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Directional self-assembly of permanently magnetised
nanocubes in quasi two dimensional layers†

Joe G. Donaldsona and Sofia S. Kantorovich*a,b

To design modern materials with a specific response, the consequences of directionally dependent inter-

actions on the self-assembly of constituent nanoparticles need to be properly understood. Directionality

arises in the study of anisometric nanoparticles, where geometry has a drastic effect on the properties

observed. Given the fact that magnetic interactions are inherently anisotropic, if one constructs these par-

ticles from a magnetic medium, an interesting interplay between the two sources of directionality will

occur. We have investigated this scenario by exploring systems of dipolar nanocube monolayers. Using an

applied analytical approach, in combination with molecular dynamics simulations, we have determined

the ground state structures of individual monolayer clusters. Taking inspiration from experiments, two

different fixed dipole orientations for the permanent magnetisation of the nanocubes were considered:

the first aligned along the [001] crystallographic axis of each cube, and the second along the [111] axis. We

discovered that the structure of the ground state is distinctly different for the two systems of permanently

magnetised nanocubes; [001] cubes form dipolar chains in the ground state, whereas those with [111]

orientation adopt square lattice structures. The discovered configurations in the ground state represent

two different structural motifs, as yet unobserved in the ground state of other magnetic nanoparticle

systems.

1. Introduction

Nanoscopic magnetic particles are utilised in many modern

functional materials that are extremely versatile and often have

desirable switchable properties. Understanding and predicting

the processes in which these particles assemble enables tailor-

made materials to be built from the bottom up. The specific

properties of materials can be designed by exploiting the way

in which the constituent particles self-organise. These self-

assembly mechanisms are effected by numerous internal and

external influences. The magnetic character of the particles

will effect the microstructure that is formed, while the shape

of the assembling units is a competing factor that will also

drastically alter the mechanism and resulting outcome of

assembly processes.1,2 External influences will include the

thermodynamic conditions and the presence of a magnetic

field. All of these variables can be manipulated in tandem to

tune the material for a desired response.

Systems of anisometric magnetic nanoparticles are an excit-

ing area of materials research due to combinations of direc-

tionally dependent interactions. For instance, it is possible to

introduce changes in the anisotropy of the magnetic inter-

action, exemplified in experiments on magnetically capped

colloids and magnetic Janus particles, as well as the predic-

tions of the shifted dipole model.3–7 An alternative, however, is

to introduce a directionally dependent steric interaction result-

ing from anisometric particles; there are numerous examples

of studies on such particles (for instance rods, ellipsoids and

peanuts).8–13 Tierno recently gave a thorough overview of con-

temporary anisotropic magnetic colloids, highlighting the

range of applicability and structural diversity.14 Here we are

concerned with the consequences of the second scenario,

whereby the interplay between particle geometry and inherent

anisotropy of the magnetic interaction creates interesting path-

ways for self-assembly to follow. In particular, we shall focus

on particles of perhaps the simplest anisometric shape that

one could consider: the cube.

The experimental realisation of cubic particles is now

readily reproducible, thanks to advances in colloidal synthesis

techniques and nanofabrication.15–20 Depending on the

method of synthesis, a large range of particle sizes is accessi-

ble, from truly nanoscopic particles on the order of several

nanometers up to the micrometer regime. Systems in the

micrometer regime benefit from the ability to apply real-space
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optical imaging techniques to the study of the assembly

