created during this exercise:

• Function named StartAutosync

• Function named OnAutosync

• Event named Autosync

• Script named AUTOSYNC.

You should allow 15–20 minutes to complete this exercise.

Learning the Script and Defining Not Found Screen Events

Use the following procedure to begin learning the script.

2. Rename the Function Main statement and the End Function; Main statement 

to the following:

Function StartAutosync

End Function ; StartAutosync

QARun allows you to define only one Function Main per script (which will eventu-

ally be used in our main script), so you must rename this function because this script 

eventually will be included into other scripts and will not run as a stand-alone script.

1. Click the New button from QARun’s Script Editor toolbar to create a new script.



2-32     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

3. Add the following statements after the Function StartAutosync statement at 

the top of the script new script:

Replay.ActionKeys = "{F1}{F2}{F3}{F4}{Return}{Enter}{Esc}"

Replay.AutoWait = 3000

The Replay.ActionKeys statement lists all function keys and special keys that are 

used by Testbed as action keys. When listing the action keys, make sure there are no 

spaces between the action keys; inserting spaces causes QARun to treat the spaces 

as action keys. The Replay.AutoWait command pauses the script for a specified 

amount of time (defined in milliseconds) after any action key is pressed. 

4. Connect to Testbed Version 1. The Testbed logon screen displays.

Defining the Not Found Screen Event

In “Exercise 2 — Implementing Basic Synchronization”, you defined a screen event in 

conjunction with the Arrived At statement for each screen. In this exercise, you only need 

to define one screen event and one Arrived At statement. Use the following procedure to 

define the screen event:

2. Click the New button. The New Event dialog box displays:

1. With the new QARun script still open and the cursor positioned on a blank line fol-

lowing the Replay.AutoWait statement, click the Browse Events button on 

QARun’s toolbar. The Browse Events dialog box displays:



Building a Synchronized Driver Script     2-33

   BETA RELEASE

3. Select the Screen option and click OK. The Create Screen Event dialog box 

displays:

4. Enter a name such as Autosync in the Event name field (no spaces are allowed) and 

click Next. The Identify dialog box displays:

:

5. Click the Identify button. QARun is minimized and Testbed becomes visible.

Position the pointer over Testbed’s MainWindow title bar and single-click. QARun 

is restored and the window name appears in the Attach area of the Identify dialog 

box.

6. Click Next. The Screen Event dialog box displays:



2-34     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

7. Select the Use rectangle check box.

8. Click the Capture button. QARun is minimized and Testbed becomes visible.

You need to define a screen event that looks for the “X SYSTEM” busy indicator. 

However, the busy indicator is only available when Testbed is processing an 

instruction and will probably disappear before you can capture it. Because Testbed’s 

busy indicator always appears in the same location, so you can define the area 

where QARun should look for it.

Because it is difficult to judge the size of the area taken up by the X SYSTEM mes-

sage, it is best to define an area that is larger than necessary. This ensures that 

QARun recognizes the message regardless of its position on the status line.

9. Drag the cursor to create a boxed outline that stretches between the 4A symbol on 

the extreme left side and the L 21 C 16 at the right side. Release the mouse 

button.

10. When the Screen Event dialog box reappears, delete any information and blank 

spaces in the text entry area and enter the text X SYSTEM.

11. Select the Not found check box at the bottom of the Screen Event dialog box.

This option reverses the logic of the event. In the previous exercise, you specified 

that QARun must Wait until the text “Virtual Machine/System Product” appeared in 

the window. In this exercise, you are telling QARun to wait until the text is not dis-

played in the window. In other words, continue processing the script when “X SYS-

TEM” is removed (the system is not busy).

12. Click Finish. The Insert New Event dialog box displays:



Building a Synchronized Driver Script     2-35

   BETA RELEASE

13. Clear the Insert Arrived At check box. Then, this time, click the Whenever button 

to insert the event.

The Resulting Script

Inserting the Whenever statement not only adds the Whenever statement, but it also 

inserts an additional function definition at the bottom of the script. This is the function 

that the Whenever statement calls when the event occurs. After completing the above 

steps, your test script should look very similar to the following example (code associated 

with the inserted Whenever statement is highlighted in bold typeface):

Function StartAutosync

Replay.ActionKeys = "{F1}{F2}{F3}{F4}{Return}{Enter}{Esc}"

Replay.AutoWait = 3000

Whenever "Autosync" Call OnAutosync

End Function    ; StartAutosync

Function OnAutosync

    ;

    ; Function to handle the event 'autosync'

;

End Function ; OnAutosync

Modifying the Script

To modify the script to successfully handle the Whenever statement, you must perform 

the following adjustments:

• Redefine the Whenever statement

• Complete the OnAutosync function by inserting a Wait statement and a text panel.

Use the following procedure to modify your script:



2-36     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

1. Edit the line that reads Whenever "Autosync" Call OnAutosync to the 

following:

Whenever "ActionKey" Call OnAutosync

This tells QARun to call the function named OnAutosync each time the script uses 

one of the keys defined in the Replay.ActionKeys statement.

3. Ensure that the Preview check box is cleared, select the event named Autosync, and 

click the Insert button. The Insert New Event dialog box displays.

For this exercise, you will tell QARun to write a successful LogComment to the log 

if the event occurs within 30 seconds. If the event does not occur within 30 seconds, 

a text panel displays to indicate that the host system did not respond.

4. Select the Insert Arrived At check box and click the Wait button. The Arrived At 

dialog box displays:

5. In the Insert text area, enter New Screen Successfully and click OK.

A LogComment statement is added to your script that tells QARun to write a com-

ment to the log if the event is successful.

The following code (highlighted in bold typeface) is inserted into your script:

Function OnAutosync

If Wait(30, "", "Autosync") = 1

;

; Event Passed

;

LogComment( "Arrived At New Screen Successfully" )

Else

;

; Timeout of 30 seconds has been exceeded

;

EndIf

;

; Function to handle the event 'autosync'

;

End Function ; OnAutosync

2. Place the cursor in a blank line following the Function OnAutosync statement 

and click the Browse Events button. The Browse Events dialog box displays.



Building a Synchronized Driver Script     2-37

   BETA RELEASE

In “Exercise 2 — Implementing Basic Synchronization”, inserting a Wait statement 

only added one line of code to the script. However, because you changed the Script 

Editor’s configuration options in this script, QARun inserted the Wait statement 

with a series of If…Else statements. This is called event logic, and it allows you to 

determine how QARun should proceed when the defined event occurs or does not 

occur.

You now need to tell QARun how to proceed if the event is not successful. To do 

this, you will use QARun’s Command Wizard to insert a text panel into the script. 

The text panel will display when the event is not successful.

The Command Wizard is a utility that assists you in selecting a command’s parame-

ters and options. Once you’re familiar with a command’s proper syntax, you may 

enter it directly into the script; however, the Command Wizard is a helpful way to 

enter commands if you are a new QARun user, or if you are not familiar with a par-

ticular command.

7. Select TextPanel( ) from the Command scroll list and click Next. The Command 

Wizard, Parameters dialog box displays:

Note

You may remove any comment lines (beginning with “;” ) in your script.

6. Place the cursor in the line following the Else statement and click the Command 

Wizard button. The Command Wizard dialog box displays:



2-38     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

8. Enter 1 in the Panel number area (each panel must have a unique ID number 

between 1 and 30) and enter Host Failed To Respond in the Text to display area. 

9. Click Next. 

Two additional Command Wizard Parameters dialog boxes appear, allowing you to 

specify the size and position of the TextPanel. These fields are optional. Advance 

through the dialog boxes by clicking the Next button until the Command Wizard 

Paste dialog box displays:

10. Verify that the information displayed in the command’s build area is correct and 

click the Paste button. The following code is inserted into your script:

TextPanel( 1 , "Host Failed To Respond" )

11. Remove any unnecessary comment lines from the script.



Building a Synchronized Driver Script     2-39

   BETA RELEASE

The Resulting Script

The resulting script should resemble the example below: 

Function StartAutosync

Replay.ActionKeys = "{F1}{F2}{F3}{F4}{Return}{Enter}{Esc}"

Replay.AutoWait = 3000

Whenever "ActionKey" Call OnAutosync

End Function    ; StartAutosync

Function OnAutosync

If Wait(30, "", "Autosync") = 1

LogComment( "Arrived At New Screen Successfully" )

Else

TextPanel( 1 , "Host Failed To Respond" )

EndIf

End Function ;  OnAutosync

The script tells QARun to wait 30 seconds after each action key is pressed and then call 

the OnAutosync function. The function waits 30 seconds for the X SYSTEM busy 

indicator to disappear from the screen and writes a LogComment statement to the log 

after the event is satisfied. A text panel displays on the screen if the busy indicator does 

not disappear within the allotted time period. 

Saving the Script

In previous exercises, the script was automatically saved and compiled when you ran it. 

In this exercise, the script is not intended to run independently. You do not need to 

compile the script. You just need to save it so it can be included into the driver script later. 

Use the following procedure to save the script:

1. From the File menu, choose Save. The Summary Info dialog box displays.

2. Enter a name such as AUTOSYNC in the Name area, complete a brief description of 

the script, and click OK.

Exercise Summary

This exercise focused on creating a synchronization script that will be included in future 

test scripts. After completing this exercise, you should be able to successfully:

• Understand the Replay.ActionKeys and Replay.AutoWait system variables

• Change the Script Editor’s configuration options

• Synchronize QARun scripts with character-based systems using a 

system busy indicator

• Define a not found screen event

• Insert commands into scripts using the Command Wizard

• Create functions that implement event logic

• Save scripts without compiling.



2-40     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Exercise 4 — Completing the Driver Script

This is the final exercise for creating a driver script. When complete, this new driver 

script will start Testbed, logon to the system, and select a few of the available options. 

The script will then return to the logon screen and disconnect the session.

This driver script is similar to the one created in “Exercise 2 — Implementing Basic 

Synchronization”, except you will not need to create as many screen events. Instead, you 

will modify the driver script to include the AutoWait logic you defined in “Exercise 3 — 

Synchronizing Scripts Using System Variables” and use this as synchronization. This 

way, the script will verify that the appropriate screens are reached before continuing.

Changing Configuration Options

Before you create the script for this exercise, you need to change a Script Editor replay 

option. Changing this option will cause the script’s log to be automatically loaded and 

displayed after the script is run. Use the following procedure to change the replay option:

1. From the Script Editor’s Options menu, choose Configure. The configure dialog 

box displays.

2. Click the Replay tab and select the Auto Load Log check box.

3. Click OK.

Getting Started

This exercise demonstrates how to create a new driver script that includes another previ-

ously created script. Before you begin, make sure that Testbed is closed and start QARun.

Exercise Prerequisites: Before beginning this exercise you must have completed the 

following prerequisites:

• Understand the concepts described in “Exercise 1 — Creating a Driver Script” and 

“Exercise 2 — Implementing Basic Synchronization”

• Change the Script Editor’s configuration options (see “Changing Configuration 

Options” on page 2-40)

• Access to the script named AUTOSYNC created during “Exercise 3 — Synchroniz-

ing Scripts Using System Variables”

• Access to the Event named Autosync created during “Exercise 3 — Synchronizing 

Scripts Using System Variables” 

• Start QARun.

Testing Requirements: The following test elements are created during this exercise:

• Script named Driver2.

You should allow approximately 20 minutes for this exercise.



Building a Synchronized Driver Script     2-41

   BETA RELEASE

Learning the Script

1. Close all copies of Testbed and close the Autosync script created in “Exercise 3 — 

Synchronizing Scripts Using System Variables”.

2. From the Script Editor’s File menu, choose New to start a new script.

4. Start Testbed Version 1 in the normal manner (see page 2-10 for instructions, if 

necessary).

Notice the six-character screen ID in the top-right portion of the screen. In future 

exercises, you’ll use the screen IDs (rather than the screen titles) to identify screens.

6. Logon to Testbed:

a. Type CW in the USERID field and press Tab.

b. Type PASS in the PASSWORD field and press Enter.

Notice that the busy indicator, “X SYSTEM,” appears in Testbed’s status bar while 

it processes the logon details. This is the event indicator that our synchronization is 

built on. After logging on, Testbed’s MAIN MENU (screen ID AAA000) appears:

3. Click the Learn Script button on the toolbar. QARun minimizes, allowing clear 

access to the desktop.

5. When Testbed appears, click the Connect button. Testbed’s VIRTUAL MACHINE/

SYSTEM PRODUCT logon screen displays:



2-42     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

7. Press the F1 key to access screen ID AAR020 (CUSTOMER MASTER MAINTE-

NANCE MENU screen).

You do not need to insert a screen event or a LogComment because you already 

defined the necessary synchronization logic in the Autosync script, and you will 

include this script at the end of the exercise.

8. Press the Esc key to return to Testbed’s MAIN MENU screen.

9. Press the F4 key from Testbed’s MAIN MENU screen. Screen ID FID001 (FIND 

DOCUMENTS screen) displays:



Building a Synchronized Driver Script     2-43

   BETA RELEASE

10. Press the Esc key to return to Testbed’s MAIN MENU screen.

Closing Testbed

After you return to Testbed’s MAIN MENU screen, complete the following steps to close 

Testbed:

1. Press the Esc key again to return to Testbed’s VIRTUAL MACHINE/SYSTEM 

PRODUCT logon screen.

