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Abstract: Several freshwater fishes have disjunct (geographically discrete and widely spaced) distributions across

northern Australia. We used mitochondrial deoxyribonucleic acid (mtDNA) data and phylogeographic analy-

ses to examine the origin of these common disjunct distributions and to test the hypothesis that they were a

result of a single biogeographic event. These disjunct distributions are not perfectly shared among species, but

we selected 3 species that have wide ranges with the most similar disjunct geographic overlap: Spotted Blue Eye

(Pseudomugil gertrudae), Pennyfish (Denariusa australis), and MacCulloch’s Rainbow Fish (Melanotaenia mac-

cullochi). Despite similarity in their present-day disjunct distributions, spatial genetic patterns varied considerably

among the 3 species in terms of measures of molecular diversity, number of mtDNA lineages within each species,

inter- and intra-regional spatial distribution of individual lineages within species, and degree of partitioning of ge-

netic variation among regions. Pseudomugil gertrudae and D. australis each contained 1 to 2 divergent lineages at

particular sites in 1 of the regions (Top End), but both species also contained lineages in this region that were more

closely related to conspecific populations in other regions. Two regional populations (Top End and Northern Cape

York Peninsula) of M. maccullochi consisted exclusively of highly divergent lineages that probably reflect cryptic

species. When the divergent lineages within each species were excluded from temporal analyses, a single vicariant

event among regions could not be rejected. Our results indicate that several regional populations are long-term

relicts for M. maccullochi and that several sites within Top End are associated with localized long-term refugia for

P. gertrudae and D. australis. A single biogeographic event in the mid- to late-Pleistocene may have created broad-

scale separation of most populations of these species.

Key words: phylogeography, lineage retention, endemism, introgression, simultaneous vicariance

Vicariance caused by past geological, climatic, or eustatic
(sea-level change) processes is a key promoter of biological
diversification and biogeographic patterning (e.g., Hum-
phries and Parenti 1999, Avise 2000, 2004, Riginos 2005).
Comparative phylogeographic analyses provide a means for
examining the influence of past abiotic changes on species
distributions and spatial partitioning of intraspecific genetic
variation. Drastic or rapid landscape change should produce
congruent phylogeographic patterns across multiple taxa in-
dicative of a single vicariant event (e.g., Avise 2000, 2004,

Ponniah andHughes 2004). However, protracted landscape-
change processes may result in variation in the timing of
the cessation of gene flow across a landscape among spe-
cies. In such cases, variable phylogeographic patterns among
codistributed taxa, indicative of multiple vicariant events,
are expected.

Comparative phylogeographic studies often focus on
species with broadly continuous distributions with signif-
icant overlap in their ranges (e.g., Soltis et al. 2006, Leaché
et al. 2011). However, one interesting distribution pattern
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that is less frequently considered in comparative phylogeo-
graphic studies involves species, such as those restricted to
mountain tops, that have common disjunct (discrete and
widely spaced) distributions. These species are particularly
interesting cases for assessing vicariance (e.g., Knowles and
Carstens 2007, Shepard and Burbrink 2008) because their
shared disjunct distributions suggest they have the same
biogeographic history with identically timed geological events
driving divergence. Numerous freshwater fishes have con-
tinuous distributions at the drainage-basin scale in north-
ern Australia (e.g., Unmack 2001, Huey et al. 2014), but a
number of species have disjunct distributions across this
region (Unmack 2001, 2013).

Northern Australia underwent significant changes in
aerial extent and climate during the Pleistocene. Glacial
phases lowered sea levels, which led to repeated terres-
trial and freshwater connections across the exposed conti-
nental shelf between Australia and New Guinea every
100–150,000 y (Hewitt 2000, Voris 2000). A concomitant
increase in aridity that limited the spatial extent of hydro-
logical connectivity and served to isolate populations com-
plicated the potential for past connections among popula-
tions of freshwater biota during periods of low sea levels
(Webster and Streten 1972, Unmack 2001, Cook et al.
2012). In previous phylogeographic studies of freshwater
fauna in central northern Australia, investigators found
primarily that divergence among the regional populations
occurred in mid- to late-Pleistocene (reviewed by Cook
et al. 2012, Unmack 2013). We examined a broader ex-
tent of northern Australia, but focused on 4 regions con-
taining disjunct populations of 3 study species: Spotted
Blue Eye, Pseudomugil gertrudae Weber 1911 (Pseudomu-
gilidae); Pennyfish, Denariusa australis (Steindachner 1867)
(Ambassidae); and MacCulloch’s Rainbow Fish, Melanotae-

nia maccullochi Ogilby 1915 (Melanotaenidae). Cook and
Hughes (2010) assessed the timing of divergence among re-
gional populations of D. australis, and found that the mid-
to late-Pleistocene was the likely time for the origin of the
disjunct populations.