process.21 In contrast to spherical magnetic nanoparticle

systems, which form chain and ring structures, cubic particles

display a preference for ordered arrays of particles.22,23

The spontaneous assembly of superlattices occurs fre-

quently in three dimensional experimental systems, typically

consisting of iron oxide nanocubes with varying levels of

truncation.24–26 In micron sized systems of hematite cubes,

the particles are too heavy to remain suspended in solution,

resulting in the formation of interesting body-centred mono-

clinic sedimentary crystals.27 However, in a purely two-dimen-

sional example of hematite cube assembly, simple square

lattices have also been observed.28 Cubes synthesised from

materials other than traditional ferrous oxides show interest-

ing variations in behaviour. Lead sulphide nanocubes exhibit

an effect whereby the superlattice has a characteristic tilt.29

Nickel platinum alloy nanocubes form monolayers in which

particles stand on their vertices, attributed to their magnetic

easy axis lying along the [111] crystallographic direction.18 This

is in contrast to cubes of FePt that have a preference for mag-

netisation along [001].30 It is evident that the direction of the

net magnetic orientation relative to the cube geometry is an

important relationship when predicting the structure of

observed clusters. For systems of nanocubes at low tempera-

tures, the assembly mechanism drives the particles to adopt

structures that reduce the total magnetic moment of clusters

by enclosing the magnetic flux. These structures are termed

flux-closure rings in solution and flux-polygons in the presence

of interactions with a hydrophilic substrate and are considered

to be possible candidates for next generation magnetic

memory storage.31,32 Recent advances in electron holography

and micro-SQUID techniques have shown an absence of long-

range ferromagnetic ordering in magnetic nanomaterials.33

Magnetic cubes have also been utilised in the formation of

other functional colloidal particles, with imbedded cubic

patches or hollow cubic cavities.2,34 These extended functiona-

lisation schemes have been exploited in the study of active

colloids.35

From the various parameters that can be controlled in

systems of nanoparticles, the effect of particle anisometry on

system behaviour has been studied most extensively in the

simulation and theory of nonmagnetic systems. Simulations of

bulk hard cubes and cuboids, based upon a spherical building

block model, have hinted at interesting phase behaviour and

the possibility of a liquid-crystalline cubatic phase.36,37 Sub-

sequent studies, encompassing many other hard polyhedral

particles, describe the full range of assembled structures stem-

ming solely from the particle shape.38–43 Additionally, the dis-

covery of vacancy stabilisation mechanisms in hard cube

crystals has been reported.44 The phase behaviour of so-called

‘super balls’, which nicely mimic the curvature present in

experimentally synthesised cubes, has been mapped out as a

function of the particle curvature.45,46

If we now consider cube systems that are influenced by

dipolar interactions, the observed behaviour is in clear con-

trast to that of dipolar spheres (as one would expect). The bulk

behaviour of dipolar nanocubes has been discussed previously

by Zhang et al., who report the assembly of nanorings, nano-

wires and nanosheets in systems with additional attractive

interactions between the nanocube faces.47 Others report the

prediction and observation of lattice-like structures in two-

dimensional systems under the influence of weak magnetic

fields.28 The effect of induced dipoles on systems of colloidal

cubes in an electrostatic context has also been addressed

recently. Interesting phase behaviour was reported, including

the presence of a chain fluid phase, a hexagonal columnar

phase of these chains, and an ordered crystal phase. The pre-

dictions compared favourably to the experimental observations

also performed.48 Returning to the context of magnetism,

novel helical superstructures of nanocubes have been recently

synthesised. The formation of these structures was attributed

to the complicated interplay between van der Waals and the

dipole interaction, and entropic forces with the coupling of an

external field.49

In order to predict and tailor the behaviour of nanocubes

on the macroscopic scale, one first needs to understand their

self-assembly in the absence of thermal fluctuations (i.e. low

temperature → 0 K). We utilise a model consisting of elements

suggested by John et al. (coarse-grained cube structure) and

Zhang et al. (magnetic dipole approximation).36,47 This model

is used as the basis of low temperature molecular dynamics

simulations in which we try to elucidate the possible ground

state structures. Alongside simulations, we have used analyti-

cal theory to predict the energy of candidate structures. In

order for analytical calculations to be tractable, we limit the

movement of the cubes’ centres of mass to two dimensions

(i.e. a monolayer); rotations in three dimensions, however,

remain possible. This scheme is termed quasi two dimensions

(Q2D) and suitably mirrors common experimental arrange-

ments. Applying both of these techniques simultaneously, we

hope to elucidate the most favourable structures at low temp-

eratures and, subsequently, infer the structural motif that con-

stitutes the ground state configurations of magnetic nanocube

systems.

2. Methodology: simulation & theory
2.1. Particle model

In simulation, cubes were treated as monodisperse rigid

bodies interacting via magnetic and steric potentials only. The

magnetic interaction was characterised by the familiar dipolar

approximation, where the interaction between particle mag-

netic moments mi and mj has the form,

UdðijÞ ¼
mi �mj

� �

r3
� 3 mi � rij

� �

mj � rij
� �

r5
: ð1Þ

The vector rij = ri − rj denotes the displacement vector

between particles i and j with corresponding magnitude of r =

|rij|. Therefore, our model corresponds to nanocubes with a

ferromagnetic core, i.e. these cubes are permanently magne-

tised, and the direction of the dipole moment is fixed relative
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to the crystallographic axes. The magnetic interaction strength

is traditionally characterised for nanoparticles by a dimension-

less parameter λ given by,

λ ¼ jmj2
kTs3

: ð2Þ

It is defined as the energy per particle of two collinear

dipoles at close contact (s) normalised relative to thermal

energy, kT. Based upon the different preferred magnetisation

orientations for cubes found in experiment, two separate

systems with fixed dipole orientation were considered: the

first along the [001] crystallographic axis and the other along

the [111] axis.

All of our simulations were conducted using the simulation

package ESPResSo 3.2.0.50 This allowed us to utilise the avail-

able virtual site construction in order to model the rigid-body

motion of the cubes.51 Each individual cube was constructed

by arranging virtual particles, acting as spherical building

blocks, to form the complete surface area of the cube. A real

site was positioned at the cube’s centre of mass into which the

point dipole of each particle was positioned. The virtual sites

of each individual particle are fixed relative to the motion of

the corresponding real site, enabling rigid-body motion to be

reproduced.

In principle, one can vary the number of virtual sites per

side of a cube in order to tune the coarseness of the cube rep-

resentation. Therefore, the total number of spheres comprising

the surface is given by 6n2 − 12n + 8, where n is the number of

spheres per cube side. Upon increasing n, the surface rough-

ness will decrease and edge sharpness will increase: in the

limit of n → ∞ the particle will tend towards a perfect cube. In

a previous implementation of this model by John et al. (using

n = 3), the spherical units were placed at close contact to one

another.36,37 The virtual site construction employed here

enables sites to overlap, allowing for the approximation to a

cube to be improved. If we denote the total length of a cube as

h, and choose to overlap the surface sites by half the diameter

of each site, the virtual site diameter will scale as σs = 2h/(n + 1).

Evidently, as the value of n increases the computational

cost also increases. A good compromise between simulation

length and the best possible representation of the cube was

found at a value of n = 5. The steric interaction is incorporated

by applying it at each surface site individually, where a scaling

factor is introduced to adjust for the overlaps. The general

form is given by the soft sphere (Weeks–Chandler–Anderson)

potential,

UsðrijÞ ¼
4ε

σs

rij

� �12

� σs

rij

� �6� �

þ ε; rij , 21=6σs

0; rij � 21=6σs

8

<

:

9

=

;

; ð3Þ

where the range parameter σs denotes the surface site dia-

meter.52 An illustration of the specific model used for all simu-

lations is given in Fig. 1.