4. Press the Learn Hotkey, {Alt {F10}}, to stop learning the script. QARun is restored 

and the script you just created is visible.

2. Click the Disconnect button on the toolbar and click the Yes button from the confir-

mation dialog box.

3. From Testbed’s File menu, choose Exit.



2-44     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

The Resulting Script

Like the driver script created in “Exercise 1 — Creating a Driver Script”, this driver script 

starts Testbed, logs on to the system, and selects a few of the available options. The script 

then returns to the logon screen and disconnects the session. The script you created in this 

exercise should resemble the following example:

Function Main

Attach "PopupWindow~1"

Button "Start", 'Left SingleClick'

PopupMenuSelect "Run..."

Attach "Run PopupWindow"

ComboText "&Open:", 

"""C:\Program Files\Compuware\QARun\Demos\TESTBED.EXE"" -v1"

Button "OK", 'Left SingleClick'

Attach "Testbed for Windows V1.00  ChildWindow~1"

MouseClick 186, 20, 'Left SingleClick'

Attach "Testbed for Windows V1.00 Connected MainWindow"

Type "CW{Tab}pass{Return}"

Type "{F1}{Esc}{F4}{Esc}{Esc}"

Attach "Testbed for Windows V1.00 Connected ChildWindow~1"

MouseClick 239, 31, 'Left SingleClick'

Attach "Testbed for Windows PopupWindow"

Button "&Yes", 'Left SingleClick'

Attach "Testbed for Windows V1.00  MainWindow"

MenuSelect "File~Exit"

End Function ; Main

Modifying the Script

To modify the script so that it includes the Autosync script (which contains the necessary 

synchronization logic) and generates meaningful log comments, you must perform the 

following adjustments:

• Add an Include statement

• Call the StartAutosync function

• Separate the Type statements into individual lines.

Use the following procedure to modify your script:

1. To add the Include statement, position the cursor at the top of the driver script and 

insert the following code before the Function Main statement:

Include "Autosync"

The Include statement instructs QARun to incorporate the contents of the Autosync 

script to this script when it compiles. During compilation, QARun treats the con-



Building a Synchronized Driver Script     2-45

   BETA RELEASE

tents of any included script as if it were pasted directly in the main script; therefore 

included scripts should only contain complete functions or constants. Because 

included scripts contain complete functions, they cannot be inserted within existing 

functions (Function Main, for example). They must reside outside any previously 

defined functions.

2. To Call the synchronization logic, position the cursor on a blank line following the 

Function Main statement and insert the following code:

Call StartAutosync

The Call statement must be inserted after the Function Main statement so QARun 

can access the synchronization logic in the Autosync script each time an action key 

is pressed. StartAutosync is the name of the function that contains the 

Replay.ActionKeys, Replay.AutoWait, and Whenever statements.

3. To modify the Type statement, position your cursor on the line that reads:

Type "{F1}{Esc}{F4}{Escape}{Escape}". Separate the single line into 

individual lines as shown below:

Type "{F1}"

Type "{Escape}"

Type "{F4}"

Type "{Escape}"

Type "{Escape}"

QARun Learns all action keys in a single Type statement. Separating the Type state-

ments often makes the log file easier to understand.

Hint

Once you have created the synchronization script that will be included in other test 

scripts, you can insert the Include statement, Function Main statement, Call statement, 

and End Function statement as part of the default script information. This means that 

every script you create will automatically contain the synchronization logic, and you will 

not need to make those modifications.

To add these statements, select Configure from the Script Editor’s Options menu and 

click the Default Script tab. The remaining procedures assume that you have added this 

information to the Default Script header.



2-46     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

After you have completed the modification described above, the beginning of the driver 

script should resemble the following example (changes are indicated in bold typeface):

Include "Autosync"

Function Main

Call StartAutosync

Attach "PopupWindow~1"

Button "Start", 'Left SingleClick'

PopupMenuSelect "Run..."

Attach "Run PopupWindow"

ComboText "&Open:", 

"""C:\Program Files\Compuware\QARun\Demos\TESTBED.EXE"" -v1"

Button "OK", 'Left SingleClick'

Attach "Testbed for Windows V1.00  ChildWindow~1"

MouseClick 186, 20, 'Left SingleClick

Attach "Testbed for Windows V1.00 Connected MainWindow"

Type "CW{Tab}pass{Return}"

Type "{F1}"

Type "{Escape}"

Type "{F4}"

Type "{Escape}"

Type "{Escape}"

Running the Script

3. Click OK to begin running the script. After the script completes, Log View displays 

the results of the test run.

Analyzing the Results

Once the script finishes, Log View automatically loads and displays the script results. The 

row and column format of the Log View display can be modified using the Grid>Column 

Layout command from the View menu. Your log should resemble the following example:

1. Click the Run button on QARun’s toolbar. The Summary Info dialog box displays.

2. Enter a script name such as Driver2 in the Name area, complete a brief description 

of the script, and click OK. The Run Script dialog box displays.



Building a Synchronized Driver Script     2-47

   BETA RELEASE

Examine the log for the following results:

• Establishing the ActionKeys and AutoWait logic

• Exchange of commands between the Driver2 script and the Autosync script

• Automatic use of the Autosync event after each Type command

• Automatic appearance of successful Arrived at statements after each event.

You should also note that the Arrived At statement is generic; that is, the same statement 

is written to the log each time a new screen is reached. 

In most cases, the generic Arrived At statement should be adequate; however, it is 

possible to establish a single Arrived At statement that will display unique screen details 

each time a new screen is reached. This technique produces very specific log information. 

If you are interested in exploring this method, proceed to the optional exercise, 

“Advanced Logging Techniques” on page 2-48.



2-48     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Advanced Logging Techniques

This section contains an optional exercise designed to generate specific screen-dependent 

Arrived At statements in the script log. This exercise is considered more advanced than 

the previous exercises because it requires that you edit the script to use the CaptureBox 

and LogOff commands.

In this exercise, you will modify the Autosync script and define a CaptureBox that 

retrieves or “captures” the screen ID from each screen as it displays. This screen ID will 

then be dynamically written to the Arrived At statement that appears in the log.

Use the following procedure to modify your script:

1. Make sure that Testbed is running on your desktop and click the Connect button.

4. Position the cursor on a blank line following the line that reads 

If Wait(30, "", "autosync") = 1.

5. From the Insert menu, choose CaptureBox. The Command Wizard CaptureBox( ) 

dialog box displays:

The CaptureBox command allows you to capture any text that is displayed in a rect-

angular area of the attached window.

6. Click the Identify button. QARun is minimized and Testbed becomes visible

Position the pointer over Testbed’s MainWindow and single-click. QARun is 

restored and the window name appears in the Attach area of the Identify dialog box.

2. Start QARun and click the Scripts button. The Browse Scripts dialog box displays.

3. Double-click the Autosync script to open it.



Building a Synchronized Driver Script     2-49

   BETA RELEASE

7. Click the Capture button to define the specific screen area to capture.

For this exercise, position the cursor at the beginning of the six-character screen ID 

located in the top-right corner of the screen.

Screen IDs are unique for each screen displayed in Testbed. This screen ID number 

will be used to uniquely identify each screen in the QARun log.

8. Drag the cursor over the screen area containing the six-character screen ID and 

release the mouse button. QARun is restored and the Command Wizard’s 

CaptureBox( ) dialog box is again displayed.

9. Click the Paste button. The following line of code is inserted into your script:

ret = CaptureBox( "Testbed for Windows V1.00 Connected 

MainWindow" , 582 , 46 , 51 , 11 )

This statement tells QARun to capture the text from the specific coordinates in Test-

bed’s MainWindow and to store it in a variable named Ret. To generate a detailed 

log, you will build the contents of the ret variable into the existing Arrived At 

statement.

10. Edit the line that reads LogComment( "Arrived At New Screen 

Successfully" ) to the following (changes are indicated in bold typeface):

LogComment( "Arrived At Screen ID [" + ret + "]" )

This modification tells QARun to paste the contents of the CaptureBox data (the 

screen ID) into the log’s Arrived At statement each time a screen is displayed. 

To prevent the CaptureBox statement from being written to the log each time a 

screen is displayed and unnecessarily cluttering the log file, you can use the 

LogOff( ) command to tell QARun not to write specific information to the log.

11. Position your cursor on a blank line following the Function StartAutosync 

statement and insert the following line of code:

Logoff( "CaptureBox")

12. From the File menu, choose Save to save the script.



2-50     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

The Resulting Script

After you complete the modifications described above, the Autosync script should 

resemble the following example (changes are indicated in bold typeface):

Function StartAutosync

Logoff( "CaptureBox")

Replay.ActionKeys = "{F1}{F2}{F3}{F4}{Return}{Enter}{Escape}"

Replay.AutoWait = 3000

Whenever "ActionKey" Call Onautosync

End Function    ; StartAutosync

Function OnAutosync

If Wait(30, "", "Autosync") = 1

ret = CaptureBox( "Testbed for Windows V1.00 Connected 

MainWindow" , 575 , 47 , 58 , 10 )

LogComment( "Arrived At Screen ID [" + ret + "]" )

Else

TextPanel( 1 , "Host Failed To Respond" )

EndIf

End Function ;  OnAutosync

Analyzing the Results

The next time you run the Driver2 script, Log View automatically loads and displays the 

script results. Your log should now resemble the following example:

Figure 2-1. Sample Log View with Dynamic CaptureBox Commands

Notice that each Arrived At statement now details the screen ID (enclosed in brackets) 

for each screen as it is reached. In this exercise, you used the CaptureBox( ) command to 

capture the screen ID; however, you can use it to capture any area of information from a 

screen. For instance, you may want to use it to capture the screen’s title instead.



Building a Synchronized Driver Script     2-51

   BETA RELEASE

Exercise Summary

This exercise focused on creating a driver script that includes a separate synchronization 

script into the main script and generates detailed log information. After completing this 

exercise, you should be able to successfully:

• Add Include statements to an existing script

• Add Include statements into the Default Script information

• Call a function from an included script

• Separate Type statements to make the log more readable

• Analyze log data

• Open an existing script (from optional exercise)

• Define a CaptureBox (from optional exercise)

• Make dynamic Arrived At statements (from optional exercise)

• Turn logging off for specific QARun commands (from optional exercise).

In future exercises, we’ll discuss creating individual test scripts to be used in conjunction 

with the driver script.



2-52     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE



   BETA RELEASE

     3-1

Chapter 3.   Building Test Scripts

Test scripts are created the same way as driver scripts. A test script is a modular script 

that is designed to test specific elements of a test site. For example, a driver script might 

advance the target application to its main menu and then pass control to a test script that 

“checks” the menus for the available options. After the test script completes its check, 

control would be returned to the driver script, which advances the target application to the 

next test site and then passes control to the next test script. The driver script and test 

scripts should be created separately — as this makes it easier to modify tests when there 

is a change to the target application.

The purpose of the following exercises is to build test scripts that will eventually be called 

by the driver script created during “Exercise 4 — Completing the Driver Script”, thus 

creating a complete test suite.

• “Exercise 5 — Using Text Checks” demonstrates how text checks can be used to 

validate data in the target application’s fields. The text check can be used to check 

for textual, numeric, and date and time values.

• “Exercise 6 — Using Clock Checks To Test Performance” demonstrates how to 

check the performance of an application using a clock check. Clock checks use 

QARun’s internal stopwatches to measure the time it takes to complete a specific 

function. 

• “Exercise 7 — Using External TestData Files” demonstrates how to enter variable 

data into the target application — to test the application’s behavior with different 

input or to test behavior under heavy load conditions. The test script will carry out 

volume testing using an independent data file to enter information into Testbed.

• “Exercise 8 — Inserting Bitmap Checks” demonstrates how to build a simple test 

script that can be used to regression test. This test script will use a bitmap check as 

the regression comparison facility.

• “Exercise 9 — Inserting Script Dialog Boxes” demonstrates how to use QARun’s 

Dialog Editor to create a dialog box that causes your script to prompt you for userID 

and password information, rather than having them “hard coded” directly in the 

script.



3-2     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Exercise 5 — Using Text Checks

To confirm that an application is working correctly, you need to verify or “check” that it 

is doing what it should be doing. In QARun, you define what a system should be doing in 

the form of a “check.” 

A check is a definition of what the application’s expected state should be at a particular 

point. After you create and define a check, you can insert it into your script and use it to 

verify the target application’s state at a specific point.

QARun has many different types of checks, but probably the most valuable check for 

mainframe applications is the text check. Text checks can be used to validate data such as 

ASCII text strings, numeric values, and date and time fields. QARun checks actual text 

and is not sensitive to changes in font type or style. The purpose of this exercise is to build 

a simple test script that incorporates QARun’s text checking features. 