We used comparative phylogeographic analyses to ex-
amine the origin of common disjunct distributions in fresh-
water fishes in northern Australia and to test the hypothe-
sis that their disjunct distributions were a result of a single
biogeographic event. These disjunct distribution patterns
are not always shared among species, but we selected 3
species that have wide ranges with similar disjunct geo-
graphic overlap for phylogeographic analyses (Fig. 1A–C).
Our 1st goal was to determine whether phylogeographic pat-
terns are congruent among the 3 species. The 2nd was to
test the hypothesis that the disjunct populations were formed
by a single vicariant event in the mid- to late-Pleistocene.

METHODS
Study area

The 4 regions representing the disjunct ranges of the
3 study species were Top End (TE), northwestern Cape

York Peninsula (NCYP), southeastern Cape York Penin-
sula (SCYP), and Wet Tropics (WT) (in order from west
to east; Fig. 1A–C). TE is separated from NCYP by a wide
arid region in the southern Gulf of Carpentaria that lacks
much of the northern fish fauna and represents a differ-
ent biogeographic subprovince (Unmack 2001, 2013). The
NCYP and SCYP regions are separated by a major drain-
age divide and a narrow coastal region to the north of SCYP
that lacks any larger rivers. SCYP and WT regions also

Figure 1. Map of northern Australia showing the drainage

basins sampled for Pseudomugil gertrudae (A), Denariusa

australis (B), and Melanotaenia maccullochi (C) across the

4 regions. All drainage basins (which are the same as in Table 1)

are numbered in panel B, whereas only the basins sampled for

the other 2 species are numbered in panels A and C. Colors

indicate the drainage basins sampled from the 4 regions

(blue = Top End [TE], green = northwestern Cape York

Peninsula [NCYP], red = southeastern Cape York Peninsula

[SCYP], yellow = Wet Tropics [WT]). Drainage basins that

contain the species but were not sampled are shown in gray.
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are separated by a particularly narrow coastal region where
the major drainage divide is quite close to the coastline
and the area between these regions lacks any large riv-
ers (Fig. 1A–C). This separation also is congruent with the
boundary between the Eastern Speciose and North-Eastern
subprovinces (Unmack 2001, 2013). These arid or narrow
coastal regions are likely to limit movement between drain-
ages, but the degree of isolation is difficult to quantify.

Study species
The 3 study species are typically lowland species oc-

curring in a range of stream and wetland systems, includ-
ing smaller coastal streams, lowland tributaries of large
rivers, floodplain habitats, and dune lake systems. Their
disjunct distributions extend from TE in the west to WT
in the east (Fig. 1A–C), and all 3 species are reported
from southern New Guinea. Their regional patterns of dis-
junct distribution have substantial overlap at the continen-
tal scale, but their within-region patterns of distribution
are variable, and often only 1 or 2 of the species were found
at any 1 sampling locality. However, all 3 species were sam-
pled at a few localities, including Ubgangee swamp in the
Russel–Mulgrave drainage, the Jardine drainage, and sev-
eral dune lakes at Cape Flattery. Many of the former wet-
land systems in the WT region have been drained and
developed for urban and agricultural development, and all
3 species have undergone population declines in this re-
gion. Melanotaenia maccullochi is now extirpated from its
type locality (Allen et al. 2002, Pusey et al. 2004).