2.2. Molecular dynamics

Simulations attempting to accurately encapsulate behaviour at

low temperatures are notorious for the added subtleties one

has to be mindful of. Dipolar systems often have extremely

complicated free energy landscapes with many local minima,

which represent locally stable structural configurations.53 It is

necessary to ensure that the system does not become trapped

in any of these metastable states, which do not represent the

true equilibrium energy structure. In order to mitigate this, we

have employed canonical Langevin dynamics (LD) simulations

allowing for an implicit treatment of the carrier fluid, in

combination with the replica-exchange molecular dynamics

(REMD) method.54,55

During simulations, the particles were confined to a square

non-periodic Q2D slab, allowing the magnetic interactions to

be dealt with by explicitly summing over particle pairs. A Lan-

gevin thermostat was imposed in order to achieve constant-

temperature conditions. The one component Langevin

equation of motion for a particle i of mass M is given by,

Mẍi ¼ Fi � γẋi þ Frandom; ð4Þ

where Fi is the force on particle i due to the interactions

with the other particles, γ is the friction coefficient, and

Frandom is a random Brownian force. The random force is

characterised by a gaussian process obeying the fluctuation-

dissipation theorem. As such, each component of the force is

distributed with a mean of zero and a variance of 〈Frandom
2〉 =

2γkT. An equivalent equation of motion is imposed for the

rotational degrees of freedom. Given that we are interested in

purely equilibrium properties, the dynamical quantities, such

as the mass and friction coefficient, are actually physically

Fig. 1 Visualisations of the cube model used in simulations: (a) Cube

particle from simulation where the orange highlight is used to indicate

the [001] orientation of the dipole. (b) Cube from simulation with its

dipole oriented along [111]. (c) Schematic of a cross-sectional view

through the centre of the cube. This view highlights the positioning of

the virtual sites at half diameter intervals. A square boarder is drawn

(orange) to illustrate the approximation to a perfect cube. The length of

the cube is denoted h and the diameter of the constituent spheres by σs.

(d) Interior of the cubes where the central particle (blue) is now visible.
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insignificant parameters. Therefore, in simulation their values

are set to unity to ensure convenient relaxation to equilibrium.

The system was classified in reduced units defined by the cube

side length h, the particle mass M and energy parameter ε.

The reduced forms of relevant quantities are as follows: length

r* = r/h, i.e. corresponding to a reduced cube length of h* = 1,

magnetic moment m*2 = m2/h3ε, time t* = t (ε/Mh2)1/2 and

temperature T* = kT/ε. The energy parameter ε was chosen in a

manner to define a constant magnetic moment of m* = 1. It

follows that the λ parameter scales only as λ ∝ 1/T*. The simu-

lation time-step was set as Δt* = 0.001.

The REMD method was used in combination with LD in

the following manner. A particular temperature range {TR*}

was selected, representing R individual LD simulations (or

replicas) at specific temperatures. Temperatures were sampled

from an exponential distribution, beginning at a sufficiently

high ambient temperature to a target low temperature. A temp-

erature of at least T* = 0.001 was reached for each cluster size.

Each replica consisted of an initial random configuration of

cubic particles for the specific cluster size. A single cycle is

defined as the propagation of each replica for 1 × 103 time-

steps for equilibration, followed by a further 5 × 103 time-steps

for data collection. After the completion of each cycle, an

attempt was made to exchange configurations between replicas

with temperatures adjacent to one another. This exchange is

subject to a metropolis criterion; the probability of an exchange

between two replicas is min(1,exp[−(1/Tb − 1/Ta)(Ua − Ub)/k]),

where Ux is the total potential energy of configuration x at a

temperature Tx. A minimum of 1500 cycles was performed

during each simulation. Cluster sizes ranged from 2–25 for the

[001] system and 2–16 for [111]. The number of replicas was

adjusted accordingly to ensure acceptance ratios were no lower

than 20%.

2.3. Theoretical considerations

Throughout our analytical treatment of possible cluster geome-

tries, we assumed perfect cube geometry with a point dipole

orientated in either the [001] or [111] directions (see Fig. 2). In

order to make analytical predictions of candidate ground state

structures tractable, a number of constraints were required.

The first was to confine particles to a Q2D layer, which in turn

is quite convenient as many experimental systems have this

dimensionality. Secondly, calculations were performed on

ideal structures with precisely defined geometries, i.e. rigid

structures based on regular arrays of particles. The methods

used here are in line with those applied to spherical particles

with and without an external field, as well as to S-D particles,

rods and ellipsoids.6,11,56–58 It should be emphasised that in

this work we are considering the zero field regime in both

theory and simulation. It is expected that chain and ring struc-

tures characteristic of spherical particles will also manifest in

systems of nanocubes, albeit in a unique manner.

3. Ground state structure of particle
dimers

To begin, it is useful to consider the energy of configurations

of just two dipoles. The lowest energy structures will likely be

the basis for clusters of larger numbers of particles. The

classic collinear head-to-tail dipole structure (the lowest energy

dimer for dipolar spheres) will be used as a point of reference.

For spherical particles, the ground state structure can be

derived quite intuitively. The effect of the particle geometry is

not so intuitively rationalised and, as such, it is useful to

explore the candidates for cube dimers in more detail. In order

to determine their energies, consider the coordinate system

given in Fig. 3(a), shown for [111] but equally applicable to

[001]. The dipole of the first particle is localised at the origin,

resulting in the following dipolar interaction,

Udð1; 2Þ ¼ � jmj2

jr12j3
3 cos θ sinω sin θ cosðϕ� ψÞð½ þ cos θ cosωÞ�:

ð5Þ
The angles (θ,φ) define the orientation of the displacement

vector and (ω,ψ) define the relative orientation of the second

dipole.

When determining the low energy configuration, a sensible

approach is to place the cubes at the closest possible contact

in order to reduce the distance between dipoles. From here, all

Fig. 2 Theoretical calculations of cluster energies assumed mono-

disperse perfect cubes as shown. Two systems were considered, one with

point dipoles orientated in the [001] crystallographic direction (left hand

side), the other pointed in the direction of [111] (right hand side).