Getting Started

In “Exercise 4 — Completing the Driver Script”, you built a driver script that started 

Testbed, logged on to the system, and then selected some of the options from Testbed’s 

MAIN MENU. One of those options accessed the CUSTOMER MASTER MAINTE-

NANCE MENU screen. This exercise creates a test script that takes control from the 

driver script when the CUSTOMER MASTER MAINTENANCE MENU screen is 

reached and then makes an inquiry on an existing customer. 

When the customer’s details are displayed, the test script will implement a text check to 

check the data contained in certain fields before it returns to the CUSTOMER MASTER 

MAINTENANCE MENU screen and passes control back to the driver script.

Exercise Prerequisites: Before beginning this exercise you must have completed the 

following prerequisites:

• Access to the script named AUTOSYNC created during “Exercise 3 — Synchroniz-

ing Scripts Using System Variables” 

• Access to the Event named Autosync created during “Exercise 3 — Synchronizing 

Scripts Using System Variables”

• Include Autosync script and Call statement in the default script (see page 2-45)

• Close Testbed

• Close QARun.

Testing Requirements: The following test elements are created during this exercise:

• Text check named Master Credit Data Text Check

• Script named Custcred.

You should allow 20–30 minutes to complete this exercise.



Building Test Scripts     3-3

   BETA RELEASE

Learning the Script

Use the following procedure to advance Testbed to the CUSTOMER MASTER 

MAINTENANCE MENU screen and begin learning a new test script:

1. Start QARun and open a new script (ensure the default script information contains 

the Include statement for the synchronization logic).

2. Start Testbed Version 1in the normal manner and logon to the system (see the proce-

dures on page 2-10, if necessary). Testbed’s MAIN MENU screen displays.

3. Press the F1 key to select the Customer Maintenance option. The CUSTOMER 

MASTER MAINTENANCE MENU screen displays:

The CUSTOMER MASTER MAINTENANCE MENU screen is the screen that 

this test script will start from and return to.

4. Press the Learn Hotkey, {Alt{F10}}, to start Learn. 

5. Complete the fields on the CUSTOMER MASTER MAINTENANCE MENU with 

the following information:

a. Type E in the ACTION field and press Tab to move to the next field.

b. Type 111 into the CUSTOMER field. This is a valid customer record number.

6. Press the F1 key. The CUSTOMER MASTER CREDIT DATA screen displays:



3-4     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

7. Press the Arrived at Hotkey, {ALT{F9}} and type CUSTOMER MASTER 

CREDIT DATA as the name of the Testbed screen in the Insert text field. 

8. Click OK.

QARun inserts a LogComment statement into your script.

Defining the Text Check

The CUSTOMER MASTER CREDIT DATA screen contains detailed information on 

customer number 111. You will use this information as part of the text check.

1. Press the Insert Check Hotkey, {Alt{F8}}. The Browse Checks dialog 

box displays.

2. Click the New button to create a new check. The New Check dialog box displays.

3. Select the Text option to create a new text check and click OK. The Text Check 

dialog box displays:



Building Test Scripts     3-5

   BETA RELEASE

4. In the Text Check dialog box Name field, enter a check name such as Master Credit 

Data Text Check.

5. Click the Identify button. QARun minimizes and the Testbed screen is now visible.

Position the pointer over Testbed’s MainWindow and click. QARun is restored and 

the window name appears in the Attach name area.

A new window, the Text Captured window, displays the contents of the captured 

window (the Text Check dialog box is still open and is usually under the Text Cap-

tured window):

You’ll use this window to define the areas where the text check looks for specific 

information on the screen using the Exclude Areas and Include Areas tabs. 



3-6     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

• The Exclude Areas tab allows you to ignore portions of the screen during the 

text check. This is a way of ignoring values that are not significant or values 

that are supposed to change (such as free disk space, the date, etc.). When used, 

all text outside the rectangle is checked, and all text within the rectangle is 

omitted from the check.

• The Include Areas tab allows you to check specific areas of the screen. The 

include area can be defined as a date, number, time, or ASCII value. When this 

option is used, all text outside of the rectangle is omitted from the check.

You may define multiple include or exclude areas on any window; however, you may not 

define include and exclude areas in the same check.

If you define multiple include or exclude areas, the Area number spin control allows you 

to navigate to the areas and redisplay the contents of the rectangle. If the defined areas are 

include areas, then you may edit the text within the Text in area section of the dialog box. 

If the defined areas are exclude areas, you may not edit the text.

Defining Include Areas

In this portion of the exercise, you will define the information on the CUSTOMER 

MASTER CREDIT DATA screen that should be included in the check, so that QARun 

verifies the following information:

• Testbed returned the correct customer number, 111

• The CONTACT field contains the text “Mr. Hope”

• The CREDIT LIMIT field’s value is 2000

• The ORDER LIMIT field’s value is less than 1000

• The TERMS CODE field contains two numbers and three or four alphabetic 

characters.

Defining the First Include Area

Use the following procedure to include an area for a text check:

1. With the QARun Text Check dialog box active, click the Include Areas tab.

2. Click the New button. The Text Check dialog box is minimized and the Text 

Captured window displays.

The first area that you will include in the text check is the CUSTOMER field.

3. Position the cursor over the top-right portion of the CUSTOMER field (the value 

111). Click-and-drag the cursor to the bottom-left of the field and release the mouse 

button. After you release the mouse button, a green rectangle appears around the 

value “111”, and the Text Check dialog box displays with the value “111” in the 

Text in the area field.



Building Test Scripts     3-7

   BETA RELEASE

4. Click the Numeric button on the Text Check dialog box’s Include Areas tab to 

define the contents of the CUSTOMER field as a numeric value. The Numeric tab 

displays:

This dialog box allows you to set the text check’s comparison options to check if the 

value in the CUSTOMER field is exactly 111, greater than 111, less than 111, 

between two values that you determine, or any valid number when the check is run.

5. Select the Equal to option. 

The first include area for this text check is now complete. Do not click OK to close 

the Text Check dialog box. You will continue to define additional include areas as 

part of this same text check.

Defining ASCII Include Areas

Use the following procedure to define additional include areas in the same text check:

1. Click the Include Areas tab to define a check area for the CONTACT field.

2. Click the New button. The Text Captured window displays.

3. Select the contents of the CONTACT field, “Mr. Hope”, for this include area. It’s 

always good practice to select an area that is larger than the actual text, to accom-

modate situations where the field may contain a longer name.

4. Click the ASCII button on the Text Check dialog box’s Include Areas tab to define 

the contents of the CONTACT field as an ASCII value. The ASCII Text tab 

displays:



3-8     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

5. Select the Exact, Case, and Spaces check boxes.

• Exact check box — Matches the exact text of the Include area. If additional 

characters are found before or after the include text, the check will fail.

• Case check box — Matches the text’s capitalization that appears in the include 

area. If you don’t want capitalization to be considered, clear this check box.

• Spaces check box — Matches the spaces in the text in the include area. If you 

do not want spaces to be considered in the text check, clear this check box.

It is also possible to edit the current captured values and enter the values that you 

expect to encounter when the script is run.

6. Type Mr. Smith in the Text in the area box. 

Changing this value tells QARun to expect to find the name “Mr. Smith” in Include 

area 2, instead of “Mr. Hope” the next time the script is run.

Defining Additional Numeric Include Areas

Use the following procedure to define the final numeric include area:

1. Click the Include Areas tab to define a numeric Include check area for the CREDIT 

LIMIT field. Repeat steps 2–5 from “Defining the First Include Area” to define the 

next Include check area, except select the value “2000.00” from the CREDIT 

LIMIT field.

2. To define a numeric Include area for the ORDER LIMIT field, click the Include 

Areas tab again and then click New.

3. Select “1000.00” from the ORDER LIMIT field and click the Numeric button.

For this check area, you’ll modify the captured value in order to use a different type 

of numeric check.



Building Test Scripts     3-9

   BETA RELEASE

4. On the Numeric tab, change the value in the Text in the area field from 1000.00 to 

1001.00. Then, select the Less than radio button.

If QARun encounters any number in the check area that is less than 1001, the text 

check will pass.

Defining Text Patterns in Include Areas

A pattern match allows you to check an area for a specific alpha-numeric character 

pattern within the selected text. You will select specific comparison options to determine 

that the check will verify that the value and text pattern in the TERMS CODE field.

Use the following procedure to define a pattern check in an include area for the same text 

check:

1. To define a pattern Include area for the TERMS CODE field, click the Include 

Areas tab again and then click New.

2. Select the text “30 DAYS” from the TERMS CODE field, and click the Pattern 

button on the Include Areas tab.

3. Click the Pattern radio button to define a specific pattern of characters. 

4. Click the Format drop-down list to view QARun’s predefined patterns. None of the 

pre-defined patterns will match the “30 DAYS” text you captured, so you will need 

to define a new pattern match. Some of the available codes are: 

:a Any alphabetic character

:d Any digit/number

:n Any alphanumeric character, and . [a period]. 

You can combine these codes into strings to create a pattern for QARun to search for 

during the check. To view a complete list of the pattern format variables, press F1 

from the Pattern Match tab to access the context-sensitive online help.



3-10     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

5. Enter the following pattern definition in the Format list box. 

:d:d :a:a:a.

Based on this pattern definition, QARun expects to find two numbers, followed by a 

space, followed by any three alphabetic characters, and then any character other 

than a new line. Therefore, the check will pass if the value displayed is 30 DAYS or 

01 DAY. The pattern you just defined is now added to the definitions contained in 

the Format field’s drop-down list.

6. To verify that QARun will locate the selected text based on the pattern you just 

defined, click the Test button on the Pattern Match tab. In the Text in the area field, 

QARun highlights the text that matches the defined pattern and displays the word 

“Match.” If the text did not match, the system displays the words “No Match” at the 

bottom of the tab.

7. To save the check and insert it into your script, click the OK button on the Text 

Check dialog box.

The system returns you to Testbed when the text check is complete. Remember, Learn is 

still on.

Continue Learning the Script

Use the following procedure to Learn the last portion of this test script:

1. Press the Escape key to return to the CUSTOMER MASTER MAINTENANCE 

MENU screen.

2. Press the Learn Hotkey, {Alt{F10}}, to stop learning the script. QARun appears 

and the script you just defined is visible.



Building Test Scripts     3-11

   BETA RELEASE

The Resulting Script

After completing the above steps, your test script should look very similar to the 

following example. The code associated with the inserted check is highlighted in bold 

typeface:

Include "Autosync"

Function Main

Call StartAutosync

Attach "Testbed for Windows V1.00 Connected MainWindow"

Type "E{Tab}111{F1}"

LogComment( "Arrived at Customer Master Credit Data" )

Check "Master Credit Data Text Check"

Type "{Esc}"

End Function ; Main

This example script contains the synchronization logic that is necessary to run the script 

independently of the driver script. The synchronization logic is not necessary if the script 

will only be run as part of the driver script, because the driver script makes the logic 

available to all child scripts; however, if you intend to run the script independently, it must 

contain its own synchronization logic.

Running the Script

It is possible to run test scripts independently of the associated driver script if you have 

included the required synchronization techniques and advanced the target application to 

the appropriate test site. Running the test script independently is a useful way to verify 

that a test script runs without errors.

Use the following procedure to run the test script:

3. Enter a description that explains what the script does, then click OK.

4. Click OK from the Run Script dialog box to run the Custcred script.

1. Click the Run button on QARun’s toolbar. The Summary Info dialog box displays.

2. Enter a name for the script such as Custcred in the Name field.



3-12     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Analyzing the Results

When the script finishes, Log View automatically loads with the CustCred log file:

Figure 3-1. View Text Check Results

The result of the check is logged to the log file. If the check passed, it is highlighted in 

green (the default color for checks that pass). Failed checks are highlighted in red. 

In this exercise, the Master Credit Data Text Check was designed to fail when you ran the 

script because you told QARun to expect to find the text “Mr. Smith” (see steps on page 

3-8), but the application contained the text “Mr. Hope.”

No further action is necessary at this point. Later, when the entire test suite is run against 

Testbed Version 2, many of the checks will fail. It will then be possible to analyze the 

differences between the expected and actual responses.

Exercise Summary

This exercise focused on creating a test script that contained a text check with multiple 

include areas. After completing this exercise, you should be able to successfully:

• Create new text checks

• Define a text check that verifies specific numeric values

• Define a text check that verifies specific text values

• Define a text check that verifies character and numeric patterns

• Modify a text check to verify information that is different than the original captured 

text

• Insert a text check into a script

• Recognize the formats used to define pattern text checks.



Building Test Scripts     3-13

   BETA RELEASE

Exercise 6 — Using Clock Checks To Test Performance 

The purpose of this exercise is to check the performance of an application using a clock 

check. Clock checks use QARun’s internal stopwatches to measure the time it takes to 

complete a specific function. 

In “Exercise 3 — Synchronizing Scripts Using System Variables” the driver script 

accessed Testbed’s FIND DOCUMENTS screen by pressing F4 at Testbed’s MAIN 

MENU screen. When complete, this next test script will instruct Testbed to find 

documents that contain the keyword “Bank” and measure the time it takes for Testbed’s 

DOCUMENTS FOUND SCREEN to appear. In order to perform a true performance test, 

you’ll use the Repeat command to make the script loop several times.