Denariusa australis was previously called Denariusa

bandata until the discovery of an older applicable name
(Gon and Herzig-Straschil 1996). Data from previous work
on this species, published as D. bandata (Cook and Hughes
2010) were included in our study, but we expanded geo-
graphic sampling in TE and SCYP. Melanotaenia maccul-

lochi has been reported to contain divergent lineages among
several of the disjunct regional populations (e.g., McGuigan
et al. 2000, Unmack et al. 2013), and lineages from the
WT and NCYP recently have been shown to be not mono-
phyletic with respect to other species in the genus (Unmack
et al. 2013). To date no investigator has considered phylo-
geographic patterns within M. maccullochi across all of
its known regional populations. Therefore, we considered
all regional populations of M. maccullochi in phylogeo-
graphic analyses, but we excluded the strongly divergent
regional populations (i.e., NCYP and TE) from temporal
analyses.

Sampling and laboratory methods
Specimens of each species were collected from ≥1 river

basins within each of the 4 regions (Table 1). Most mito-
chondrial deoxyribonucleic acid (mtDNA) data for D. aus-
tralis are published (Cook and Hughes 2010; GenBank ac-
cession numbers GU474206–GU474370), but we added
several previously unsampled populations in our study. Ge-

nomic DNA was extracted and a fragment of the ATPase 6
and 8 mtDNA genes was amplified using the same prim-
ers, polymerase chain reaction (PCR) conditions, sequenc-
ing and aligning methods previously described (Cook and
Hughes 2010). The total number of populations sampled
and individuals genotyped for each species were: P. gertru-
dae: 19 and 147, D. australis: 21 and 176, and M. maccul-

lochi: 13 and 97.

Spatial genetic analyses
To describe spatial patterns of genetic variation in

each species, haplotype diversity (h), nucleotide diversity
(π), and the number of segregating sites (k) were calcu-
lated using Arlequin 3.5.1.2 (Excoffier and Lischer 2010)
for each regional population (pooled samples from each
region). The Fs statistic (Fu 1997) was calculated for each
regional population for each species using DnaSP 5.0 (Lib-
rado and Rozas 2009). To test whether the empirical Fs

Table 1. Geographic origin and sample size of specimens used

in our study. Sample-size information is formatted as number

of individuals genotyped from drainage basin/number of

sampling locations within drainage basin/number of haplotypes

in drainage basin. Region codes are: TE = Top End, NCYP =

northwestern Cape York Peninsula, SCYP = southeastern Cape

York Peninsula, WT = Wet Tropics. Drainage numbers are the

same as in Fig. 1.

Region Drainage

P.

gertrudae

D.

australis

M.

maccullochi

TE 1. Moyle 2/1/2

TE 2. Daly 14/1/2 22/1/9

TE 3. Finniss 47/6/11 12/2/2 6/1/2

TE 4. Adelaide 6/1/1 21/1/6

TE 5. Mary 6/1/2

TE

6. South

Alligator 2/1/1 13/1/7

TE 7. East Alligator 8/2/8

TE 8. Liverpool 9/1/2

TE 9. Blythe 11/1/2 14/1/3

TE 10. Buckingham 2/1/2 4/1/2

TE 11. Koolatong 1/1/1

NCYP 12. Mitchell 12/1/4

NCYP 13. Coleman 10/1/1

NCYP 14. Embley 7/1/1

NCYP 15. Jardine 14/2/3 17/2/5 21/4/7

SCYP 16. Normanby 3/1/1

SCYP 17. Jeannie 11/2/7 2/1/1 27/3/10

SCYP 18. Endeavour 7/1/2 22/2/9

WT 19. Daintree 6/1/1

WT 20. Mulgrave 12/1/2 9/1/2 3/1/1

WT 21. Johnstone 5/1/2 12/1/3

WT 22. Tully 9/1/2 11/1/3
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values were significantly different from 0, we compared
them to simulated distributions of this statistic generated
using 1000 coalescent model simulations in DnaSP that
incorporated the observed number of segregating sites in
the empirical data. Spatial genetic variation was assessed
using Analysis of Molecular Variation (AMOVA; Excoffier
et al. 1992) as implemented in Arlequin. Sampling sites
were combined by river basin and defined as a population,
which were then grouped into the 4 regions. The AMOVA
analyses incorporated both the frequency and relative di-
vergences of the haplotypes, giving hierarchical Φ-indices,
with statistical significance assessed using 10,000 permu-
tations of the observed genotypes.

