\qquad
Date: \qquad Period: \qquad

Wave Speed, Frequency, \& Wavelength Practice Problems

$$
\begin{array}{ll}
v=f \lambda & c=300,000,000 \mathrm{~m} / \mathrm{s} \\
c=f \lambda & \left(c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)
\end{array}
$$

Use the above formulas and information to help you solve the following problems. Show all work, and use the factor-label method to perform all necessary conversions.

1. Sound waves in air travel at approximately $330 \mathrm{~m} / \mathrm{s}$. Calculate the frequency of a 2.5 m -long sound wave.

$$
f=132 \mathrm{~Hz}
$$

2. A wave on a certain guitar string travels at a speed of $200 \mathrm{~m} / \mathrm{s}$. Calculate the wavelength of an " A " note sounding at 440 Hz .

$$
\lambda=0.45 \mathrm{~m}
$$

3. A low-frequency radio wave has a frequency of $250,000 \mathrm{~Hz}$. What is the wavelength of this radio wave? (Hint: Don't forget that this is an electromagnetic wave, and therefore you should automatically know its speed.)

$$
\lambda=1200 \mathrm{~m}
$$

4. A certain microwave has a wavelength of 0.032 meters. Calculate the frequency of this microwave.

$$
f=9.375 \times 10^{9} \mathrm{~Hz}
$$

5. A certain radio wave has a wavelength of 7 inches.
a. Convert the wavelength of this radio wave into meters. (1 meter $=39.37$ inches)

0.178m

b. Find the frequency of this radio wave.

$$
f=1.69 \times 10^{9} \mathrm{~Hz}
$$

6. A certain wave on the border between microwaves and infrared waves has a frequency of $2 \times 10^{12} \mathrm{~Hz}$.
a. Calculate the wavelength of this wave in meters.

$$
\lambda=1.5 \times 10^{-4} \mathrm{~m}
$$

b. Convert the wavelength from part A into millimeters. (1 meter $=1000$ millimeters)

0.15 mm

7. The wavelengths of visible light range from approximately 400 nanometers to 750 nanometers.
a. Convert the 750 nm wavelength of the red light into meters. (1 nanometer $=1 \times 10^{-9}$ meters)

$$
\begin{gathered}
750 \times 10^{-9} \mathrm{~m} \\
\left(\text { or } 7.5 \times 10^{-7} \mathrm{~m}\right)
\end{gathered}
$$

b. Convert the 400 nm wavelength of the violet light into meters.

$$
\begin{gathered}
400 \times 10^{-9} \mathrm{~m} \\
\left(\text { or } 4.0 \times 10^{-7} \mathrm{~m}\right. \text {) }
\end{gathered}
$$

c. Now find the frequency of the higher-frequency colored light of parts A and B. (Hint: Before calculating, give some thought to the relationship between frequency and wavelength. Then you only need to calculate for the one color that corresponds to the higher frequency.)

$$
f=7.5 \times 10^{14} \mathrm{~Hz}
$$

