2007 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

CALCULUS AB SECTION II, Part A Time—45 minutes Number of problems—3

A graphing calculator is required for some problems or parts of problems.

- 1. Let *R* be the region bounded by the graph of $y = e^{2x-x^2}$ and the horizontal line y = 2, and let *S* be the region bounded by the graph of $y = e^{2x-x^2}$ and the horizontal lines y = 1 and y = 2, as shown above.
 - (a) Find the area of R.
 - (b) Find the area of *S*.
 - (c) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 1.

WRITE ALL WORK IN THE EXAM BOOKLET.

- 2. A particle moves along the *x*-axis so that its velocity *v* at time $t \ge 0$ is given by $v(t) = \sin(t^2)$. The graph of *v* is shown above for $0 \le t \le \sqrt{5\pi}$. The position of the particle at time *t* is x(t) and its position at time t = 0 is x(0) = 5.
 - (a) Find the acceleration of the particle at time t = 3.
 - (b) Find the total distance traveled by the particle from time t = 0 to t = 3.
 - (c) Find the position of the particle at time t = 3.
 - (d) For $0 \le t \le \sqrt{5\pi}$, find the time t at which the particle is farthest to the right. Explain your answer.

WRITE ALL WORK IN THE EXAM BOOKLET.

2007 AP[®] CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

- 3. The wind chill is the temperature, in degrees Fahrenheit (°F), a human feels based on the air temperature, in degrees Fahrenheit, and the wind velocity v, in miles per hour (mph). If the air temperature is 32°F, then the wind chill is given by $W(v) = 55.6 22.1v^{0.16}$ and is valid for $5 \le v \le 60$.
 - (a) Find W'(20). Using correct units, explain the meaning of W'(20) in terms of the wind chill.
 - (b) Find the average rate of change of W over the interval $5 \le v \le 60$. Find the value of v at which the instantaneous rate of change of W is equal to the average rate of change of W over the interval $5 \le v \le 60$.
 - (c) Over the time interval $0 \le t \le 4$ hours, the air temperature is a constant 32°F. At time t = 0, the wind velocity is v = 20 mph. If the wind velocity increases at a constant rate of 5 mph per hour, what is the rate of change of the wind chill with respect to time at t = 3 hours? Indicate units of measure.

WRITE ALL WORK IN THE EXAM BOOKLET.

END OF PART A OF SECTION II

2007 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

CALCULUS AB SECTION II, Part B Time—45 minutes Number of problems—3

No calculator is allowed for these problems.

- 4. Let f be a function defined on the closed interval $-5 \le x \le 5$ with f(1) = 3. The graph of f', the derivative of f, consists of two semicircles and two line segments, as shown above.
 - (a) For -5 < x < 5, find all values x at which f has a relative maximum. Justify your answer.
 - (b) For -5 < x < 5, find all values x at which the graph of f has a point of inflection. Justify your answer.
 - (c) Find all intervals on which the graph of f is concave up and also has positive slope. Explain your reasoning.
 - (d) Find the absolute minimum value of f(x) over the closed interval $-5 \le x \le 5$. Explain your reasoning.

WRITE ALL WORK IN THE EXAM BOOKLET.

2007 AP[®] CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

- 5. Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x + y 1$.
 - (a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.(Note: Use the axes provided in the exam booklet.)

- (b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy-plane in which all solution curves to the differential equation are concave up.
- (c) Let y = f(x) be a particular solution to the differential equation with the initial condition f(0) = 1. Does f have a relative minimum, a relative maximum, or neither at x = 0? Justify your answer.
- (d) Find the values of the constants m and b, for which y = mx + b is a solution to the differential equation.
- 6. Let f be a twice-differentiable function such that f(2) = 5 and f(5) = 2. Let g be the function given by g(x) = f(f(x)).
 - (a) Explain why there must be a value c for 2 < c < 5 such that f'(c) = -1.
 - (b) Show that g'(2) = g'(5). Use this result to explain why there must be a value k for 2 < k < 5 such that g''(k) = 0.
 - (c) Show that if f''(x) = 0 for all x, then the graph of g does not have a point of inflection.
 - (d) Let h(x) = f(x) x. Explain why there must be a value r for 2 < r < 5 such that h(r) = 0.

WRITE ALL WORK IN THE EXAM BOOKLET.

END OF EXAM