Changing Configuration Options

Before you begin creating and inserting events for this exercise, you must change some 

of the Script Editor’s configuration options. Changing these options will cause QARun to 

insert a simple Wait event into your script, rather than the “event logic” inserted in 

“Exercise 3 — Synchronizing Scripts Using System Variables”.

Use the following procedure to change the Script Editor’s configuration options:

1. From the Script Editor’s Options menu, choose Configure. The Configure dialog 

box displays.

2. Click the Editor tab and double-click the Wait Event Timeout option.

3. Change the New Value field to 0 in the Wait Event Timeout dialog box and click 

OK. The Configure dialog box reappears.

4. Clear the Use Wait Timeout check box to turn it off and click OK.



3-14     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Getting Started

Before creating the test script, close all open copies of QARun and Testbed. The following 

procedure will open a new script, advance Testbed to the appropriate test site, and begin 

learning new testing activity.

Exercise Prerequisites: Before beginning this exercise, you must have completed the 

following prerequisites:

• Access to the script named AUTOSYNC created during “Exercise 3 — Synchroniz-

ing Scripts Using System Variables”

• Access to the Event named Autosync created during “Exercise 3 — Synchronizing 

Scripts Using System Variables”

• Include Autosync script and Call statement in the default script (see page 2-45)

• Close Testbed

• Close QARun.

Testing Requirements: The following test elements are created during this exercise:

• Screen event named FindDoc

• Clock check named DocumentsFound

• Script named FINDDOCS.

You should allow 30–45 minutes to complete this exercise.

Learning the Script

Use the following procedure to begin learning the new test script:

1. Start QARun and open a new script (ensure the default script information contains 

the Include statement for the synchronization logic).

2. Start Testbed Version 1 using the same method described in previous exercises.

3. When Testbed appears, click the Connect button. The VIRTUAL MACHINE/

SYSTEM PRODUCT logon screen displays.

4. Logon to Testbed:

a. Type CW in the USERID field and press Tab.

b. Type PASS in the PASSWORD field and press Enter.

After logging on, Testbed’s MAIN MENU displays.

5. Press F4 (Search) from Testbed’s MAIN MENU. The FIND DOCUMENTS screen 

displays:



Building Test Scripts     3-15

   BETA RELEASE

6. Press the Learn Hotkey, {Alt{F10}}, to start Learn. 

7. Press the Tab key until the cursor reaches the Key words field and enter the 

keyword BANK.

8. Press F2. 

After a short pause, Testbed displays the PROCESS THE DOCUMENTS FOUND 

screen. For this test script, this screen signifies the end of the process that you are 

timing. You must define an event that indicates when this screen has been reached 

and an Arrived At statement to record the screen in the log.

Defining Events and Arrived At Statements

This event will be used to tell QARun that the PROCESS DOCUMENTS FOUND screen 

has been reached and to stop the clock. Continue with the above exercise using the 

following procedure:

1. When the PROCESS THE DOCUMENTS FOUND screen displays, press the 

Insert Event Hotkey, {ALT{F7}}. The Browse Events dialog box displays.

2. Click the New button. The New Event dialog box displays.

3. Select the Screen radio button and click OK. The Create Screen Event dialog box 

displays.

4. In the Create Screen Event dialog box, enter an event name such as FindDoc.

5. Click the Next button. The Identify dialog box displays:



3-16     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

6. Click the Identify button. QARun is minimized and Testbed becomes visible.

Position the pointer over Testbed’s MainWindow and click. QARun is restored and 

the window name appears in the Attach area of the Identify dialog box.

7. Click Next. The Screen Event dialog box displays.

8. Select the Use Rectangle check box and click the Capture button. QARun is 

minimized and Testbed becomes visible.

9. Position the cursor at the top-left portion of the window text “PROCESS THE 

DOCUMENTS FOUND” and drag the cursor to the bottom-right corner of the text. 

Release the mouse button and the captured text will display in the text area of the 

Screen Event dialog box.

10. Click the Finish button. The Insert New Event dialog box displays.

11. Click the Wait button and the event is inserted into your script as a standard Wait 

statement.

12. Press the Arrived at Hotkey, {ALT{F9}}. The Arrived At dialog box displays.

13. Enter the name of the Testbed screen, Process the Documents Found Screen, in 

the Insert Text field.

14. Click OK. QARun inserts a LogComment statement into your script.



Building Test Scripts     3-17

   BETA RELEASE

Defining the Clock Check

You must now define a clock check that specifies the expected processing time. Use the 

following procedure to insert a clock check into your script:

1. With Learn still on, press the Insert Check Hotkey, {ALT{F8}}. The Browse 

Checks dialog box displays.

2. Click New. The New Check dialog box displays:

3. Click the Clock radio button and click OK. The Clock Check dialog box displays:

4. Click the General tab and enter a name such as DocumentsFound, in the Name field.

5. Click the Timings tab. The following information displays:



3-18     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

6. Select the Less Than radio button and enter 1.5 in the text area.

7. Click OK to save the clock check and insert it into your script. The view of Testbed 

should be restored.

8. Once the view of Testbed is restored, press the Esc key to return to the FIND 

DOCUMENTS screen.

9. Press the Learn Hotkey, {ALT{F10}}, to stop Learn. 

The Resulting Script

The script you created in this exercise should resemble the following example:

Include "Autosync"

Function Main

Call StartAutosync

Attach "Testbed for Windows V1.00 Connected MainWindow"

Type "{Tab}{Tab}{Tab}{Tab}{Tab}bank{F2}"

Wait(0, "", "FindDoc")

LogComment( "Arrived at Process the Documents Found Screen" )

Check "DocumentsFound"

Type "{Esc}"

End Function ; Main

“Exercise 4 — Completing the Driver Script” created a new driver script that advanced 

Testbed to the FIND DOCUMENTS screen. The script in this exercise assumes you are 

already at the FIND DOCUMENTS screen and continues the exercise by submitting a 

request to find all records that contain the word “Bank.” It also uses a clock check to 

verify that the time taken to retrieve the documents is less than 1.5 seconds; however, the 

full checking mechanism is not quite complete because you haven’t determined when the 

clock is started or stopped. In the next section, you will complete the check by inserting 

commands to start and stop the clock at the correct points.



Building Test Scripts     3-19

   BETA RELEASE

Modifying the Script

The commands required to perform the actions of starting and stopping the script’s clock 

cannot be generated using Learn. You must modify the script to include this functionality. 

There are three commands associated with clock checks that must be added to the script 

to make the clock behave like a stopwatch:

• ClockReset( )

• ClockStart( )

• ClockStop( )

These commands must be inserted into the script at the appropriate points. The clock 

should be reset at the beginning of the script; started after the F2 action key is pressed; 

and stopped when the screen Wait is satisfied, but before the LogComment — otherwise 

the performance value will also include the time it takes to log the comment, which is not 

part of the test.

Use the following procedure to insert the necessary clock commands into the script at the 

appropriate positions:

1. Add the following code on a blank line after the Call StartAutosync statement 

at the top of the new script:

ClockReset( "DocumentsFound" )

2. Add the following code on a blank line after the 

Type "{Tab}{Tab}{Tab}{Tab}{Tab}bank{F2}" statement:

ClockStart( "DocumentsFound" )

3. Add the following code on a blank line after the Wait(0, "", "FindDoc") 

statement:

ClockStop( "DocumentsFound" )



3-20     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Additional Script Modifications

This script is almost ready to run. However, the current script only performs the search 

operation once. The purpose of the script is actually to repeat the process several times 

and to record the performance. In order to accomplish this, some extra code must be 

inserted. The QARun scripting language contains commands that cause scripts to repeat 

lines of code until a pre-defined condition occurs. The syntax is as follows:

Counter = 1

Repeat

<Instructions>

Counter = Counter + 1

Until Counter = 5

For this script, you need to establish a count variable and continue the repetition until the 

instructions complete four cycles.

It is also good practice to limit non-essential logging activity during performance testing. 

The amount of time it takes to write each QARun transaction to the log file affects the 

results of the clock check. There are two ways to alter the logging activity. You can 

change logging using a filter when the script runs; however, these run environment filters 

affect the entire script. Or, as in this exercise, you can apply selective filtering — to turn 

off only the non-essential log items — while still logging most commands and check 

results. You can selectively filter logging activity by inserting system variables at specific 

points in the script. 

In this script, you want to suspend logging for commands and comments at specific 

points. The syntax is as follows:

Log.Commands = 0

Log.Comments = 0

Where the state is 1 (on) or 0 (off).

Use the following example script as a guide when modifying your test script to include a 

repeat loop and suspend logging activity. Changes to the script are indicated in bold 

typeface.

Include "Autosync"

Function Main

Call StartAutosync

Counter = 1

Repeat

Log.Commands = 0

Log.Comments = 0

ClockReset( "DocumentsFound" )

Attach "Testbed for Windows V1.00 Connected MainWindow"

Type "{Tab}{Tab}{Tab}{Tab}{Tab}bank{F2}"

ClockStart( "DocumentsFound" )



Building Test Scripts     3-21

   BETA RELEASE

Wait(0, "", "FindDoc")

ClockStop( "DocumentsFound" )

LogComment( "Arrived at Process the Documents Found Screen" )

Log.Commands = 1

Log.Comments = 1

Check "DocumentsFound"

Type "{Esc}"

Counter = Counter + 1

Until Counter = 5

End Function ; Main

The above script will now repeat the instructions four times, carrying out a clock check 

each time.

Running the Script

2. Enter a name such as FINDDOCS in the Name area, complete a brief description of 

the script, and click OK. The Run Script dialog box displays.

3. Click the OK button to run the script.

Analyzing the Results

After you run the script, Log View automatically displays the script results. The Log View 

is configurable, and your results may display different columns than those shown in 

Figure 3-2. 

You may change the column layout by selecting Grid>Column Layout from the View 

menu. Your log should resemble the following example:

1. Click the Run Script button from the Script Editor’s toolbar. The Summary Info 

dialog box displays.



3-22     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Figure 3-2. Viewing Clock Check Results

Scroll through the log file and view the results of each individual clock check. By default, 

checks that pass appear in green text, and checks that fail appear in red text in the log. The 

Notes column contains specific information related to the expected and actual values of 

the clock check.

It is possible to gain a quick overview of how your target application performed by 

displaying a summary of your check results or the full Log View using the following 

toolbar buttons:

Exercise Summary

This exercise focused on checking the performance of an application’s function using 

clock checks. After completing this exercise, you should be able to successfully:

• Create a clock check

• Initialize QARun’s internal clock

• Start and stop QARun stopwatch using appropriately placed Clock( ) commands

• Create a counting mechanism for Repeat loops

• Suspend logging activity for specific commands and comments

• Identify transaction cycles for performance measurements

• View the expected and actual results of a performance check

• View clock check statistics.

• Click the Test Run Statistics button to view test statistics.

• Click the Check Statistics button to view check statistics.

• Click the Full Display button to return to the full Log View display.



Building Test Scripts     3-23

   BETA RELEASE

Exercise 7 — Using External TestData Files

An important testing capability is the ability to enter variable data into the target appli-

cation — to test the application’s behavior with different input or to test behavior under 

heavy load conditions. QARun is able to enter external data into the target application 

using an external testdata file. This exercise will build a test script that carries out volume 

testing using an independent data file to enter information into Testbed.

Getting Started

In “Exercise 3 — Synchronizing Scripts Using System Variables”, the driver script 

advanced Testbed to the CUSTOMER MASTER MAINTENANCE MENU screen by 

pressing the F1 key from Testbed’s MAIN MENU. The test script created in this exercise 

will add a customer record to Testbed and update the database. The script will use the 

Repeat command in conjunction with QARun’s system variables to loop several times 

and enter a new customer record each time.

Exercise Prerequisites: Before beginning this exercise, you must have completed the 

following prerequisites:

• Access to the script named AUTOSYNC created during “Exercise 3 — Synchroniz-

ing Scripts Using System Variables”

• Access to the Event named Autosync created during “Exercise 3 — Synchronizing 

Scripts Using System Variables”

• Access to the CustChar.csv file (by default located in QARun’s Data directory)

• Include Autosync script and Call statement in the default script (see page 2-45)

• Close Testbed

• Close QARun.

Testing Requirements: The following test elements are created during this exercise:

• Screen event named RecordUpdate

• Script named AddCust.

You should allow 20–30 minutes to complete this exercise.



3-24     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Learning the Script

Use the following procedure to begin learning the new test script:

1. Start a new QARun script (ensure the default script information contains the Include 

statement for the synchronization logic).

2. Start Testbed using the same method described in previous exercises and click the 

Connect button on the toolbar.

3. Logon to Testbed and select F1 from the Testbed’s MAIN MENU screen. 

Testbed should now be at the CUSTOMER MASTER MAINTENANCE MENU 

screen. This is the point where the test script begins:

4. Pressing the Learn Hotkey, {ALT{F10}}, to start Learn.

5. Enter the following data on the CUSTOMER MASTER MAINTENANCE MENU 

screen:

a. Type a in the ACTION field to add a customer and press the Tab key to move 

to the next field.