Phylogenetic analyses
The phylogenetic analyses included an appropriate

closely related species as an outgroup as follows: Pseu-
domugil signifier Kner 1865, GenBank accession number
JN016438; Ambassis agassizii Steindachner 1867, JN016232;
Melanotaenia splendida (Peters 1866), JN016490, JN01650–
1JN016503; andMelanotaenia ogilbyi (Weber 1910), JN016504.
Maximum likelihood (ML) gene trees were built for each
species using PhyML 2.4.4 (Guindon and Gascuel 2003)
incorporating 1000 bootstrap replicates and input param-
eters for the model of sequence evolution as determined
by MODELTEST 3.7 (Posada and Crandall 1998). Nodes
with <50% bootstrap support were collapsed using MES-
QUITE version 2.72 (Maddison and Maddison 2000).
Lineages were defined by deeper nodes in the trees with
bootstrap >50%.

Temporal analyses
We used the coalescent time estimating approach as

implemented inMDIV (Nielsen andWakeley 2001) to esti-
mate the timing of divergence within each species. We did
this analysis with the following lineages for each species:
lineages PG-A and PG-B for P. gertrudae; lineage DA-A
for D. australis; and lineage MM-A for M. maccullochi.
We made pairwise population comparisons only between
populations that were the closest to each other in the fol-

lowing sequence along the coastline (TE vs NCYP, NCYP
vs SCYP, SCYP vs WT). Alternative combinations of re-
gional populations were not assessed because the study
species are lowland species distributed in coastal areas
within drainage basins (Pusey et al. 2004). Thus, past inland
connectivity across upland catchment divides is extremely
unlikely.

Coalescent parameters were estimated using the finite
sites model of nucleotide evolution (Hasegawa Kishino
Yano [HKY]; Hasegawa et al. 1985) and 5,000,000 Markov
chain iterations with a 10% burn-in. We set MMAX (maxi-
mum value for the scaled migration rate) to 0 and TMAX

(maximum value for the scaled divergence time) to 10.
Three replicate runs with a different starting seed number
were conducted for each pairwise comparison. For each
of the 9 pairwise population comparisons across the 3 spe-
cies, the highest likelihood value for the parameter T (diver-
gence time in mutational time) and the mutation parameter
θ (θ = 2Neμ, where Ne is the effective female population
size and μ is the substitution rate/nucleotide) were con-
verted to time in years (t) using the formula, t = T(θ/2μ).
The per lineage sequence divergence rate used to calcu-
late μ was 1.3% per million years, which is the best avail-
able divergence rate of the mtDNA ATPase6/8 genes esti-
mated from various species of tropical freshwater fishes
across several orders (Bermingham et al. 1997). For each
test, we calculated the 95% confidence bounds for values
of T that were distributed within the curve, and converted
these bounds to time using the above-mentioned formula.
If the timing estimates overlapped we could not reject a sin-
gle vicariant event.

RESULTS
Spatial genetic analyses

Each species had between 30–58 haplotypes (Table 2).
In all species, no haplotypes were shared among rivers
within regions or between regions. Molecular diversity was
highest in TE for P. gertrudae and D. australis, and highest
in NCYP and SCYP for M. maccullochi (Table 3). All re-
gional populations for all species had nonsignificant values

Table 2. The number of base pairs, GenBank accession number, unique haplotypes, and sequence-evolution model details for the 3 study

species. AIC = Akaike’s Information Criterion, PINVAR = proportion of invariable sites, TrN = Tamura Nei, I = invariant, G = gamma,

Alpha = gamma distribution of rate variation among base pairs.

Species

No. base pairs

of fragment

GenBank accession

number

No. unique

haplotypes

Best model

based on AIC PINVAR Alpha

Pseudomugil gertrudae 658 JN016439–JN016469 31 TrN + I 0.607 –

Denariusa australis 694 JN016233–JN016249 58 TrN + G – 0.205

Melanotaenia maccullochi 573 JN016470–JN016489;

JN016491–JN016500

30 TrN + I + G 0.574 0.921

266 | Phylogeography of disjunct fishes in Australia B. D. Cook et al.

This content downloaded from 054.210.054.072 on April 23, 2016 07:53:00 AM

All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



for Fu’s Fs, with the exception of SCYP forM. maccullochi

(Table 3). AMOVA indicated very strong population ge-
netic subdivision in all species at all levels of the hierarchy,
with the exception of D. australis at the largest spatial scale
(Table 4).

