Harford Community College Statistics 216

Session \# Four - Outline for Today

1. Some general announcements
2. Quiz \#3-review of question \#16
3. About Z-scores and their use
4. More measures of dispersion including building a box plot
5. Assorted problems, including quiz
6. Discuss "Out of Class Project"
7. Using Excel 2010 for histograms
8. Linear Correlation, ch. 4 begun

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 3 Measures of Central Tendency |
| :---: | :---: |
| Mean - sum the data values, divide |
| by number of data points |
| Mode - most frequently occurring |
| Median - arrange in order, count to |
| the middle |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Harford Community College Statistics 216

Measures of Dispersion in Data
Range - difference between HI \& LO
Variance - average squared
deviation about the mean
Standard Deviation - square root of
variance (for both population \& sample)
Examples (by hand): four point populat.
םFirst eight papers from quiz \#3
a\#3.2.10, page 151, find σ^{2} and σ
a\#3.2.28, Chicago or San Diego, ${ }^{\circ} \mathrm{F}$
Use of Empirical Rule (fig 13, p 149)

\qquad
\qquad
Variance - average squared
deviation about the mean
Standard Deviation - square root of
variance (for both population \& sample)
Examples (by hand): four point populat.
aFirst eight papers from quiz \#3
■\#3.2.10, page 151, find σ^{2} and σ
口\#3.2.28, Chicago or San Diego, ${ }^{\circ} \mathrm{F}$
Use of Empirical Rule (fig 13, p 149)

\qquad
\qquad
\qquad
\qquad
\qquad

Measures of Position Definitions
z-score equals [(data value minus
\qquad mean) divided by standard deviation]
z-score purpose is to provide a way to "compare apples and oranges"
aby converting variables with different centers and/or spreads
ato variables with the same center (0) and spread (1).

Harford Community College Statistics 216

Numerically summarizing data
Five number summaries
Interquartile range $\left(Q_{3}-Q_{1}\right)$ is resistant to extreme values

Compute five number summary
Min value $\left|Q_{1}\right| M\left|Q_{3}\right|$ max value
Summary of formulas on p182-183

Harford Community College Statistics 216

\qquad
\qquad
\qquad
\qquad
\qquad

Building a Box Plot - part 1

\qquad

1. Calculate interquartile range (IQR)
2. Compute lower \& upper fence aLower fence $=\mathrm{Q}_{1}-1.5$ (IQR) -Upper fence $=\mathrm{Q}_{3}+1.5$ (IQR)
3. Draw scale then mark Q_{1} and Q_{3}
4. Box in Q_{1} to Q_{3} then mark M

Building a Box Plot - part 2

5. Temporarily mark fences with brackets
6. Draw line from Q_{1} to smallest value inside the lower fence and a line from Q_{3} to largest value inside the upper fence
7. Put * for all values outside of the fences \qquad
8. Erase brackets \qquad

Harford Community College Statistics 216

Quiz data from Tuesday, for \#1-15:
How many students got this
number of questions correct:

$15 \rightarrow 6$	$7 \rightarrow 0$
$14 \rightarrow 7$	$6 \rightarrow 0$
$13 \rightarrow 10$	$5 \rightarrow 0$
$12 \rightarrow 7$	$4 \rightarrow 1$
$11 \rightarrow 5$	$3 \rightarrow 0$
$10 \rightarrow 6$	$2 \rightarrow 0$
$9 \rightarrow 3$	$1 \rightarrow 0$
$8 \rightarrow 5$	0

Note: there are 50 data points total
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Box Plot Examples: Quiz \#3 M/C

```
Descriptive Data
    \squareMean = 11.8
    aStd Dev (population) = 2.4
    \squareRange = 11.0
    Five Number Summary
        \squareMin = 4.0
        \squareQ1= 10.0
        \squareMedian= 12.0
        \squareQ3= 13.8
        \squareMax= 15.0
    For Box Plot
        \squareIQR= 5.7
        \squareLower fence 4.3
        \squareUpper fence 19.5
```

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Harford Community College Statistics 216

Distribution based on Boxplot

Symmetric

amedian near center of box
ahorizontal lines about same length
Skewed Right / Positive Skew
amedian towards left of box
aright line much longer than left line
Skewed Left / Negative Skew
amedian towards right of box
aleft line much longer than right line

Harford Community College Statistics 216

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Harford Community College Statistics 216

\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Harford Community College Statistics 216

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

End Self Quiz, Start Instructor's Quiz

```
Any questions about chapter three?
Quiz \#4 details:
a15 Multiple Guess questions
\(\square\) No "long" calculations
\(\square\) Closed notes, closed book
alndividual effort only
\(\square\) Calculator may be used
(although can do entire quiz without) a15 minute time limit enforced
```

\qquad

Harford Community College Statistics 216

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Objective is a written report describing:
\qquad

1. What the question to be answered is
2. The type of sampling used and why
3. A summary of the raw data
\qquad
4. The statistical analysis of that data
5. A summary of what that analysis actually means
6. Conclusion(s) / answers to the original question. \qquad

Project Sample Questions (select 1)
Are there really less than 50\% peanuts in mixed nuts bags? Does leg length matter in 40 yard dash times for the HCC baseball \qquad team?
Do different branches in the organization have different technical report preparation times?

Harford Community College Statistics 216

Project Sample Questions (select 1)
How many hours per week does a
full time student spend working a
part-time job?
Are there differences in cell phone
minutes used by classmates?
Show examples of good analysis
Final report due class \#10, 2 Oct

\qquad
\qquad
How many hours per week does a
full time student spend working a \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Microsoft Excel 2010 = Spreadsheet
\qquad

Available in Library \& Math Center \qquad
Four technology assignments (50) \qquad
Problems from text: work both ways \qquad
Excel terms: rows, columns, cells
Enter text or data or formulas
Software can do the calculations
\qquad
\qquad

Harford Community College Statistics 216

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Harford Community College Statistics 216

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Harford Community College Statistics 216

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Harford Community College Statistics 216

\qquad
\qquad

Definitions (starting into Chapter 4)
explanatory variables $=$ factors $=$ \qquad variable whose value can not be explained = independent variable
\qquad = predictor variable $=\mathrm{X}$-axis number
response variable = variable of interest = variable whose value can be explained = dependent variable $=\mathrm{Y}$-axis number \qquad

Build a Scatter Diagram

Use data on page 201-2, problem \#27 \qquad Height versus Head Circumference

1. $27.75 / / 17.5$
2. $24.5 / / 17.1$
3. $25.5 / / 17.1$
4. $26 / / 17.3$
5. $25 / / 16.9$
6. 27.75 // 17.6
7. $26.5 / / 17.3$
8. $27.0 / / 17.5$
9. $26.75 / / 17.3$
10. $26.75 / / 17.5$
11. 27.5 // 17.5
\qquad
\qquad

Harford Community College Statistics 216

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Properties of Linear Cor Coefficient
Always between -1 and +1 \qquad
The closer to +1 the stronger the positive linear relationship

The closer to -1 the stronger the negative linear relationship

Close to zero means little linear relation between the two variables \qquad
Is a "unitless" measure \qquad

Harford Community College Statistics 216

Linear Correlation						
	Sample problem to work by hand (1)					
	x	2	3	5	6	6
		5.7	5.2	2.8	1.9	2.
		olum			th fiv	
49		$\begin{aligned} & \text { p } 2 \text { : } \\ & \text { ean } \end{aligned}$	$\begin{aligned} & \text { or bot } \\ & \text { Id ste } \end{aligned}$	$x \text { an }$ dard	$y, c z$ evia	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad

Harford Community College Statistics 216

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