Building Test Scripts     3-25

   BETA RELEASE

b. Type 999 in the CUSTOMER NUMBER field.

6. Press F2 to view the personal details for customer 999. 

The CUSTOMER MASTER BASIC DATA screen displays. All fields except the 

ACTION field should be blank:

7. Press the Tab key to move to the PAYS FROM FIELD, type Boston in the field, and 

press the Tab key.

8. Enter a name and address in the CUSTOMER and ADDRESS fields (you can use 

the Tab key to move between fields).

9. Complete the remaining fields on the CUSTOMER MASTER BASIC DATA screen 

with the following information:

a. In the ABBREV 1 field, enter your own family name.

b. In the CASH CODE field, enter a two-number code such as 12.

c. In the CONTACT field, enter a colleague’s name.

d. In the SUPP A/C field, enter a numeric value such as 23.

Note

Testbed only allows a customer to be added to the database once. If you attempt to add 

customer 999 again (by running the script or otherwise), then the script will fail. 

To avoid this, delete the testbed.dat file, make a copy of the Testbed.sav file, and rename 

it testbed.dat each time you run the script (these files are located in QARun’s Demos 

directory by default). This resets the database and allows you to reenter customers.



3-26     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

e. In the YR BUS ST field, enter a numeric value such as 99.

f. In the CONSOLE IND field, enter a numeric value such as 18.

g. In the POSTCODE field, enter your zip code.

h. In the EXTERNAL CREDIT CHECK field, enter Y.

i. In the PHONE field, enter a phone number.

j. In the TELEX NO field, enter a different number.

This concludes the entry of the new customer record.

10. Press the F1 key to add the customer record to the database. 

Testbed displays the message “Customer Record Updated” in the bottom-left corner 

of the screen. This message is an indicator that Testbed has finished processing the 

record. 

You must define a screen event to tell QARun to wait until this message displays 

before issuing further instructions.

11. Press the Insert Event Hotkey, {ALT{F7}}, and define a screen event that waits for 

the message to appear. Enter a name such as RecordUpdate in the Name field and 

insert the event as a Wait statement.

12. Press Escape to return to the CUSTOMER MASTER MAINTENANCE MENU 

screen and stop Learn.

Understanding Data-Driven Scripts

So far, this script enters one record — the one you entered. To effectively use an external 

testdata file for volume testing, the script must now be modified to loop so it enters a new 

record each time. QARun can do this using an external testdata file. This script will 

eventually use the information from the testdata file to enter several customer records.

TestData Files

QARun can read external data files in CSV (Comma Separated Variable) format. Many 

spreadsheet and database applications are able to export data in this file format, so you 

can use data from these applications within your QARun scripts.

Because these data files often contain varying amounts of records and fields, QARun must 

employ a mechanism for determining where each record starts and ends. To accomplish 

this, QARun uses a combination of system variables and commands to read the contents 

of the data file. QARun automatically creates its own index to ensure that individual data 

items can be quickly accessed.



Building Test Scripts     3-27

   BETA RELEASE

A testdata file is a CSV file in which each line constitutes a record. Each record contains 

fields that are separated by commas. Consider the following testdata file. Here, there are 

three records, each with six fields exported from a database application as a CSV file:

J. Smith,The Mall,London,TW7 4DS,UK,8471666

J. Cotez,Ave St Maria,Madrid,987621,Spain,98762301

A. Gilbert,Rue Albert,Issigeac,24679,France,53234512

Notice that there should not be any spaces between the fields and their comma separators. 

Fields containing commas can be included within the testdata file if they are enclosed in 

double quotes. For example:

Compuware Ltd,"163, Bath Road","Slough, SL1 4AA"

QARun can read the contents of a testdata file. To tell QARun which testdata file to use 

in a script, you set the TestData( ) command to the name of the file, for example:

TestData( "CustChar.CSV" ) ;Use default QARun Directory

or:

TestData( "C:\TESTDATA\CustCar.CSV" );Specify directory

 QARun does not use the original CSV file, but instead generates a special indexed file — 

custchar.INX. This special index file is automatically generated if it does not exist or if 

the date does not match the CSV data file date. The following is an example index file:

0 0 Field 1 Field 2 Field 3 .......

Record 1 J. Smith, The Mall, London, .......

Record 2 J. Cotez, Ave St Maria, Madrid, .......

Record 3 A. Gilbert, Rue Albert, Issigeac, .......

QARun’s record pointer is automatically positioned just before the first field at position 

0 0. The first record in the file is record 1, and the first field of each record is field 1. 

Every time you change the testdata file name by setting the TestData( ) command, the 

current field and record markers are “set” to 0, even if you use the same testdata file name.

The information in the indexed file is retrieved using the Type command. The Type 

command is used to access each record and field in turn. The Type syntax is:

Type "{Record.Field}"

For example, if you entered the following Type commands into your script:

Type "{1.1}{Return}" ; First Record - First Field

Type "{1.2}{Return}" ; First Record - Second Field

The results would be:

J. Smith

The Mall



3-28     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

The following wildcard characters may be used instead of explicit record/field references:

= Same record or field

+ Next record or field

- Previous record or field

* Random record or field

Therefore:

Type "{=.6}" ; Selects 6th field of the current record

Type "{+.4}" ; Selects 4th field of the next record

Type "{=.+}" ; Selects next field of the current record

Type "{*.5}" ; Selects 5th field of any record

Type "{*.*}" ; Selects any field from any record

Looping

Two commands, TestDataFieldCount( ) and TestDataRecordCount( ), tell you how many 

records and fields per record exist in the current data file.

Similarly, the TestDataCurField( ) and TestDataCurRecord( ) commands identify the 

record and field that is currently selected.

Together, these four commands allow you to build loops that can access each record and 

field in the testdata file. The following exercise discusses the script modifications that are 

required to instruct the script to access the testdata file CustChar.csv. Once accessed, 

QARun will enter every item in the testdata file into Testbed’s database as instructed.

Modifying the Script

It is now necessary to change your Testbed script so that it uses the testdata and looping 

functionality described in the previous sections.

1. Insert the following code on a blank line following the Function Main statement:

TestData("CustChar.csv")

The complete directory path has not been included because the file is located in the 

default QARun Data directory. If you installed QARun in another directory, then 

you must include the complete path for the file’s location.

2. Insert the following code on a blank line following the Call StartAutosync 

statement:

Repeat

The Repeat command inserted at this position begins the primary loop that tells 

QARun to process each record, one after the other. You also need to tell QARun 



Building Test Scripts     3-29

   BETA RELEASE

when to stop processing records, or how many records to process. You will use the 

Until command to accomplish this. 

3. Insert the following code on a blank line following the Type "{Esc}" statement:

Until TestDataCurRecord = TestDataRecordCount

This statement tells QARun to continue processing records until the testdata record 

that is currently being processed is the same record as the last record in the testdata 

file.

The Until command completes the primary loop (the loop that tells QARun to move 

from record-to-record); however, we still need to insert a secondary loop that pro-

vides the instructions that tell QARun to retrieve the next field in the current record 

and enter it on the CUSTOMER BASIC MASTER DATA screen; however, you 

must first replace the customer information that we entered manually with the cor-

rect syntax that will automatically pull information from the .csv file.

4. Locate the section of the script the contains the Attach command and related Type 

commands. This section of your script should resemble the following information:

Attach "Testbed for Windows V1.00 Connected MainWindow"

Type "a{Tab}999{F2}{Tab}Boston{Tab}Customer Name...

This is the section of your script that manually adds the customer’s information to 

Testbed’s database. It contains the details you typed in when learning the script; 

however, you no longer want to manually enter the customer’s data. You now want 

to automate the process using an external testdata file. You will need to replace the 

manual instructions with syntax that tells QARun the appropriate fields and records 

to use from the testdata file.

5. Replace the Type commands with the following code (comments have been added 

to assist you):

Type "a{Tab}{+.1}" ; Next Record First field

Type "{F2}" ; CUSTOMER PERSONAL DET Option

Type "{Tab}" ; Move to PAYS FROM field

Type "{=.+}" ; Get the next field from the same record

Type "{F1}" ; Update the record

This tells QARun to use the testdata file to complete the customer information, but 

this code is really only completing one field and then attempting to update the 

record. We need to insert a secondary loop that tells QARun to keep entering data 

into the fields until each field is entered, and then update the record.

6. Insert the following code on a blank line following the Type "{F2}" statement:

Repeat

This Repeat command begins the secondary loop that tells QARun to process the 

next field in the current record and enter it on the CUSTOMER BASIC MASTER 

DATA screen. 



3-30     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

We now need to tell QARun when to stop processing the next field and move to the 

next record.

7. Insert the following code on a blank line before the Type "{F1}" statement:

Until TestDataCurField = TestDataFieldCount 

This statement tells QARun to continue processing fields until the testdata field that 

is currently being processed is the field that is the last field in the current testdata 

record.

8. Save the script with a name such as AddCust.

The Resulting Script

After completing the above steps, your test script should look very similar to the 

following example. The code associated with the Loop and Type commands is 

highlighted in bold typeface:

Function Main

TestData("CustChar.csv")

Call StartAutosync

Repeat

Attach "Testbed for Windows V1.00 Connected MainWindow"

Type "a{Tab}{+.1}"

Type "{F2}"

Repeat

Type "{Tab}"

Type "{=.+}"

Until TestDataCurField = TestDataFieldCount

Type "{F1}"

Wait(0, "", "RecordUpdated")

Type "{Esc}"

Until TestDataCurRecord = TestDataRecordCount 

End Function ; Main

Exercise Summary

This exercise focused on using an external data file to automatically supply information 

to a script, rather than typing the information in manually. After completing this exercise, 

you should be able to successfully:

• Call an external testdata file to retrieve data records.

• Use the Type command to extract field and record data from a testdata file.

• Use the Repeat command to repeatedly enter data from a testdata file.



Building Test Scripts     3-31

   BETA RELEASE

Exercise 8 — Inserting Bitmap Checks

The purpose of this exercise is to build a simple test script for regression testing. This test 

script will use a bitmap check to regression test. In “Exercise 4 — Completing the Driver 

Script”, the driver script advanced Testbed to the FIND DOCUMENTS screen by 

pressing F4 from the Testbed’s MAIN MENU. In this exercise, you will create a script 

that performs a bitmap check against the FIND DOCUMENTS screen’s toolbar and 

status bar.

Bitmap checks compare the actual bitmaps with previously defined bitmaps. These 

checks are often used to verify the appearance of toolbars, the desktop, and other 

windows that contain non-textual information. When you create a bitmap check, you 

capture the image within a rectangular area of the screen. When the check is verified, the 

same area is captured and compared to the defined image. If the two match exactly, the 

check passes. If they are different, the check fails.

Getting Started

In the following exercise, you will create a bitmap check and insert it into a new script. 

You will also once again include the Autosync script created in “Exercise 3 — Synchro-

nizing Scripts Using System Variables” to synchronize the Testbed screens. At the end of 

the exercise you will save the script without running it.

Exercise Prerequisites: Before beginning this exercise, you must have completed the 

following prerequisites:

• Access to the script named AUTOSYNC created during “Exercise 3 — Synchroniz-

ing Scripts Using System Variables”

• Access to the Event named Autosync created during “Exercise 3 — Synchronizing 

Scripts Using System Variables”

• Include Autosync script and Call statement in the default script (see page 2-45)

• Close Testbed

• Close QARun.

Testing Requirements: The following test elements are created during this exercise:

• Bitmap check named Find Documents Bitmap

• Script named Version.

You should allow 15–20 minutes to complete this exercise.



3-32     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Learning the Script

Before you begin creating the test script, use the following procedure to start QARun and 

navigate Testbed to the correct screen where the test script will start.

2. Start Testbed and click the Connect button on the toolbar.

3. Logon to Testbed.

a. Type CW in the UserID field and press Tab.

b. Type PASS in the Password field and press Enter.

4. Press the F4 (Search) key. Testbed displays the FIND DOCUMENTS screen:

5. Press the Learn Hotkey, {ALT{F10}}, to start Learn. 

6. Insert a check by pressing the Insert Check Hotkey, {ALT{F8}}. The Browse 

Checks dialog box displays.

7. Click the New button. The New Check dialog box displays:

1. Start QARun and click the New button to create a new script (ensure the default 

script contains the Include statement for the synchronization logic).



Building Test Scripts     3-33

   BETA RELEASE

8. Select the Bitmap radio button and click OK. The Bitmap Check dialog box 

displays:

9. In the Name field, enter a name such as Find Document Bitmap for the new bitmap 

check.

10. Click the Identify button. QARun is minimized and Testbed becomes visible.

Position the pointer over Testbed’s MainWindow and click. QARun is restored and 

the window name appears in the Attach name area of the Bitmap Check dialog box.

11. Click the Exclude Areas tab. The tab displays as shown below:

12. Click the Zoom button or double-click on the bitmap image to view an enlarged 

view of the bitmap in the Captured Image window. 