Fig. 3 Ground state configurations for dipolar cube dimers: (a) Coordi-

nate system used for the determination of the dimer energies, shown for

[111] but applicable for [001]. The displacement of the second dipole is

given by coordinates (r,θ,φ) and its orientation by (ω,ψ). (b) Predicted

ground state structure of a [001] dimer, a collinear head-to-tail arrange-

ment. (c) Predicted ground state structure of a [111] dimer; the head-to-

tail structure has adopted a zig-zag pattern.
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the energies of the possible mutual orientations can be calcu-

lated. For the lowest energy dimer, consider localising the

second dipole on the z-axis (θ = φ = 0). We can place this

dipole parallel to the z-axis (ω = 0) and position the cubes at

close contact so that |r12| = h and assign |m| = m. In this case,

Ud
[001](1,2) will reduce to the simple form,

U
½001�
d ð1; 2Þ ¼ � 2m2

h3
cosω: ð6Þ

The minimum occurs for ω = 0, resulting in a collinear

head-to tail configuration. This configuration is the lowest

energy for the [001] orientation. Therefore, the dipolar con-

figuration of this dimer is exactly equivalent to the collinear

reference. The energy of the structure is Ud
[001](1,2) = −2m2/h3:

when followed with appropriate normalisation by [m2/h3] this

yields ud
[001](1,2) = −2. A schematic of this lowest energy dimer

is given in Fig. 3(b).

The situation for the second orientation is one in

which an intuitive answer is not possible. Once again if

we consider placing the second cube at the point of closest

contact, the lowest energy configuration will be found.

For the cube geometry this is, as before, a face-to-face

contact. The second dipole is positioned at coordinates

ðr; θ;ϕÞ ¼ ðh; cos�1ð
ffiffiffi

3
p

=3Þ; tan�1ð�
ffiffiffi

3
p

Þ ¼ 2π=3Þ. Consequently,
only six mutual orientations of the dipole are accessible at this

contact point. The dipole interaction term is as follows,

Ud
½111�ð1; 2Þ ¼ m2

h3

ffiffiffi

2
p

sinω sin
π

6
� ψ

	 


: ð7Þ

The interaction is minimised by the second dipole oriented

at (ω,φ) = (π − cos−1(−1/3),2π/3). This results in a zig-zag head-

to-tail configuration, which is the lowest in energy for the [111]

orientation. For [111] cubes, the reference collinear structure

actually scales with a dipole separation of
ffiffiffi

3
p

h (space diagonal

of the cube), as opposed to simply h. Evidently, the dipole con-

figuration of the dimer does not relate exactly to the reference

case, although the dipoles are still aligned head-to-tail. The

energy of the structure is Ud
[111](1,2) = −4m2/3h3, which, fol-

lowed by normalisation relative to the [111] collinear reference

by m2=ð
ffiffiffi

3
p

hÞ3
� �

, gives ud
½111�ð1; 2Þ ¼ �4

ffiffiffi

3
p

. In comparison to

[001], where the ground state is equivalent to the collinear

form, the [111] ground state dimer is a factor of 2
ffiffiffi

3
p

lower in

energy when compared to its collinear reference. A visual rep-

resentation of this zig-zag dimer structure is given in Fig. 3(c).

A knowledge of how two dipolar cubes combine will assist

in predicting and rationalising microstructure comprised of

larger numbers of particles.

4. Ground state microstructure in Q2D

In this section the theoretical predictions of cluster energies

of ideal structures are presented. Expressions for the energies

of clusters are given per particle and are dimensionless

(i.e. have been normalised by Nm2=s3, where s is the appropri-

ate collinear close contact condition, as seen previously in the

definition of λ). To reiterate, the treatment is assuming a

system of perfect monodisperse dipolar cubes confined to

Q2D. The system with dipole orientation [001] (s = h) will be

treated first, followed by [111] (s ¼
ffiffiffi

3
p

h).

4.1. Dipole orientation [001]

It has been shown previously that dipolar spheres exhibit a

transition from chain to ring ground states occurring at a

cluster size of four.57 For [001] dipolar cubes, by taking inspi-

ration from the spherical case, chain and ring structures were

also considered as possible ground state candidates. The ideal-

ised chain structure is a rigid linear body with cubes placed at

close contact, resulting in a dipolar separation equal to the

length of the cube side. (See Fig. 4(a) for an illustration of the

configuration.) The expression found for a chain of cubes in

this favourable head-to-tail configuration is analogous to that

found for other particle geometries.11,57 The energy of a chain

of N cubes is given by,

uchðNÞ ¼ � 2

N

X

N�1

k¼1

N � k

k3
: ð8Þ

The energy is built up by the summation of successive

neighbour interactions, i.e. nearest neighbour then next

nearest neighbour and so on. One can consider the behaviour

in the limiting cases of small and large numbers of particles.

In the limit of large N the following asymptotic form is found,

uachðNÞ ¼ � 2

N
Nζð3Þ � ζð2Þ½ �; ð9Þ

where ζ(x) denotes the Riemann-zeta function of order x = 2,3.

This approximation is accurate to 5% even for chains as short

Fig. 4 Candidate ground state structures for [001] dipolar cubes: (a)

The rigid linear chain structure with a collinear arrangement of dipoles,

example for N = 5. (b) Example of ideal ring structure for N = 9, where a

nonagon is the corresponding polygon. (c) Variation of the nearest

neighbour distance d(N) as a function of N. The inset illustrates the

location of the distance.
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as four particles. If we only consider interactions between adja-

cent particles, the following simplification is obtained,

unchðNÞ ¼ � 2ðN � 1Þ
N

: ð10Þ

The discrepancy between the full expression and the nearest

neighbour limit saturates at approximately 15% as N increases.

