united nations educational, scientific and cultural organization

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR 1595 - 28

Joint DEMOCRITOS - ICTP School on CONTINUUM QUANTUM MONTE CARLO METHODS 12 - 23 January 2004

EXCHANGE IN QUANTUM CRYSTALS:

MAGNETISM AND MELTING OF THE LOW DENSITY 2D WIGNER CRYSTAL

David M. CEPERLEY

Beckman Institute for Advanced Studies & Technology University of Illinois at Urbana-Champaign - N.C.S.A. II-61801 Urbana, U.S.A.

These are preliminary lecture notes, intended only for distribution to participants.

WKB theory		
 Calculate the ratio f_p by taking the most probable path, that which minimizes the action: S_p = ∫_Z^{PZ} dx√V(R(x)) J_p= A_pωB_p^{1/2} exp(-B_p) B_p=b_pr_s^{1/2} ω = 1/r ^{3/2} is the attempt frequency 	$\begin{array}{c cccc} P & b_{p} & A_{p} \\ \hline 2 & 1.66 & 5.6 \\ \hline 3 & 1.52 & 1.5 \\ \hline 4 & 1.67 & 2.9 \\ \hline 5 & 1.91 & 2.8 \\ \hline 6 & 1.77 & 2.0 \\ \hline \end{array}$	
 At low density, exchange rate with the smallest b_p will dominate. Roger (PRB 30, 6432, 1984) showed that P= 3 dominates, implying that as r_s→∞ system is ferromagnetic. However experiments will not be in the low density limit. 	Chakravarty, cond-mat/9805383 Voelker, cond-mat/0107151 Katano, PRB 62, 2573 (2000).	

Vacancy-Interstitial Model		
1. 2. 3. 4.	Form a vacancy-interstitial pair One of the pair diffuses. The pair is attracted by crystal stress fields Bound state implies eventual recombination.	
5.	Result is a spin exchange.	
•	Explains similarity of J's since they have a common prefactor. Common density dependence of step # 1 Explains universality of spin Hamiltonian at melting as due to crystal field. Relation of melting to exchanges	