This enlarged bitmap view makes it easier to mask image areas to Exclude, but the 

Bitmap Check dialog box is still open behind the Captured Image window.



3-34     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

13. Click the Bitmap Check dialog box and click the New button on the Exclude Areas 

tab. The Bitmap Check dialog box minimizes and the Captured Image window 

becomes active. The cursor changes to a cross-hair.

14. In the Captured Image window, drag the cursor over the portion of the image that 

contains Testbed’s FIND DOCUMENTS screen. Be sure exclude the toolbar from 

your selection. 

15. Release the mouse button. Everything beneath the toolbar should be covered by 

crosshatches and the Bitmap Check dialog box reappears. 

When the check is run, the toolbar will be the only part of the image considered for 

comparison. The Captured Image window should now resemble the following 

image:

The FIND DOCUMENT screen area (covered with crosshatches) will not be 

included in the check.

16. Click the OK button on the Bitmap Check dialog box to insert the check into the 

script 

17. Turn Learn off.



Building Test Scripts     3-35

   BETA RELEASE

The Resulting Script

After completing the above steps, your test script should look very similar to the 

following example. The code associated with the bitmap check is highlighted in bold 

typeface:

Include "Autosync"

Function Main

Call StartAutosync

Check "Find Document Bitmap"

End Function ;Main

This script is not intended to perform any action other than the bitmap check.

Saving the Script

From the File menu, choose Save As to save the script. Assign a name such as Version. 

This is a simple test script that will eventually be called by a driver script, so we do not 

need to run the script at this time.

Exercise Summary

This exercise focused on creating a test script that uses a bitmap check to compare images 

for regression testing. After completing this exercise, you should be able to successfully:

• Create a bitmap check that looks for specific information on the screen

• Exclude specific areas of a bitmap from a check

• Save a script without running it.

In the next chapter, you’ll complete an exercise that includes each individual test script 

into the driver script — thereby completing the test suite.



3-36     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Exercise 9 — Inserting Script Dialog Boxes

QARun contains a Dialog Editor that can be accessed from the Script Editor. The purpose 

of the Dialog Editor is to allow you to design dialogs that will be displayed when you run 

your scripts. Dialogs allow you to enter variable or confidential data into QARun as it is 

running, rather than hard-coding it into a script. This is most useful for entering password 

or userID information.

Dialogs are created graphically using the tools provided by the Dialog Editor. These 

graphical representations can then be inserted into the Script Editor as a function. The 

Dialog function can be called by the script at any time and can be used by any number of 

scripts. If you need to change the dialog’s definition, you can load the image into the 

Dialog Editor to make the modifications. After you make the changes, all scripts that call 

the dialog will automatically call the modified version. There is no need to change the 

function definition within the script (unless you must add logic to process new controls).

Information entered into the dialogs — from pushing a button to entering passwords — 

can then be processed by the script at runtime.

The Dialog Editor offers all of the standard controls for designing Windows-compliant 

dialogs.

Getting Started

The driver script built during “Exercise 1 — Creating a Driver Script” logs on to Testbed 

and drives the application. The User ID and Password are hard-coded into this script. The 

following exercise explains how to build a dialog that asks for an ID and password at 

runtime. It will also ask which version of Testbed to run. The information entered into the 

dialog will be transferred to user-defined variables within the script and replace the hard-

coded information.

The resulting dialog should resemble the example below:

Figure 3-3. Sample Dialog Box



Building Test Scripts     3-37

   BETA RELEASE

Exercise Prerequisites: Before beginning this exercise, you must have completed the 

following prerequisites:

• Access to the script named Driver2 created in “Exercise 4 — Completing the Driver 

Script”. 

• Access to the event named VM/System Product Screen created in “Exercise 2 — 

Implementing Basic Synchronization” 

• Close Testbed

• Close QARun.

Testing Requirements: The following test elements are created during this exercise:

• Dialog named Start Script Dialog

You should allow 20–30 minutes to complete this exercise.

Creating the Dialog

Use the following procedure to create a user-defined dialog box from the Dialog Editor:

1. Start QARun and load the Driver2 script.

2. Position the cursor on a blank line following the Call StartAutosync command.

4. Click the New button to define a new dialog. The Dialog Editor displays with a 

blank dialog definition as shown below:

The Dialog Editor window contains two additional toolbars to assist you with creat-

ing the dialog boxes. The window also displays a blank dialog box with active con-

trol handles.

3. Click the Dialogs Button from the Script Editor’s toolbar to access the Browse 

Dialogs table. The Browse Dialogs dialog box displays.



3-38     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

5. Double-click on the blank dialog box to define its properties. The Control properties 

dialog box displays:

6. Complete the Name field with a dialog name such as Start Script Dialog. This name 

will be used within the script by the function definition.

7. Enter Testbed Logon in the Caption field. This text will appear in the title bar of the 

new dialog box.

8. Click OK.

9. Using Figure 3-3 on page 3-36 as a guide, resize the dialog by clicking on the right-

bottom corner handle and dragging it to size the dialog.

Adding Dialog Controls

You can add controls to the dialog definition using a point-and-click principal. There are 

two extra tool bars in the Dialog Editor: the Controls toolbar and the Layout toolbar. You 

will use the Controls toolbar (Figure 3-4) to select the type of control needed:

Figure 3-4. Dialog Editor Controls Toolbar

Adding Static Text Controls

Static text controls are used to provide labels for edit controls, list boxes, and combo 

boxes which, unlike radio buttons and check boxes, do not have a text caption of their 

own. Use the following procedure to add static text controls to the dialog box:

3. Double-click on the text control to define its properties. The Control Properties 

dialog box displays:

1. Click the Text Control button to select it and move the cursor over the dialog. 

2. Click the left side of the dialog to drop the control. 

The control can be moved and resized using the grab handles.



Building Test Scripts     3-39

   BETA RELEASE

4. Enter useridfield in the Name field.

The Name field contains the variable name that will be used to process the contents 

of the field. You can change it to a meaningful name to make referencing it easier.

5. Enter &UserID: in the Caption field. This is the actual text that will appear on the 

dialog. The ampersand (&) before the “U” denotes this as an underlined character.

6. Click the Text Properties tab and clear the Border and No Prefix options. 

The Border option puts a border around the text, and the No Prefix option switches 

off the underlined character option (you can press the F1 key to receive an online 

help description of all Properties options).

7. Click OK.

8. Repeat steps 1–7 to create another text control. Enter PasswordField in the Name 

field and enter &Password: in the Caption field.

Aligning the Controls

You need to align the two text controls that you just created using Figure 3-3 on page 3-

36 as a guide. The Layout toolbar allows you to format and align controls after placing 

them on the dialog box. Use the Layout toolbar (Figure 3-5) to arrange the controls:

Figure 3-5. Dialog Editor Layout Toolbar

Use the following procedure to align the text controls:

1. Highlight both text controls by clicking the first control, pressing the Shift key, and 

clicking the second text control.

The second control has a bolder highlight, indicating that this control is primary, 

and the alignment modification will be made according to this control’s position.

2. Click the Align Left button to align the controls to the extreme left of the primary 

control.



3-40     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Adding Edit Controls

Edit controls are used to receive user input that will be processed by the script at runtime. 

Edit controls are useful for inputting User IDs, passwords, and other variable information.

Use the following procedure to insert an edit control:

3. Double-click on the edit control to display the Control Properties dialog box.

Unlike the static text control, the Name of this control will be used by the script at 

runtime and should be changed to something more meaningful. 

4. Enter userid in the Name field. Remember, variable names are case-sensitive.

5. Click the Edit Properties tab. The following information displays:

6. Ensure that the Visible and the Tabstop options are selected. The Tabstop option 

allows the user to move to this control using the TAB key instead of the mouse.

7. Click OK.

8. Repeat the above steps to create a second edit control for the Password option.

a. Enter password in the Name field.

b. Click the Edit Properties tab and ensure that the Visible, Tabstop, and Password 

check boxes are all selected. The Password option displays the contents of the 

control as a series of asterisks rather than visible text.

c. Click OK.

9. Align the controls in the same way as the static text controls (see “Aligning the 

Controls” on page 3-39).

1. Click the Edit Control button.

2. Position the pointer over the dialog box and click on the right side of the User ID 

static text control to drop the control.

The control can be moved and resized using the grab handles.



Building Test Scripts     3-41

   BETA RELEASE

Adding Group Boxes

Group Boxes are used to provide a visual grouping of related controls. Use the following 

procedure to add a group box to the dialog:

2. Using Figure 3-3 on page 3-36 as a guide, size the group box so that there is 

adequate space to contain the UserID and Password fields. Don’t worry if you get 

the size of the box wrong. It can always be resized later.

3. Double-click on the group box to define its control properties. The Control 

Properties dialog box displays:

4. Enter idBox in the Name field.

5. Enter Logon Information in the Caption field. This changes the caption or label on 

the group box at the top of the rectangle.

6. Click OK.

7. Repeat the above steps to create a second group box to eventually contain the 

Testbed version radio buttons:

a. Enter VersionBox in the Name field.

b. Enter Testbed Version in the Caption field. This changes the caption or label 

on the group box at the top of the rectangle.

c. Click OK.

1. Click the Add Group Box button on the toolbar and click on the right side of the 

dialog definition. 

A rectangle with the words “Group Box” displays on the dialog. You can move the 

box by clicking inside the box and dragging. In each corner of the box is a size 

handle. Dragging these handles will change the size of the box.

Hint

Ensure that you’ve double-clicked the Group Box and the Group Box Control Properties 

dialog box displays. It’s easy to accidently select the dialog box’s Control Properties.



3-42     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Adding Radio Buttons

A radio button is a user option that is exclusive. This means that only one option per group 

may be selected. Use the following procedure to add radio buttons to the dialog box:

3. Double-click on the button to edit its control properties. The Control Properties 

dialog box displays:

4. Enter Version1 in the Name field. Remember, variable names are case-sensitive.

5. Enter Version &1 in the Caption field. The ampersand indicates which character 

has the underscore.

6. Click the Radio Button Properties tab and ensure that Visible, Tabstop, and Auto 

check boxes are selected. The Auto option ensures that the radio buttons contain a 

black fill when selected.

7. Click OK.

8. Repeat the above steps to create a second radio button:

a. Enter Version2 in the Name field.

b. Enter Version &2 the Caption field. The ampersand indicates which character 

has the underscore.

c. Click OK.

9. Align both radio buttons using the same technique you used to align the static text 

controls (see “Aligning the Controls” on page 3-39).

1. Click the Radio Button Control button on the toolbar. 

2. Move the pointer into the Testbed Version group box and single-click to drop the 

radio button. A radio button with the words “Radio Button” should appear on the 

dialog box.



Building Test Scripts     3-43

   BETA RELEASE

Adding Push Buttons

A push button, also known as a command button, is generally used to dismiss a dialog 

box (for example, OK and Cancel buttons). Use the following procedure to add two push 

buttons to the dialog box.

3. Double-click on the control to edit its control properties. The Control Properties 

dialog box displays:

4. Enter okButton in the Name field.

5. Enter OK in the Caption field. This is the name that will actually appear on the 

button.

6. Click the Push Button Properties tab and ensure that Visible, Tabstop, and Default 

check boxes are selected. The Default check box indicates that this button will be 

automatically selected if the Enter key is pressed.

7. Click the Control Properties dialog box’s OK button.

8. Repeat the above steps to create a second push button:

a. Enter cancelButton in the Name field.

b. Enter Cancel in the Caption field. 

c. Click OK.

1. Select the Push Button control from the toolbar.

2. Move the pointer to the bottom of the dialog box and single-click to drop the push 

button.

A push button with the words “Push Button” should appear on the dialog. This con-

trol can be sized using the size handles.

9. Align both push buttons using the same technique used to align the static text 

controls, except this time use the Align Right button (see “Aligning the Controls” on 

page 3-39 for more detail).



3-44     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

10. From the Dialog Editor’s File menu, choose Save to save the dialog box. The 

Summary Info dialog box displays.

11. Enter a name such as Start Script Dialog in the Name field and click OK.

12. From the File menu, choose Close to close the Dialog Editor.

The Resulting Dialog Definition

The following example shows the dialog function definition that is pasted into the script. 

Each element in the array is inserted as a comment to help you identify its elements for 

future use:

var Start_Script_Dialog_Controls[]

//  Start_Script_Dialog_Controls[ "useridfield" ]

//  Start_Script_Dialog_Controls[ "PasswordField" ]

//  Start_Script_Dialog_Controls[ "userid" ]

//  Start_Script_Dialog_Controls[ "password" ]

//  Start_Script_Dialog_Controls[ "idBox" ]

//  Start_Script_Dialog_Controls[ "VersionBox" ]

//  Start_Script_Dialog_Controls[ "Version1" ]

//  Start_Script_Dialog_Controls[ "Version2" ]

//  Start_Script_Dialog_Controls[ "okButton" ]

//  Start_Script_Dialog_Controls[ "cancelButton" ]

dialog "Start Script Dialog", Start_Script_Dialog_Controls

Where:

var Start_Script_Dialog_Controls[]is a local array. 