The corresponding energy for an ideal ring of dipolar cubes

has a more complex form. The term ideal refers to the fact that

rings are based upon the polygon corresponding to the

number of particles in the ring. Another restriction is that

dipoles are confined to the two-dimensional plane defined by

the ring, and are tangential to its radius at all times. An added

complication arises because the distance between neighbour-

ing cubes of the ring (i.e. the length of the polygon side) is not

constant. In the fortunate situation of an ideal ring of spheres,

the nearest neighbour distance for all clusters is equal to the

particle diameter. For cubes, this value varies as a function of

N. Considering the inset diagram in Fig. 4(c) one can derive a

simple expression to describe the variation of the nearest

neighbour distance in units of h:

dðNÞ ¼ cos
π

N

	 


þ sin
π

N

	 
h i

: ð11Þ

The plot in Fig. 4(c) shows the variation of this function

with increasing N. As N increases, the value of d(N) will tend

towards unity because in the limit of infinite N the ring is

equivalent to the linear chain. We have verified that the energy

of an ideal ring of N cubes is equivalent to that of spheres, pro-

vided that the inter-neighbour distance function discussed

above is introduced. The full form is as follows,

uringðNÞ ¼
� sin3 π

N

	 


dðNÞ3
X

N�1
2½ �

k¼1

cos2
πk

N

� �

þ 1

sin3 πk

N

� � þmod ðN þ 1; 2Þ
2

2

6

6

4

3

7

7

5

;

where [(N − 1)/2] denotes the integer part of (N − 1)/2 and is

present to account for the number of interactions from odd to

even membered rings. It is again useful to analyse the behav-

iour for small and large values of N. For large N one can derive

an asymptotic expression of the form,

uaringðNÞ ¼
�2ζð3Þ
1þ 3π

N

: ð12Þ

This approximation is accurate to within 5% when rings

have reached a size of 15 cubes. For small N we consider only

the interactions between nearest neighbours; this approxi-

mation has the form,

unringðNÞ ¼
cos

2π

N

� �

� 3 cos2
π

N

	 


sin
π

N

	 


þ cos
π

N

	 
h i3 : ð13Þ

In comparison, with the case of chains, the discrepancy for

rings when only nearest neighbour interactions are considered

saturates at a higher value of 17%. However, even for small

rings this approximation still has an error of just over 10%.

A comparison of the energy per particle for both cluster

types as a function of the size of the cluster is shown at the top

of Fig. 5. The approximations for large and small N of each

cluster type have also been included for comparison. For each

of the cluster sizes considered, the chain configuration is the

preferred lowest energy structure. Importantly, no transition of

the ground state from one structure to the other is observed.

For further clarification, consider the energy trends in the

limit of large N, particularly the difference in energy between

chains and rings. A further manipulation to eqn (12) is

required. As N is large, we can expand the denominator and

take the first order correction as follows,

uaringðNÞ ¼ �2ζð3Þ 1þ 3π

N

� ��1

� �2ζð3Þ 1� 3π

N

� �

: ð14Þ

Then, by defining the energy difference between the chain

and the ring as Δua = uach − uaring, we can write,

ΔuaðNÞ ¼ �2ζð3Þ þ π
2

3N

� �

� �2ζð3Þ 1� 3π

N

� �� �

¼ π
2 � 18πζð3Þ

3N
: ð15Þ

Fig. 5 Energy predictions for the candidate ground state structures: the

top plot shows the energy per particle for each cluster type as a function

of cluster size. The energies obtained from simulation are given by the

orange circles. Shown underneath is the variation of the energy differ-

ence between chain and ring structures of equal size.
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The second graph of Fig. 5 shows the variation of the

energy difference from the full expressions and the approxi-

mation above. We can now deduce that Δua < 0 even in the

limit of infinite N, implying that uachain < uaring for all N. There-

fore, these idealised chains are still energetically favourable in

comparison to rings, regardless of cluster size. Consequently,

we predict that chains are the structural motif constituting the

ground state configuration of nanocubes with a dipolar orien-

tation of [001].

If we now compare this prediction to the results from simu-

lation, we find evidence to verify these claims. For each of the

individually simulated clusters, one finds a preference for the

chain structure as predicted. This is confirmed by the excellent

agreement between the predicted chain energy and the energy

of each cluster from simulation; this data is given in the first

plot of Fig. 5 (orange circles). One can also consider a visual

identification of clusters through snapshots taken from simu-

lation. A representative selection of cluster sizes was chosen

and the corresponding images are given in Fig. 6.

On inspection of the snapshots, it is clear to see that the

representation of the cube has a subtle effect on the chain

structure. The non-uniform surface structure of the cubes has

allowed them to nestle closer together. In terms of magnetic

interactions, it is favourable to reduce the distance between

dipoles. This is the driving force in the resulting offset

between particles as the temperature is decreased. It conse-

quently provides explanation of the slight discrepancy between

the predicted and simulated chain energies. The energies from

simulation are lower as the cubes have managed to slightly

reduce the dipole separation, of which h was assumed in

theory. One notices, however, that the variation between simu-

lation and theory stabilises; the effect of the offset diminishes

with increasing cluster size. In principle, if one were to

increase the model accuracy using the number of spheres per

cube side, it would be expected that the size of this offset

would decease inline with the sphere diameters. With this in

mind, we believe that the good agreement between simulation

and theory justifies the use of the composite model, in particu-

lar with n = 5, as a sensible compromise.

From this analysis we conclude that nanocubes with a

dipole orientated along the [001] crystallographic axis have a

single ground state configuration. In the ground state, regard-

less of the number of particles, an isolated cluster will adopt

the rigid linear chain structure described.