The models of nucleotide evolution selected by MODEL-
TEST for each species are presented in Table 2. The topol-
ogy of the gene trees varied among the 3 species in terms
of the number of lineages, the spatial distribution of each
lineage within and among the regions, and the amount of
genetic divergence among the lineages.

Pseudomugil gertrudae had 3 lineages, with the most-
divergent lineage in this species (lineage PG-C) restricted
to Leichhardt Springs within TE (upper South Alligator
drainage, river 6). The distribution of the other lineages
in P. gertrudae (lineages PG-A and PG-B) separated the
2 northwestern regions (TE and NCYP) from the 2 south-
eastern regions (SCYP andWT) (Fig. 2). Lineage PG-A also

suggested a minor subdivision within TE between western
(rivers 2–5) and eastern (rivers 6–11) drainages, except that
the Daly drainage (river 2) grouped with the eastern pop-
ulations.

As reported by Cook and Hughes (2010), Denariusa au-

stralis had only 2 lineages, which were only slightly divergent
(2%), with the principal lineage (Lineage DA-A) distributed
across all 4 regions, and Lineage DA-B geographically re-
stricted to the western side of TE. Lineage DA-B was absent
from the Daly drainage (river 2), with haplotypes from the
Daly drainage forming a slightly divergent group within
DA-A (haplotypes DA-19 to DA-27; Fig. 3).

The gene tree for M. maccullochi had 4 major mtDNA
lineages, 2 of which (MM-B and MM-C) were restricted to
NCYP and TE, respectively. LineageMM-Awas distributed
across SCYP and WT, and the 4th lineage was from the
Daintree drainage (river 19) in WT and was closely related
to the outgroup taxon M. splendida (Fig. 4).

Table 3. Molecular diversity within each regional population of Pseudomugil gertrudae, Denariusa australis, and Melanotaenia

maccullochi. h = haplotype diversity, π = nucleotide diversity, k (± SE) = number of segregating sites, Fs = Fu’s (1997) Fs statistic,

with p-values in parentheses. Bold indicates values that are significantly different from 0.

Region h π k Fs

P. gertrudae

TE 0.915 ± 0.012 0.006 ± 0.004 3.509 ± 1.806 −0.499 (0.259)

NCYP 0.642 ± 0.054 0.001 ± 0.001 0.771 ± 0.587 0.031 (0.767)

SCYP 0.863 ± 0.061 0.004 ± 0.002 2.052 ± 1.206 0.020 (0.246)

WT 0.723 ± 0.055 0.002 ± 0.002 1.283 ± 0.832 0.020 (0.491)

D. australis

TE 0.950 ± 0.009 0.012 ± 0.008 11.313 ± 5.172 −0.824 (0.085)

NCYP 0.866 ± 0.027 0.003 ± 0.002 2.289 ± 1.283 −0.204 (0.219)

SCYP 0.800 ± 0.164 0.004 ± 0.003 3.000 ± 1.874 0.363 (0.714)

WT 0.695 ± 0.070 0.004 ± 0.002 2.663 ± 1.481 −0.044 (0.815)

M. maccullochi

TE 0.333 ± 0.215 0.001 ± 0.001 0.667 ± 0.587 0.192 (0.640)

NCYP 0.743 ± 0.083 0.006 ± 0.004 3.371 ± 1.800 −0.082 (0.580)

SCYP 0.912 ± 0.018 0.005 ± 0.003 2.854 ± 1.529 −0.424 (0.024)

WT 0.257 ± 0.141 0.001 ± 0.001 0.400 ± 0.392 0.167 (0.575)

Table 4. Results of analysis of molecular variance (AMOVA). p-values for the Φ-indices are shown in parentheses with statistically

significant results shown in bold.

Comparison

Φ-indices

P. gertrudae D. australis M. maccullochi

Among regions (ΦCT) 0.579 (<0.001) 0.143 (0.099) 0.801 (0.014)

Among populations within regions (ΦSC) 0.561 (<0.001) 0.797 (<0.001) 0.159 (<0.001)

Among all populations (ΦST) 0.815 (<0.001) 0.826 (<0.001) 0.833 (<0.001)
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Temporal genetic analyses
The MDIV analyses indicated that the timing of coales-

cence among the regional populations within each species

overlapped and ranged from 0.25 to 2.5 million y ago (mya)
(Fig. 5). Similarly, temporal analyses indicated overlapping
estimates for divergences within each species among all re-
gions.