An array is a collection of related data values referred to by a single variable name, in this 

case, Start_Script_Dialog_ Controls. This array references all the controls 

(elements) on the dialog box — known as elements — by name. The value of any control 

can be processed by referencing it within the [ ] square brackets. For example, to get the 

value entered in the UserID field:

userid = Start_Script_Dialog_Controls["userid"]

Where: 

userid is a variable where the value contained in the dialog element named userid is 

placed.

The second part of the definition,

dialog "Start Script Dialog", Start_Script_Dialog_Controls

executes the dialog at runtime. Double-clicking on the word dialog displays a graphical 

image of the dialog box.



Building Test Scripts     3-45

   BETA RELEASE

Modifying the Driver Script

The section of the driver script that you need to modify is the section following the new 

dialog definition’s syntax, but before the script attaches to the taskbar.

Use the following procedure to modify the script to use the dialog information:

1. Add the following code on a blank line following the

// Start_Script_Dialog_Controls[ "cancelButton" ] statement:

Start_Script_Dialog_Controls[ "userid" ] = ""

Start_Script_Dialog_Controls[ "Password" ] = ""

These two statements clear the contents of the userid and password controls before 

the dialog box is called from the script.

The next step is to create a variable that will hold whatever values the user enters 

into these controls when the dialog box displays.

2. Add the following code on a blank line following the

dialog "Start Script Dialog", Start_Script_Dialog_Controls 

statement:

user = Start_Script_Dialog_Controls[ "userid" ]

pswd = Start_Script_Dialog_Controls[ "Password" ]

These statements create two variables: user and pswd. The variables hold the val-

ues that the user enters into the userid and password fields when the Start Script 

Dialog box displays.

Similarly, you will need to assign a variable that registers the Cancel button.

3. Add the following code on a blank line following the 

pswd = Start_Script_Dialog_Controls[ "Password" ]statement:

cancelbutton = Start_Script_Dialog_Controls[ "cancelButton" ]

Now that you’ve told QARun to recognize the dialog box’s Cancel button, you must 

provide QARun with instruction on how to proceed if the button is actually pushed. 

To accomplish this, you will need to insert some If…Else logic following the vari-

able’s declaration.

4. Insert the following code on a blank line following the 

cancelbutton = Start_Script_Dialog_Controls[ "cancelButton" ] 

statement:

If cancelbutton = 1

Stop

Endif

This code tells QARun to stop processing the script if the dialog box’s Cancel but-

ton is selected.



3-46     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

The Resulting Script

After completing the above steps, the beginning of your test script should look very 

similar to the following example. The code that was manually entered based on the above 

steps is highlighted in bold typeface:

Include "Autosync"

Function Main

Call StartAutosync

var Start_Script_Dialog_Controls[]

//  Start_Script_Dialog_Controls[ "useridfield" ]

//  Start_Script_Dialog_Controls[ "PasswordField" ]

//  Start_Script_Dialog_Controls[ "userid" ]

//  Start_Script_Dialog_Controls[ "password" ]

//  Start_Script_Dialog_Controls[ "idBox" ]

//  Start_Script_Dialog_Controls[ "VersionBox" ]

//  Start_Script_Dialog_Controls[ "Version1" ]

//  Start_Script_Dialog_Controls[ "Version2" ]

//  Start_Script_Dialog_Controls[ "okButton" ]

//  Start_Script_Dialog_Controls[ "cancelButton" ]

Start_Script_Dialog_Controls[ "userid" ] = ""

Start_Script_Dialog_Controls[ "Password" ] = ""

dialog "Start Script Dialog", Start_Script_Dialog_Controls

user = Start_Script_Dialog_Controls[ "userid" ]

pswd = Start_Script_Dialog_Controls[ "Password" ]

cancelbutton = Start_Script_Dialog_Controls[ "cancelButton" ]

If cancelbutton = 1

    Stop

Endif

Attach "PopupWindow~1"

Button "Start", 'Left SingleClick'

PopupMenuSelect "Run..."

Additional Script Modifications

This script now contains sufficient information for QARun to set up the dialog box; 

however, you now need to modify certain areas of the script to replace information that 

is “hard-coded” with the variable information obtained through the use of the dialog box. 

In order to accomplish this, some extra code must be inserted. 

Use the following procedure to modify the script to use data obtained from the dialog box:

1. Locate the section of the script the contains the Attach statement which types the 

QARun directory path into the Run dialog box. This section of your script should 

resemble the following information:

Attach "Run PopupWindow"



Building Test Scripts     3-47

   BETA RELEASE

ComboText "&Open:", 

"""C:\Program Files\Compuware\QARun\Demos\TESTBED.EXE"" -v1"

Button "OK", 'Left SingleClick'

Because the driver script will eventually be used to run both Version 1 and 

Version 2 of Testbed, you need to replace the hard-coded information in the above 

example with If…Else logic that can respond to data that the user enters in the dia-

log box.

2. Modify the above sample code to match the following example (code associated 

with the changes is highlighted in bold typeface):

Attach "Run PopupWindow"

If Start_Script_Dialog_Controls[ "version1" ] = 1

ComboText "&Open:", 

"""C:\Program Files\Compuware\QARun\Demos\TESTBED.EXE"" -v1"

Else

ComboText "&Open:", 

"""C:\Program Files\Compuware\QARun\Demos\TESTBED.EXE"" -v2"

Endif

Button "OK", 'Left SingleClick'

This code tells QARun to open Testbed Version 1 if the radio button named 

“version1” is selected from the dialog box. If that control is not selected, run Test-

bed Version 2.

Next, you must replace the logon information that is hard-coded into the script with 

code that extracts the logon information that is entered into the dialog box.

3. Locate the section of the script that contains the Attach statement that connects to 

Testbed’s logon screen and enters the logon information. This section of your script 

should resemble the following example:

Attach "Testbed for Windows V1.00 Connected MainWindow"

    Type "CW{Tab}pass{Return}"

    Type "{F1}"

You must modify this section of the driver script to replace the information that is 

hard-coded with the information the user entered into the dialog box.

4. Modify the sample code to match the following example (code associated with the 

changes is highlighted in bold typeface):

Attach "Testbed for Windows V1.00 Connected MainWindow"

Type user

Type "{Tab}"

Type pswd

Type "{Return}"

Type "{F1}"

This code tells QARun to pass the data entered in the dialog box’s “userid” and 

“password” controls to the Type command. This modification allows you to let any 



3-48     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

authorized user sign on to a system without hard-coding the logon information into 

the script. 

You do, however, want to be sure that Testbed is at the VIRTUAL MACHINE/

SYTEM PRODUCT screen before QARun sends the logon information to Testbed, 

so you should insert a standard screen event before the logon information.

6. Scroll through the list and select the VM/System Product Screen event and click the 

Insert button. The Insert New Event dialog box displays.

7. Click the Wait button. The screen event is inserted into your script. Your script 

should resemble the following example (code associated with the event is 

highlighted in bold typeface):

Attach "Testbed for Windows V1.00 Connected MainWindow"

Wait(30, "", "VM/System Product Screen")

Type user

Type "{Tab}"

Type pswd

Type "{F1}"

Type "{Return}"

8. From the File menu, choose Save to save the changes to the Driver2 script.

Exercise Summary

After completing this exercise, you should be able to successfully:

• Create a user-defined dialog box

• Add a variety of controls to the dialog box

• Align dialog box controls

• Insert a completed dialog box definition into the script

• Pass information entered into the dialog box back into the script through the use of 

variables.

5. Position your cursor on a blank line following the Attach "Testbed for 

Windows V1.00 Connected MainWindow" statement shown in step 4 and click 

the Browse Events button. The Browse Events dialog box displays.



   BETA RELEASE

     4-1

Chapter 4.   Using Driver and Test Scripts Together

This chapter brings together the test scripts and the driver script made during the previous 

exercises. The driver will also be modified so that Testbed Version 2 is run. Any differ-

ences between the two versions can then be analyzed from the log file.

If you remember, during “Exercise 4 — Completing the Driver Script” you created a 

driver script to run the target application, Testbed. The driver script logged on to Testbed 

and selected several of the application’s primary options. In subsequent exercises, you 

created individual test scripts that performed specific checks on the application and 

performed some volume data entry. This chapter discusses the concepts required to create 

a complete test system. 

This chapter contains the following exercise:

• “Exercise 10 — Using the Run Command” demonstrates how to integrate individ-

ual test scripts into a single driver script.



4-2     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Exercise 10 — Using the Run Command

During “Exercise 4 — Completing the Driver Script”, you created a driver script to run 

the target application and select several of its available menu options. In the exercises that 

followed, you created test scripts to perform specific checks on the application. The final 

step in building a complete test system is to combine the individual test scripts and the 

driver script. You accomplish this using the Run command.

The Run command’s syntax is as follows:

RUN "Scriptname"

The Run command allows any script to be called by another script; however, unlike the 

Include command, the Run command does not incorporate the contents of the called 

script into the main script. When the Run command is encountered, the current script (the 

calling script) is suspended, and the called script is run. When the called script finishes 

executing, it is unloaded from memory and control returns to the calling script. Execution 

of the calling script resumes on the line following the Run command.

The Run command allows you to divide large systems into smaller, more manageable 

units. 

Getting Started

Before beginning this exercise, you should close any open versions of Testbed and start 

QARun. You should also open the driver script, Driver2, that you created in “Exercise 4 

— Completing the Driver Script”.

Exercise Prerequisites: Before beginning this exercise you must have completed the 

following prerequisites:

• Access to the following scripts:

• AUTOSYNC created during “Exercise 3 — Synchronizing Scripts Using Sys-

tem Variables”

• Driver2 created in “Exercise 4 — Completing the Driver Script”

• CustCred created during “Exercise 5 — Using Text Checks”

• FindDocs created during “Exercise 6 — Using Clock Checks To Test Perfor-

mance”

• AddCust created during “Exercise 7 — Using External TestData Files”

• Version created during “Exercise 8 — Inserting Bitmap Checks”.

• Access to the following events:

• Screen event named VM/System Product Screen

• Screen event named FindDoc

• Screen event named RecordUpdate.



Using Driver and Test Scripts Together     4-3

   BETA RELEASE

• Access to the following checks:

• Bitmap check named Find Documents Bitmap

• Text check named Master Credit Data Text Check

• Clock check named DocumentsFound.

• Access to the following dialog boxes:

• Dialog named Start Script Dialog created in “Exercise 9 — Inserting Script 

Dialog Boxes”.

• Close Testbed

• Close QARun.

Testing Requirements: The following test elements are created during this exercise:

• Modified script named Driver2.

You should allow 10 minutes to complete this exercise.

Modifying the Driver Script

Each of the individual test scripts starts at a particular point in the target application. 

Table 4-1 identifies the relevant location in the target application where the test script 

conducts check and event testing. The test scripts must be inserted into the driver script 

after the Testbed start location has been accessed.

Use the following procedure to incorporate the test scripts into the driver script:

1. Locate the area of the driver script that contains the following code:

Attach "Testbed for Windows V1.00 Connected MainWindow"

Wait(30, "", "VM/System Product Screen")

Type user

Type "{Tab}"

Type pswd

Type "{Return}"

Type "{F1}"

Table 4-1.  Test Script Insertion Points

Test Script Testbed Start Location

CustCred CUSTOMER MASTER MAINTENANCE 

MENU screen

AddCust CUSTOMER MASTER MAINTENANCE 

MENU screen

FindDocs FIND DOCUMENTS screen

Version FIND DOCUMENTS screen



4-4     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

2. Position your cursor on a blank line following the Type "{F1}" statement and 

insert the following lines of code:

Run "CustCred"

Run "AddCust"

Inserted at this location, the Run command calls the CustCred and AddCust test 

scripts after Testbed reaches the CUSTOMER MASTER MAINTENANCE MENU 

screen. 

Next, you need to insert the two remaining test scripts after the FIND DOCU-

MENTS screen is reached. The FIND DOCUMENTS screen was accessed by 

pressing the F4 option from Testbed’s MAIN MENU screen.

3. Locate the area of the driver script that contains the following code:

Type "{Esc}"

Type "{F4}"

4. Position you cursor on a blank line following the Type "{F4}" statement and 

insert the following lines of code:

Run "FindDocs"

Run "Version"

Inserted at this location, the Run command calls the FindDocs and Version test 

scripts after Testbed reaches the MAIN MENU screen. 

5. From the File menu, choose Save to save the changes to the Driver2 script.

The Resulting Script

The following example shows how the modified driver script should appear. The 

modified and added code appears in bold typeface.