4.2. Dipole orientation [111]

When considering possible candidate ground state structures

for [111], an initial approach would be to again postulate struc-

tures inspired by the preferences of spherical particles. In this

case, however, chains or rings of cubes analogous to those dis-

cussed for [001] are higher in energy due to the fact that the

inter-dipolar distance now scales with the length of the cube’s

space diagonal (
ffiffiffi

3
p

h). It follows that candidate structures must

complement both the particle geometry and the relative orien-

tation of the dipole within the cubes. An appropriate chain

structure to consider would be one based on the configuration

of the zig-zag ground state dimer of [111]. A chain of cubes in

this favourable zig-zag configuration is depicted in Fig. 7(a). In

this chain configuration, an added complication is present as

neighbouring dipoles have different orientations. Fortunately

the mutual positioning of subsequent dipoles along the chain

provides a useful simplification.

To illustrate this, we can look at a simple system of two

dipoles confined to a two-dimensional plane. The first dipole

occupies the origin and is aligned with the y-axis, m1 = |m|(0,1).

The second dipole is parallel to the first, m2 = |m|(0,1), but

displaced by a vector r12, which makes an angle of α with

Fig. 6 Simulation snapshot for [001] ground state clusters: series of

snapshots for individual cluster sizes N = 5, 10, 15, 20, 25 (from bottom

to top). The cubes’ surfaces have been made transparent to allow the

orientation of dipoles (orange highlight) to be properly seen. The oscil-

lating offset between subsequent cubes can be clearly seen in these

images.

Fig. 7 Candidate ground state structures for [111] dipolar cubes: (a) The

rigid chain structure with zig-zag arrangement of dipoles, example for

N = 5. (b) Example simple square lattice for N = 8: the construction from

ring sub-units is clearly visible. (c) Schematic of the square lattice used

for calculations. Dipoles are represented each by a symbol •, ×, Δ and °.

By fixing • at the origin, the other dipoles adopt specific positions in the

lattice. From here it is possible to visualise the network of interactions

between the various dipole combinations.
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the y-axis, r12 = (y tan α,y). The magnitude of this vector is

therefore |r12| = y/cos α. The dipolar interaction for the configur-

ation is,

Ud ¼ jmj2cos3α
y3

� 3jmj2y2cos5α
y5

: ð16Þ

When the net energy of this interaction is zero, the follow-

ing relationship holds,

Ud ¼ cos3αð1� 3cos2αÞ ¼ 0: ð17Þ

This equation has a single physical solution,

cos α ¼
ffiffiffi

3
p

=3, which corresponds to an angle of α ≈ 54.74°.

The angle α, which measures the orientation between the

dipoles and displacement vector, corresponds exactly to the

equivalent angle for dipoles over an even number of bonds in

the zig-zag chain. Therefore, all of these interactions are zero;

only interactions over an odd number of bonds contribute.

We know already that nearest neighbour zig-zag dipoles

(dimers) have an energy contribution of �4
ffiffiffi

3
p

. To achieve an

expression for the zig-zag chain energy, all that is required is a

sum of the scaled contributions of the dimer term over an

odd number of bonds,

uzchðNÞ ¼ � 4
ffiffiffi

3
p

N

X

N�1
2½ �

k¼0

N � ð2k þ 1Þ
ð2k þ 1Þ3

: ð18Þ

The limit of the sum is again given by (N − 1)/2 where […]

indicates that only the integer part of the expression is

taken; this is to account for odd and even length chains.

Once more we can approximate this equation for long

chains in the limit of infinite N, and short chains using

only nearest neighbour interactions. Each expression is given

respectively as,

uazchðNÞ ¼ �
ffiffiffi

3
p

N

7

2
Nζð3Þ � 3ζð2Þ

� �

; ð19Þ

unzchðNÞ ¼ � 4
ffiffiffi

3
p

N
ðN � 1Þ: ð20Þ

The asymptote for large N is accurate to within 5% for all

chain lengths greater than two. The nearest neighbour approxi-

mation has a similar accuracy where the discrepancy saturates

rapidly to 5%. The closeness of both approximations can be

attributed to the fact that the number of contributing inter-

actions to the energy is significantly reduced with respect to

the value of N.

A second structure, which will naturally reflect the intrinsic

geometry of the cube and complement the dipole orientation,

is a simple square Q2D lattice. The suggested structure of the

lattice combines attributes of other structure types. Namely,

the lattice can be seen as a regular assembly of alternating zig-

zag chains, which in turn form sub-units of four dipoles that

adopt deformed ring structures.28 An illustration of such a

lattice is given in Fig. 7(b), where the sub-unit rings are clearly

shown.

To calculate the energy of a regular Q2D lattice, with a

size of (n1 × n2) cubes, we use the following approach.

The dipole at the origin has a fixed orientation of
jmj
ffiffiffi

3
p ð�1; 1; 1Þ. It follows, if we define the lattice as an assembly

of alternating zig-zag chains, there are a further three possible

fixed orientations a dipole can adopt within the lattice. The

dipole orientation at each lattice site is now set and can be

summarised as follows,

mðx; yÞ ¼ jmj
ffiffiffi

3
p

ð�1; 1; 1Þ x; y even or 0:
ð1; 1;�1Þ x even or 0; y odd:
ð1;�1; 1Þ x; y odd:
�ð1; 1; 1Þ x odd; y even or 0:

8

>

>

<

>

>

:

ð21Þ

As the dipoles are limited to four orientations within the

lattice, there will be a set number of different dipole inter-

actions. The number of interactions, including those between

dipoles of the same orientation, is given by the binomial

coefficient nþ r � 1
r

� �

, with n = 4 (number of dipole orien-

tations) and r = 2 (pair interactions), which corresponds to 10

possible dipole interactions. To show this, it is useful to

consider a representation of the lattice, as in Fig. 7(c),

where dipoles are associated with symbols (and colours). By

indexing each of the four dipole orientations using the

symbols •, ×, Δ and °, we can write the energy of the lattice per

particle as,

ulatðn1; n2Þ ¼ ðu•• þ u�� þ u°° þ uΔΔ þ u•� þ u•Δ

. . .þ u•° þ u�Δ þ u�° þ uΔ°Þ=ðn1n2Þ:
ð22Þ

It transpires that the interactions between equivalent

dipoles have no net contribution to the lattice energy. That is

to say, the sub-lattice of interactions represented by u••, u××, u°°
and uΔΔ are individually zero. Thus, the energy per particle as

a function of the cluster size (N = n1n2) is the sum of the inter-

action sub-lattices between differing dipoles,

ulatðNÞ ¼
1

N
ðu•� þ u•Δ þ u•° þ u�Δ þ u�° þ uΔ°Þ: ð23Þ

Readers who are interested in the form of each of these con-

tributing terms, and an overview of the brute force method

used, should consult the accompanying ESI.†

Due to the dipolar configuration within the lattice, its

energy is predominantly determined by a relatively small

number of interactions terms. As such, we can write a more

succinct version of eqn (23) by considering only dominant

interaction segments. The most important contribution is

from the linear chain segments, in both the vertical and hori-

zontal directions. The expressions account for all successive

neighbours in the chain. The second contribution to consider

is the net energy of the neighbour interactions along the first

order diagonal, i.e. dipolar interactions with a separation of
ffiffiffi

2
p

h only. These diagonal terms have one of two possible ener-

gies: favourable, εd1 ¼ �
ffiffiffi

6
p

=4 or unfavourable, εd2 ¼ 5
ffiffiffi

6
p

=4.

The number of each diagonal interaction type needs to be
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accounted for across the entire lattice. The resulting lattice

energy per particle is given as,

uslatðn1; n2Þ ¼ uzchðn2Þ þ uzchðn1Þ þ
ðn1 � 1Þðn2 � 1Þ

N
ðεd1 þ εd2Þ

þmod ½ðn1 � 1Þðn2 � 1Þ; 2�
N

ðεd1 � εd2Þ;

ð24Þ

where mod[a,b] denotes the residual of the division of a by b.

The first two terms account for the vertical and horizontal

chains respectively. The final two terms give the contribution

from the diagonal interactions, whereby the second performs

the required adjustment for lattices of (n1 × n2) = (2k × 2k) with

integer k. This segment expression, in contrast to the general

form of eqn (22), allows an asymptote for large lattices to be

determined in a straightforward manner. The chain terms are

approximated as in eqn (19); in addition, equal populations of

both diagonal terms are assumed. The resulting equation is,

ualatðn1; n2Þ ¼ uazchðn2Þ þ uazchðn1Þ þ
ðn1 � 1Þðn2 � 1Þ

N
ðεd1 þ εd2Þ:

ð25Þ
Essentially, the two approximate forms of the lattice energy

just described assert that the largest proportion of the lattice

energy is determined simply by the number of linear chain

segments.

A comparison of the energy per particle as a function of N

for the zig-zag chain and the lattice is shown in Fig. 8. The zig-

zag chain approximations for large and small N have been

included to illustrate their accuracy. The lattice is energetically

favourable for each of the cluster sizes considered. Once again,

no structural transition of the ground state is observed with

increasing N. Energies extracted from simulation support the

conclusion that square lattices are formed in the ground state.

The simulated energies are found alongside the analytical pre-

dictions in Fig. 8 (orange circles). For each individual cluster,

there is generally excellent agreement between the predicted

and simulated energies. To avoid overcrowding of the main

plot, the lattice approximations have been included in the

inset of Fig. 8 alongside the same simulation data with which

to compare. The segment approximation is remarkably accu-

rate across the entire cluster size range. Obviously for cluster

sizes up to N = 4, the approximation is in fact exact. However,

for larger lattices the energy is overestimated slightly as the

destabilising effects of higher order diagonal terms are not

accounted for. The large lattice approximation converges

quickly to the segment approximation from which it was

derived. In turn, for large lattice sizes, the discrepancy to the

general form saturates to approximately 9%.

The geometry of each lattice cluster was identified from

simulation by studying snapshots of configurations. The

ground state structures of individual clusters are those that

increase the number of sub-unit rings in the cluster; these can

be side-by-side or overlapping. The spectrum of lattice clusters

observed for N = 2–16 is given in Fig. 9. Panel 4 of Fig. 9 shows

the stable ring unit, which acts as the building block of succes-

sive clusters. In a larger cluster, its construction is easily

observed. For example, in Panel 15, three ring units from

Panel 4 have combined, leaving the remaining three particles

to position themselves in the top right corner of the cluster, in

a manner equivalent to that of Panel 3. A similar procedure is

evident in Panel 14; however, due to the fact that there is one

less particle, a resulting portion of the structure exhibits a frus-

tration similar to that of the cluster in Panel 6. As such, struc-

tural relations between successive clusters depend on the

completeness of the constituent rings. In turn, the discontinu-

ous nature of the lattice energy can be attributed to additional

particles adopting both favourable and unfavourable arrange-

ments in an effort to form ring structures.