DISCUSSION
Spatial congruence of molecular biogeographic patterns

Despite the relative commonality of their disjunct dis-
tributions, spatial genetic patterns varied considerably among
P. gertrudae, D. australis, and M. maccullochi. Variation in
phylogeographic patterns was evident in measures of mo-
lecular diversity, the number of lineages within each species,
the spatial distribution of individual lineages within species
both within and among regions, and the degree of partition-
ing of genetic variation among regions. Other studies of co-
distributed freshwater fishes with continuous distributions
across either southeastern or northern Australia, includ-
ing a number of congeneric species, also have shown strik-
ingly different levels of phylogeographic structure (Thacker
et al. 2007, 2008, Huey et al. 2014). This result indicates
that phylogenetic proximity, commonality of distribution,
and ecological traits are not necessarily good predictors of
shared phylogeographic history. Phylogenetic analysis has

Figure 2. Maximum likelihood ATPase6/8 mtDNA gene

tree for Pseudomugil gertrudae (loglk = –1089.509). Colored

dots indicate the region of origin for each haplotype (see Fig. 1

for color codes).

Figure 3. Maximum likelihood ATPase6/8 mtDNA gene tree for Denariusa australis (loglk = –1721.124). Colored dots indicate

the region of origin for each haplotype (see Fig. 1 for color codes).
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shown strong (species level) genetic subdivision among dis-
junct populations of the freshwater fish Craterocephalus

stramineus in northern Australia (Unmack and Dowling
2010), but our study indicates that strong divergence
among disjunct populations is not always observed. Indeed,
in some cases (e.g., P. gertrudae and D. australis), stronger
phylogeographic structure may occur within putatively con-
tiguous regional population units. Our 3 study species have
strikingly different phylogeographic patterns, but given
the lack of shared haplotypes and levels of genetic diver-
gence, no evidence exists for on-going gene flow among
drainages or among regions in any species. Furthermore,
most have nonsignificant Fs values, suggesting that they
have formed demographically stable populations. Several
other freshwater fishes and decapod crustaceans with con-
tinuous distributions in northern Australia also have formed
demographically stable and genetically differentiated line-
ages despite molecular evidence for widespread gene flow
in some species in the recent past across the Carpentaria
region (de Bruyn et al. 2004, Baker et al. 2008, Masci et al.
2008, Huey et al. 2010, Cook et al. 2012).

Denariusa australis showed limited phylogeographic
structure among regions, but P. gertrudae and M. mac-

cullochi each showed significant phylogeographic subdi-
vision among some of the regions, with P. gertrudae also
having shallower phylogeographic subdivision among re-
gions within lineages PG-A and PG-B (Figs 2, 4). Striking
morphological variation (i.e., length of 1st dorsal and pelvic

fin filaments; and height, shape, and patterns of spots on
2nd dorsal and anal fins) is reported within P. gertrudae,
even among populations within regions (Allen et al. 2002).
Molecular data are congruent with the morphological data
in indicating strong heterogeneity within this species, even
at within-region scales.Melanotaeniamaccullochi also con-
tains several geographically differentiated color forms (Allen
et al. 2002), with variation reported in the intensity of body
stripes and in the markings on dorsal and anal fins among
several of the regional populations. A recent study has
shown that M. maccullochi from WT and NCYP are not
monophyletic relative to other species in the “Maccullo-
chi” group sampled from southern New Guinea (Unmack
et al. 2013). The molecular data we presented for this spe-
cies shows higher differentiation among the lineages than
that for P. gertrudae, indicating that morphological var-
iation among the regional populations of M. maccullochi

may reflect interspecific variation, although more detailed
analyses of morphological and genetic data are needed (see
Page et al. 2005).

Phylogeographic structuring was lowest between SCYP
and WT in all species, but haplotypes were not shared
among the regions for any of the species. Both SCYP and
WT contain coastal plains with extensive wetland systems,
and SCYP also contains diverse dune-lake wetland sys-
tems. The continental shelf in the vicinity of these 2 re-
gions is relatively wide (Unmack 2001), and it is possible
that during recent periods of lowered sea levels these
wetland systems could have been more extensive and con-
tinuous between these 2 regions over exposed sections of
the continental shelf. Furthermore, the degree of geogra-
phic separation between the SCYP and WT regions is no-
tably less than that among the other regions, and from a
biogeographic perspective, our molecular data indicate no
biogeographic subdivision between the SCYP and the WT
regions.

