\qquad
\qquad
Chapter 2 Trigonometry
2.8 -The Sine Law

Non-Right Triangles

- Sometimes, you will encounter triangles that are not right triangles.
- Remember, SOH CAH TOA and the Pytheorem only apply to right triangles
- For non-right triangles, we need new tools: The Sine Law \& The Cosine Law

Labelling Triangles

- Remember, an angle and the side opposite have the same letter:

Sine Law

- When finding an angle: $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
- When finding a side: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Proof: Using the following diagram, prove the Sine Law...
In $\triangle A B D \quad \sin \angle B=\frac{h}{C} \Rightarrow h=C \sin \angle B$ In $\triangle A C D \quad \sin \angle C=$
Eq\# (1) = Eq \#(2) $\Rightarrow=n$

Example 1- Solve the following triangle.

$$
\begin{aligned}
& \frac{\sin \angle c}{c}=\frac{\sin \angle B}{b} \quad \sin \angle C=\frac{C \sin \angle b}{b} \\
& \angle C=\sin ^{-1}\left(\frac{6 \sin 110^{\circ}}{a .4}\right)=\sin ^{-1}(0.5998) \\
& \angle C=36.85 \approx 37^{\circ} \angle A=180-\left(110^{\circ}+37^{\circ}\right) \\
& \frac{a}{\sin \angle A}=\frac{b}{\sin \angle B} \quad \therefore \quad a=\frac{b \sin \angle A}{\sin \angle B} \\
& a=\frac{9.4 \sin 33^{\circ}}{\sin 110^{\circ}}=5.46 \approx 5.47
\end{aligned}
$$

Example 2: Identify which side can be found using sine law and calculate its value:

$$
\begin{aligned}
& \angle B=180^{\circ}-\left(14^{\circ}+7^{\circ}\right)=\frac{21^{\circ}}{\operatorname{con}} \\
& \frac{C}{\sin 14^{\circ}}=\frac{29}{\sin 91} \quad C=\frac{29 \sin 14^{\circ}}{\sin 91^{\circ}}=\frac{7.01 \text { in }}{29} \quad \\
& \frac{a}{\sin 75^{\circ}}=\frac{29}{\sin 91^{\circ}} \quad 2=\frac{29 \sin 75}{\sin 91}=\frac{28.01 \text { in }}{C A}
\end{aligned}
$$

Example 3: Find the indicated values of the variable and angle measure in the diagram below. If Find $\angle B=\theta$
$\angle A=50^{\circ}$
$\angle B=$? $\frac{\sin B}{b}=\frac{\sin A}{a} \sin B=\frac{4.0 \sin 50^{\circ}}{4.5}=0.6809$
$b=4.0$
$\angle B=\sin ^{-1} 0.6809=42.9$
$a=4.5$
(2) Find $\angle C=180-\left(50^{\circ}+43\right)=87^{\circ}$
$c=$?
$\angle c=$?

Example 4

(3)
$\triangle A B C$ has the following angle measures and edge lengths. $\mathrm{b}=58 \mathrm{~cm}$, $\angle B=38^{\circ}, \angle A=72^{\circ}$. Draw and label a diagram then determine the length of a and the measure of $\angle C$. Find the Area of the triangle as well.
$b=58 \mathrm{~cm}$
11 Find $\angle C=180-(38+58)=70^{\circ}$
$\angle B=38^{\circ}$
$a=$?
$\angle A=72^{\circ}$
(2) Find side $a \frac{a}{\sin a}=\frac{b}{\sin B}$
$\angle C=$?

$$
a=\frac{58 \sin 72^{\circ}}{\sin 38}=90.9 \simeq 91
$$

Example 5- A surveyor measures a base line PQ 440 m long. He takes measurements of a landmark R from P and Q and finds that $\angle^{\prime} \mathrm{QPR}=46^{\circ}$ and $\angle^{\prime} \mathrm{PQR}=75^{\circ}$
a) Calculate the perimeter of $\triangle \mathrm{PQR}$ to the nearest metre. \rightarrow Add All sides
b) Calculate the area of $\triangle \mathrm{PQR}$ to the nearest square metre.
$r=440 \mathrm{~m}$

$$
\text { (1) } \angle r=180^{\circ}-\left(46^{\circ}+75^{\circ}\right)=59^{\circ}
$$

$\angle P=46^{\circ}$

- $\frac{q}{\sin Q}=\frac{r}{\sin R}$

$$
q=\frac{440 \sin 75^{\circ}}{\sin 59^{\circ}}=495.8
$$

$\angle Q=75^{\circ}$
Find q
Find p
(2) Perimeter $=p+g+r=369.2+495.8+440$

$$
=1305 \mathrm{~m}
$$

Name: \qquad
\qquad

Chapter 2 Trigonometry

Sine Law Worksheet Assignment

1. Solve for the given variable (correct to 1 decimal place) in each of the following:
(a) $\frac{a}{\sin 35^{\circ}}=\frac{10}{\sin 40^{\circ}}$
(b) $\frac{65}{\sin 75^{\circ}}=\frac{b}{\sin 48^{\circ}}$
(c) $\frac{75}{\sin 55^{\circ}}=\frac{c}{\sin 80^{\circ}}$
2. For each of the following diagrams write the equation you would use to solve for the indicated

3. Solve for each of the required variables from Question \#2.
4. For each of the following triangle descriptions you should make a sketch and then find the indicated side rounded correctly to one decimal place.
(a) In $\triangle A B C$, given that $\angle A=57^{\circ}, \angle B=73^{\circ}$, and $A B=24 \mathrm{~cm}$. Find the length of $A C$
(b) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{B}=38^{\circ}, \angle \mathrm{C}=56^{\circ}$, and $\mathrm{BC}=63 \mathrm{~cm}$. Find the length of AB
(c) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{A}=50^{\circ}, \angle \mathrm{B}=50^{\circ}$, and $\mathrm{AC}=27 \mathrm{~m}$. Find the length of AB
(d) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{A}=23^{\circ}, \angle \mathrm{C}=78^{\circ}$, and $\mathrm{AB}=15 \mathrm{~cm}$. Find the length of BC
(e) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{A}=55^{\circ}, \angle \mathrm{B}=32^{\circ}$, and $\mathrm{BC}=77 \mathrm{~cm}$. Find the length of AC
(f) In $\triangle \mathrm{ABC}$, given that $\angle \mathrm{B}=14^{\circ}, \angle \mathrm{C}=78^{\circ}$, and $\mathrm{AC}=36 \mathrm{~m}$. Find the length of BC

Solutions:

1. (a) 8.9 units (b) 50.0 units (c) 90.2 units
2. (a) $\frac{a}{\sin 53^{\circ}}=\frac{36}{\sin 81^{\circ}}$ (b) $\frac{23.6}{\sin 35^{\circ}}=\frac{b}{\sin 70^{\circ}}$ (c) $\frac{14.2}{\sin 15^{\circ}}=\frac{c}{\sin 73^{\circ}}$
3. (a) 29.1 cm (b) 38.7 cm (c) 52.5 m
4. (a) 30.0 cm (b) 52.4 cm (c) 34.7 m (d) 6.0 cm (e) 49.8 cm (f) 148.7 m