If one makes a comparison between the configurations and

the simulation data, it is clear that rotational freedom in

certain cluster sizes alters the total energy. In particular, for

N = 3, the two non-central nanocubes reduce the cluster energy

further by rotating away from full face-to-face contact. The

same effect is observed for N = 5 where the additional fifth par-

ticle, separate from the favourable ring of four, lowers the

cluster energy by performing a similar rotation. This added

rotation freedom was not accounted for in calculations. As a

Fig. 8 Energy predictions for [111] candidate ground state structures:

The plot shows the predicted energy per particles for each cluster type

as a function of cluster size. The energies obtained from simulation are

plotted using the orange circles. The approximations for the zig-zag

chain are given in the main plot for large N (dashed line) and nearest

neighbour interactions only (dotted line). The inset contains the lattice

approximations; the segment (dot-dash line) and large N (dashed line).
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result, for clusters where nanocubes are free of confinement

by two or more other particles, there are larger deviations from

theory. The subtle effect of surface roughness allows cubes to

nestle closer to one another. It is clear, however, that the con-

sequences of this artefact are small and the analytical predic-

tions are still valid. One should also note the reduction in the

energy fluctuations as the lattice size increases; this is evident

in both simulation and theory.

From the evidence we have presented, it is clear that nano-

cubes with a dipole orientated along the [111] crystallographic

axis have a single ground state configuration: a simple square

lattice. However, various manifestations of the lattice are

found depending on the cluster size. This stems from the cre-

ation of favourable four membered rings: the universal motif

of the ground state. Dipolar nanocubes of this orientation are

the first reported magnetic nanoparticles to form close-packed

lattices in isolated ground state clusters. Interestingly, due to

the strong energetic favourability of four membered rings, it is

foreseeable that the behaviour of a suspension of [111] nano-

cubes at ambient temperature would be dominated by the for-

mation of N = 4 clusters.

4.3. Magnetic character of nanocube clusters

Finally, it is necessary to comment briefly on the magnetic

characteristics of the ground state structures that we have

found. A simple but useful way of quantifying this is to deter-

mine the total magnetic dipole moment of each cluster. The

magnitude of the total moment normalised by that of a single

particle is given as,

DmðNÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

i¼1

mx
i

� �2

þ P

N

i¼1

my
i

� �2

þ P

N

i¼1

mz
i

� �2
s

jmj : ð26Þ

The components of the ith dipole of the cluster have been

denoted mi = (mx
i,my

i,mz
i). Dm describes the individual magne-

tisation of each cluster relative to that of a single free nano

cube.

For the case of [001] nanocubes, given the fact that the

ground states are collinear chains, the value of Dm will in

theory increase identically with N. Consequently, the value of

the total dipole moment per particle, dm(N) = Dm/N, will be a

constant equal to unity, as shown in Fig. 10. The agreement

between theory and simulation is excellent; the nanocubes in

each chain are very precisely oriented in a single direction. The

result from this straightforward process has unique signifi-

cance. To the best of our knowledge, this is the first example

of a magnetic nanoparticle system whose configuration, in iso-

lated clusters, does not form to enclose the magnetic flux in

Fig. 9 Simulation snapshots for [111] ground state clusters: snapshot series for individual clusters; the respective size of each is given in the top

right hand corner of each Panel. The cubes’ surfaces have been made transparent to allow the orientation of dipoles (orange highlights) to be prop-

erly seen. The formation of the sub-unit rings is portrayed from cluster to cluster.

Fig. 10 Variation of total dipole moment for each system as a function

of cluster size. Lines are derived from analytical calculation and the

points are from simulation. The discrepancy present for N = 3 can be

attributed to the rotational offset of two of the cluster’s particles.
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the ground state. The individual structures have a non-zero

total dipole moment irrespective of cluster size, which one

would expect to result in a strong initial magnetic susceptibility.

In contrast, for [111] nanocubes, the fluctuating cluster

energies will give rise to fluctuations in the total magnetic

moment. The variation of the total dipole moment per par-

ticle, dm(N), is given in Fig. 10. Despite the fluctuations, trends

can be drawn between different clusters (presented in

Table 1). Two important observation can be made. First of all,

dm tends to zero with increasing N for each classification.

Secondly, clusters where a full complement of rings is formed

(i.e. clusters where mod[N,4] = 0) have zero total moment as

the magnetic flux is completely enclosed. Thus, the system

generally behaves in the conventional manner where particles

assemble in structures that minimise the magnetic flux in the

ground state.

5. Conclusion

The competition between directional interactions offers

various pathways for self-assembly, each with exciting possibi-

lities. Here we have discussed the interesting example of

dipolar nanocubes. In order to use a combination of analytical

theory and molecular dynamics simulations, the nanocubes

were confined to a Q2D monolayer. We have studied the behav-

iour of these magnetic nanocubes in the limit of T = 0 K, with

the aim of elucidating the structural traits of isolated ground

state clusters. Two orientations of the dipole relative to the

cube surface were considered, namely in the crystallographic

directions [001] and [111].

For orientation [001], we discovered that linear chain aggre-

gates with a collinear dipolar configuration occupy the ground

state. We performed analytical calculations of the chain energy

and found consistent agreement with the results of replica

exchange molecular dynamics simulations. This expected

ground state is the first such example of a magnetic nanoparti-

cle system whose isolated clusters do not exhibit any tendency

to enclose the magnetic flux.

In the case of [111] oriented cubes, the ground state was

found to consist of structures derived from a simple square

lattice. The lattice combines traits of other structure types; it is

an antiparallel assembly of zig-zag chains, which in turn form

favourable rings of four dipoles. A theoretical framework was

developed to determine the energy of these lattice structures

and compared favourably to simulations. Again this is a novel

system, thanks to the close-packed lattice ground state, a struc-

ture not yet observed in other magnetic nanoparticles at 0 K.

From the evidence we have presented here, it is plausible

that macroscopic suspension of these nanocubes could exhibit

similarly interesting magnetic properties. In order to explore

this, we aim to make predictions about the macroscopic mag-

netic properties of nanocubes by calculating the initial mag-

netic susceptibility, work that is currently ongoing.
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