Figure 5. Results of MDIV analyses, showing the estimated

timing of coalescence in years between pairs of regional

populations. PG = Pseudomugil gertrudae, DA = Denariusa

australis, MM = Melanotaenia maccullochi, TE = Top End

region, NCYP = northwestern Cape York Peninsula region,

SCYP = southeastern Cape York Peninsula region, WT = Wet

Tropics region.

Figure 4. Maximum likelihood ATPase6/8 mtDNA gene

tree for Melanotaenia maccullochi (loglk = –1340.586).

Colored dots indicate the region of origin for each haplotype

(see Fig. 1 for color codes).
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Both P. gertrudae and D. australis show a shallow (i.e.,
within lineage) east vs west phylogeographic subdivision
within TE in the vicinity of rivers 4 and 5 (Fig. 1A, B). The
Daly drainage (river 2), which is almost the most-western
drainage in TE, grouped with populations on the eastern
side of TE for both P. gertrudae and D. australis, which
in the case of D. australis, represents the most divergent
group of haplotypes within lineage DA-A (Fig. 3). The re-
tention of divergent lineages within the Daly drainage has
been reported for several other fishes, including Oxyeleo-

tris selheimi (Macleay 1884) (Eleotridae), Neosilurus pseu-
dospinosus Allen and Feinberg 1998 (Plotosidae) (Huey
et al. 2014), and Mogurnda mogurnda (Richardson 1844)
(Eleotridae) (Cook et al. 2011), indicating that this drain-
age probably has been a long-term refugium for various
freshwater fishes and has subsequently been colonized
by divergent populations from elsewhere in the TE region
(see Cook et al. 2011). Therefore, the Daly drainage ap-
pears to have high phylogenetic diversity and phylogenetic
endemism across a number of unrelated freshwater fish
species, and is reported to have high species richness and
taxonomic endemism for freshwater fishes and freshwa-
ter turtles (Hermoso et al. 2011). Pseudomugil gertrudae

also contains a very divergent, though intraspecific, line-
age that is restricted to Leichhardt Springs at the base of
the Arnhem Plateau (∼38 m asl) in the upper South Alliga-
tor drainage (river 6). Leichhardt Springs contains other
endemic freshwater taxa (e.g., a taxon within the isopod
genus Eophreatoicus; Wilson et al. 2009; and a probable
cryptic species of rainbowfish related to M. trifasciata;
Unmack et al. 2013), suggesting that it probably has high
conservation value. TE overall contains refugial popula-
tions for P. gertrudae and D. australis, and our results show
the existence of several geographically localized refugia
within this region, ‘refugia within refugia’ (sensu Cooper
et al. 2011), with these places also having high endemism
for other freshwater biota.

Last, M. maccullochi from the Daintree drainage (river
19) in WT contains haplotypes that are closely related to
haplotypes from the outgroup species M. splendida sam-
pled acrossWT (Fig. 4). Past introgression among rainbow-
fishes is common (Unmack et al. 2013), but our study is the
1st record of M. maccullochi containing mtDNA from an-
other species.

Temporal concordance of biogeography history
The ranges of estimates for the timing of vicariance indi-

cated by the MDIV analyses were broad and overlapped,
suggesting that a single vicariant event in the past could
not be rejected among the species for any of the regions
(M. maccullochi from TE and NCYP was excluded from
these analyses). The MDIV estimates for divergence time
coincided with the mid- to late-Pleistocene (Fig. 5), but
none overlapped with the last glacial maximum (LGM), a

result previously found for D. australis (Cook and Hughes
2010) and several other freshwater species in the region (see
Cook et al. 2012). Climatic and landscape changes asso-
ciated with Pleistocene glacial cycles are thought to have
played key roles in facilitating widespread connectivity and
gene flow within a range of freshwater species in northern
Australia (see Cook et al. 2012). These same historical bio-
geographic processes also appear to have facilitated strong
vicariance among a number of codistributed fishes, high-
lighting the important role of landscape evolution on bio-
geographic patterning in northern Australia (see Bowman
et al. 2010).
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