Include "Autosync"

Function Main

Call StartAutosync

var Start_Script_Dialog_Controls[]

//  Start_Script_Dialog_Controls[ "useridfield" ]

//  Start_Script_Dialog_Controls[ "PasswordField" ]

//  Start_Script_Dialog_Controls[ "userid" ]

//  Start_Script_Dialog_Controls[ "password" ]

//  Start_Script_Dialog_Controls[ "VersionBox" ]

//  Start_Script_Dialog_Controls[ "version2" ]

//  Start_Script_Dialog_Controls[ "version1" ]

//  Start_Script_Dialog_Controls[ "okButton" ]

//  Start_Script_Dialog_Controls[ "cancelButton" ]

//  Start_Script_Dialog_Controls[ "idBox" ]

Start_Script_Dialog_Controls[ "userid" ] = ""

Start_Script_Dialog_Controls[ "Password" ] = ""



Using Driver and Test Scripts Together     4-5

   BETA RELEASE

dialog "Start Script Dialog", Start_Script_Dialog_Controls

user = Start_Script_Dialog_Controls[ "userid" ]

pswd = Start_Script_Dialog_Controls[ "Password" ]

cancelbutton = Start_Script_Dialog_Controls[ "cancelButton" ]

If cancelbutton = 1

    Stop

Endif

Attach "PopupWindow~1"

Button "Start", 'Left SingleClick'

PopupMenuSelect "Run..."

Attach "Run PopupWindow"

If Start_Script_Dialog_Controls[ "version1" ] = 1

ComboText "&Open:", 

"""C:\Program Files\Compuware\QARun\Demos\TESTBED.EXE"" -v1"

Else

Combotext "&Open:", 

"""C:\Program Files\Compuware\QARun\Demos\TESTBED.EXE"" -v2"

Endif

Button "OK", 'Left SingleClick'

Attach "Testbed for Windows V1.00  ChildWindow~1"

MouseClick 186, 20, 'Left SingleClick'

Attach "Testbed for Windows V1.00 Connected MainWindow"

Wait(30, "", "VM/System Product Screen")

Type user

Type "{Tab}"

Type pswd

Type "{Return}"

Type "{F1}"

Run "CustCred"

Run "AddCust"

Type "{Esc}"

Type "{F4}"

Run "FindDocs"

Run "Version"

Type "{Esc}"

Type "{Esc}"



4-6     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Running the Script Against a New Testbed Version

When you created the driver script and the individual test scripts, you created them using 

Testbed Version 1 (the default testbed version). Because you haven’t made any alterations 

to the actual target application (Testbed Version 1), all of the checks that you inserted into 

your test scripts should pass if you run them against Testbed Version 1.

For the purposes of this exercise, we are going to test a new version of the target appli-

cation, Testbed Version 2, to verify that all aspects of the new target application still work 

as expected. Testbed Version 2 contains some application changes that will cause many 

of the checks that were created against Version 1 to fail.

Because Testbed’s windows contain the version number as part of the attach name, the 

scripts you learned using Version 1 will fail if you attempt to run them against Version 2 

unless you created the significant fields mask described on “Configuring QARun” on 

page 2-3. This mask tells QARun to ignore the title and parent title components of the 

attach name.

Use the following procedure to run the completed driver script:

1. Ensure that all copies of Testbed are closed.

3. Click the OK button from the Run Script dialog box. The script begins to run and 

the Testbed Logon dialog box that you created appears.

4. Enter the appropriate Testbed logon information and select the Version 2 radio 

button. 

5. Click OK. The Driver2 script should continue to execute, calling each individual 

test script as indicated.

Hint

As an alternative to the exercise described on “Configuring QARun” on page 2-3, you 

may also manually change the significant fields by double-clicking the object’s name in 

the Object Map and de-selecting the Title and Parent Title options on the Significant 

Fields tab. 

Note

Remember, Testbed only allows a customer to be added to its database once. If you 

already ran the AddCust script, you must reset Testbed’s database or the script will fail. 

To reset the database, delete the TESTBED.DAT file, make a copy of the TESTBED.SAV 

file, and rename it TESTBED.DAT.

2. With the Driver2 script open, click the Run Script button from the Script Editor’s 

toolbar. The Run Script dialog box displays.



Using Driver and Test Scripts Together     4-7

   BETA RELEASE

Analyzing the Results

After the script completes running, Log View loads with the Driver2 log file. You can 

scroll through the log file to display the results of all checks and commands QARun 

executed. Each command and comment that QARun executed is recorded; however, you 

are probably most interested in the results of the various checks that you inserted into the 

scripts. Using Log View, it is possible to filter the file so that only the check results are 

displayed. 

Use the following procedure to filter the log file:

2. Select Passed and Failed Checks from the Select filter area and click OK. The log 

view is filtered, now showing only the checks that were performed from the Driver2 

script as shown below:

1. Click the Select Filter button from the Log View toolbar. The Select Filter dialog 

box displays:



4-8     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

Viewing Failed Checks

Passed and failed checks are highlighted in different colors. The default colors are green 

and red respectively. You can change these colors by choosing Colors from the Options 

menu. In addition to viewing the failed check results, you can update the results of failed 

checks directly from the log file.

Failed Bitmap Checks

One check that should have failed when you ran the script was the toolbar check on the 

FIND DOCUMENTS screen. The name of this check was Find Documents Bitmap. This 

check failed because an additional toolbar button appears in Testbed Version 2 that was 

not present in Testbed Version 1.

1. To view the differences between the expected check results and the actual check 

results, double-click on the failed check’s Check Name column in Log View. The 

Bitmap Check dialog displays:

2. Click the Bitmap Check dialog box’s Differences tab to display the expected and 

actual bitmap image. 

• Click the Zoom button to display each bitmap in a separate window. These 

windows may be sized to achieve a clearer view of the bitmaps. Click the 

Zoom button again to close the window.

• Click the Show differences button to see a consolidation of the results.

Failed Clock Checks

Clock checks record the actual and expected time results in the log file and can be viewed 

by displaying the Notes column. 

If the Notes column is not displayed, choose Column Layout>Grid from the View menu 

and add the Notes column to the display



Using Driver and Test Scripts Together     4-9

   BETA RELEASE

Failed Text Checks

The text check on the CUSTOMER MASTER CREDIT DATA screen has also failed 

(don’t panic, it was designed to). 

1. Double-click the Master Credit Data Text Check check name from the log. The fol-

lowing dialog box displays:

2. Click the Differences tab to view the specific areas were the check failed. The 

following information displays:

3. Click Zoom. 

Two windows appear on the screen: one that displays the expected results and one 

that displays the actual results. The areas that passed are displayed in green. Those 

that failed are displayed in red.



4-10     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

4. Click the Restore button to again view the expected and actual results within the 

Text Check dialog box’s Differences tab.

In addition to using the Differences and Flash buttons to highlight the areas where 

the check failed, you can also use the Area spin control to view the results of each 

Include are in the Area Result box. 

Notice that the ASCII text check in area 2 failed. 

5. Click the ASCII Text Area Differences tab to display the specific differences 

between the expected and actual check results.

When you created the check, you told QARun to expect to find the text “Mr. Smith” 

in the CONTACT field. When the script was run, the text “Mr. Hope” appeared in 

the field, causing the check to fail.

Updating Checks

All failed checks, with the exception of clock checks, can be updated directly from the 

log file. Use the following procedure to update the failed checks:

1. From the log file, highlight the check name and right mouse-click.

2. Choose Make Source from the pop-up menu.

Exercise Summary

After completing this exercise, you should be able to successfully:

• Use the driver script to call individual test scripts

• Use the Run command from within scripts

• Use the driver script to run a different version of the target application

• Create a filter to view only check results

• View and update failed checks.



   BETA RELEASE

     I-1

Index

A
action keys, 2-29

arrived at statements, 2-21, 2-36

in logs, 2-47

ascii values, 3-7

editing expected results, 3-7

attach names

components of, 2-13

autowaits, 2-31

B
bitmap checks

captured image window, 3-34

exclude areas, 3-33

viewing failed, 4-8

busy indicator, 1-5

C
capture button, 2-34

capturebox command, 2-48

captured image window, 3-34

checks, x
bitmap, see bitmap checks

clock, see clock checks

text, see text checks

updating, 4-10

viewing results in log view, 4-7

viewing statistics in logs, 3-22

clock checks

associated required commands, 3-18

defining, 3-17

logging off, 3-20

resetting clocks, 3-19

starting clocks, 3-19

stopping clocks, 3-19

viewing failed, 4-8

viewing results, 3-22

clockreset( ) command, 3-19

clockstart( ) command, 3-19

clockstop( ) command, 3-19

colors, changing, 2-4

comma separated variables (.csv files), 3-26

command wizard, 2-37

compile errors, 2-27

Compuware technical support

FrontLine Web site, ix
configuring

autoload log, 2-40

bitmapselects, 2-6

script editor, 2-4

use wait timeout check box, 2-30

use wait timeout option, 2-5

wait event timeout option, 2-4, 2-30

controls

adding, 3-38

aligning, 3-39

edit controls, 3-40

static controls, 3-38

csv files, 3-26

customer support, x

D
default script header, 2-13

inserting include statements in, 2-45

dialog editor

adding controls, 3-38



I-2     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

aligning controls, 3-39

group boxes, 3-41

in scripts, 3-45

push buttons, 3-43

radio buttons, 3-42

dialogs,  see dialog editor

driver scripts, ix, 2-2

adding dialogs to, 3-45

creating, 2-3, 2-40

including synchronization, 2-40

inserting test scripts, 4-1

using to test different version, 4-6

E
edit controls

adding to dialogs, 3-40

errors, 2-27

event logic, 2-37

events

defining, 2-21

event logic, 2-37

not found events, 2-29

screen events, 2-32

synchronization, 2-18

exclude areas

bitmap checks, 3-33

text checks, 3-6

external data files, see testdata files

F
fields and records, 3-26

filters, 4-7

fonts, changing, 2-4

Frontline technical support Web site, ix
function main command, 2-31

G
getting help for QACenter, ix
group boxes

adding to dialogs, 3-41

H
headers, script, 2-13

help

FrontLine support Web site, ix

I
if...else commands, 2-37

include areas

text checks, 3-6

include command, 2-31, 2-44, 4-2

index files, 3-26

introduction, vii

L
log comments, see arrived at statements

log view

see logs

log.commands command, 3-20

log.comments command, 3-20

logging on, 2-3

logoff( ), 2-49

logs

advanced logging techniques, 2-48

autoload, 2-40

changing column layout, 2-46

filters, 4-7

test run statistics, 3-22

turning logging off, 2-49

viewing, 2-27

viewing check results, 4-7

looping, 3-20

testdatacurfield( ) command, 3-28

testdatacurrecord( ) command, 3-28

testdatafieldcount( ) command, 3-28

testdatarecordcount( ) command, 3-28

M
make dialog, see dialog editor

N
not found events, 2-34

P
passwords

logging on as admin, 2-3

pattern values, 3-9

pauses, 2-18

performance checks, see clock checks

push buttons

adding to dialogs, 3-43



Index     I-3

   BETA RELEASE

Q
QACenter technical support

Frontline Web site, ix

R
radio buttons

adding to dialog boxes, 3-42

record and fields

using wildcards, 3-28

records and fields, 3-26

related publications, viii

repeat...until commands, 3-20

replay.actionkeys, 2-30, 2-32

replay.autowait, 2-30, 2-32

run command, 4-2

S
screen events, 2-32

capture button, 2-34

not found check box, 2-34

script editor

configuring, 2-4

scripts, ix
default header, 2-13

including other scripts, 2-31, 2-44

running, 2-27

saving, 2-39

summary info, 2-15

synchronization, 2-17

test scripts, 3-1

signing on, 2-3

static controls

adding to dialogs, 3-38

summary info, 2-15

support

FrontLine Web site, ix
synchronization, 2-17

synchronization methods

events, 2-18

pauses, 2-18

system variables, 2-19, 2-29

syntax errors, 2-27

system busy indicator, 2-29

system light

see system busy indicator

system variables, 2-19, 2-29

T
target applications, ix

see also testbed

technical support

FrontLine Web site, ix
terminology, ix
test scripts, x, 3-1

inserting into driver scripts, 4-1

test sites, ix
testbed

busy indicator

connecting, 1-4

connecting to, 2-14

disconnecting, 1-6, 2-15

logging on, 1-4

main window, 1-2

menus, 1-2

screen ids, 2-41

starting, 1-2

testing difference version, 4-6

toolbar buttons, 1-3

testbed.dat file, 3-25

testbed.sav, 3-25

testdata files, 3-23, 3-26

csv files, 3-26

index files, 3-26

looping, 3-28

wildcards, 3-28

testdatacurfield( ) command, 3-28

testdatacurrecord( ) command, 3-28

testdatafieldcount( ) command, 3-28

testdatarecordcount( ) command, 3-28

text captured window, 3-5

text checks, 3-2

ascii values, 3-7

exclude areas, 3-6

include areas, 3-6

numeric values, 3-7

pattern values, 3-9

text captured window, 3-5

viewing failed, 4-8, 4-9

text panels, 2-37

textpanel( ), 2-37



I-4     QARun Character-Based Testing Getting Started Guide

   BETA RELEASE

TypeToControl, 2-6

U
use wait timeout check box, 2-30

V
variables, system, 2-19, 2-29

volume entry data, see testdata files

W
wait event timeout option, 2-30

waits

autowaits, 2-31

inserting, 2-23

use wait timeout option, 2-5

wait event timeout option, 2-4

whenevers, 2-30, 2-35

wildcards

in testdata files, 3-28

wizard, command, 2-37

world wide web, ix


