

### 1.1 Understanding prime factors, LCM and HCF

O Objectives

- You can express any whole number as the product of its prime factors.
- You can find the HCF of two or three numbers.

You can find the LCM of two or three numbers.

## Why do this?

If burgers come in packs of 4 and buns come in packs of 6 , being able to find out the LCM of 4 and 6 is useful to make sure that there are equal numbers of burgers and buns at a barbeque.

## Get Ready

1. State whether the following numbers are factors of 18 , multiples of 18 or neither.
a 4
b 6
c 9
d 36
e 12
f 3
2. State whether the following numbers are prime numbers or not.
a 35
b 31
c 39
d 43
e 57

## Key Points

(2) Any factor of a number that is a prime number is a prime factor. For example, 2 and 3 are the prime factors of 6 .
(1) You can write any number as the product of its prime factors.
© The Highest Common Factor (HCF) of two whole numbers is the highest factor that is common to them both. For example, 3,5 and 15 are all common factors of 30 and 45 but 15 is their highest common factor.
(c) The Lowest Common Multiple (LCM) of two whole numbers is the lowest number that is a multiple of both of them. For example, the common multiples of 10 and 15 are $30,60,90,120$, but 30 is their lowest common multiple.

Example 1 Write 120 as the product of its prime factors.

a The factors of 6 are $1,2,3,6$.


The factors of 10 are 1, 2, 5, 10 . The HCF of 6 and 10 is 2 . $\qquad$ 2 is the highest number that appears in both lists.

The method of listing factors and multiples is best used when the given numbers are small.
b Multiples of 6 are $6,12,18,24,30,36 \ldots$ $\square$ List the first few multiples of 6 . Multiples of 10 are 10, 20, 30, 40,50, 60 $\ldots$ The LCM of 6 and 10 is 30 . $\longleftarrow$ 30 is the smallest
number that appears
in both lists.

List the first few multiples of 10. You will need to continue listing the multiples until there is a number that appears in both lists.

Example 3 Find a the HCF and b the LCM of 140 and 210.

$$
\begin{aligned}
& 140=2 \times 2 \times 5 \times 7 \\
& 210=2 \times 3 \times 5 \times 7
\end{aligned} \longleftrightarrow \text { First express both numbers as the product of their prime factors. }
$$

## Method 1

$$
\begin{aligned}
& 140=2 \times 2 \times 5 \times 7 \\
& 210=2 \times 3 \times 5 \times 7
\end{aligned} \longleftrightarrow \text { Identify the common factors; the numbers that appear in both lists. }
$$

a HCF of 140 and $\begin{aligned} 210 & =2 \times 5 \times 7 \\ & =70\end{aligned} \quad$ Multiply the common factors toge the to get the HCF.
b LCM of 140 and $210=70 \times 2 \times 3$ $=420$

Multiply the HCF by the numbers in both lists that were not highlighted to get the LCM.

## Method 2



Put the prime factors into a Venn diagram.
The prime factors of 140 are in the blue circle. The prime factors of 210 are in the red circle.
The common factors of 140 and 210 are inside the part of the diagram where the two circles intersect.
a. HCF of 140 and $210=2 \times 5 \times 7$

$$
=70
$$

The HCF is the product of the numbers that are inside both circles.
b LCM of 140 and $210=2 \times 2 \times 3 \times 5 \times 7$

$$
=420
$$

The LCM is the product of all the numbers that appear in the Venn diagram.

1 Can the sum of two prime numbers be a prime number?
Explain your answer.
[Hint: Try adding some pairs of prime numbers.]

2 The number 48 can be written in the form $2^{n} \times 3$.
Find the value of $n$.

3 The number 84 can be written in the form $2^{n} \times m \times p$ where $n, m$ and $p$ are prime numbers. Find the values of $n, m$ and $p$.

4 Find the HCF and LCM of the following pairs of numbers.
a 6 and 8
b 5 and 10
c 4 and 10
d 6 and 18

5 a Write 24 and 60 as products of their prime factors.
b Find the HCF of 24 and 60 .
c. Find the LCM of 24 and 60 .

6 a Write 72 and 120 as products of their prime factors.
b Find the HCF of 72 and 120.
c Find the LCM of 72 and 120.

7 Find the HCF and LCM of the following pairs of numbers.
a 36 and 90
b 54 and 72
c 60 and 96
d 144 and 180
$8 \quad x=2 \times 3^{2} \times 5, y=2^{3} \times 3 \times 7$
a Find the HCF of $x$ and $y$.
b Find the LCM of $x$ and $y$.
$9 m=2^{4} \times 3^{2} \times 5 \times 7, n=2^{3} \times 5^{3}$
a Find the HCF of $m$ and $n$.
b Find the LCM of $m$ and $n$.

10 Bertrand's theorem states that 'Between any two numbers $n$ and $2 n$, there always lies at least one prime number, providing $n$ is bigger than $1^{\prime}$. Show that Bertrand's theorem is true:
a for $n=10$
b for $n=20$
c for $n=34$.

11 A ship is at anchor between two lighthouses $L$ and $H$.
The light from $L$ shines on the ship every 30 seconds.
The light from $H$ shines on the ship every 40 seconds.
Both lights started at the same moment.
How often do both lights shine on the ship at once?

13 Sally says that if you multiply two prime numbers then you will always get an odd number.
Is Sally correct? Give a reason for your answer.

### 1.2 Understanding squares and cubes

## Objectives

You know how to find squares and cubes of whole numbers.

- You understand the meaning of square root.

You understand the meaning of cube root.

## Why do this?

If things are packed in squares you can quickly work out how many you have using square numbers, for example crates of strawberries or eggs.

## Get Ready

1. Work out a $6 \times 6$ b $2 \times 2 \times 2 \quad$ c $-3 \times-3$

## Key Points

(가 A square number is the result of multiplying a whole number by itself.
The square numbers can be shown as a pattern of squares.
$1^{2}=1 \times 1=1$
1st square number

$2^{2}=2 \times 2=4$
2nd square number

$3^{2}=3 \times 3=9$
3 rd square number

$4^{2}=4 \times 4=16$ 4th square number

- A cube number is the result of multiplying a whole number by itself then multiplying by that number again. The cube numbers can be shown as a pattern of cubes.

$1^{3}=1 \times 1 \times 1=1$
1 st cube number

$2^{3}=2 \times 2 \times 2=8$
2nd cube number

$3^{3}=3 \times 3 \times 3=27$
3 rd cube number
() To find the square of any number, multiply the number by itself.

The square of $-4=(-4)^{2}=-4 \times-4=16$.
( $5 \times 5=25$, so we say that 5 is the square root of 25 . It is a number that when multiplied by itself gives 25 .
You can write the square root of 25 as $\sqrt{25}$. The square root of 25 can also be -5 because $-5 \times-5=25$.

- To find the cube of any number, multiply the number by itself then multiply by the number again.

The cube of $-2=(-2)^{3}=-2 \times-2 \times-2=-8$.
() $-2 \times-2 \times-2=-8$, so we say that -2 is the cube root of -8 . It is a number that when multiplied by itself, then multiplied by itself again, gives -8 . You can write the cube root of -8 as $\sqrt[3]{-8}$.


## Exercise 1B

1 Write down:
a the first 15 square numbers
b the first 5 cube numbers.
2 From each list write down all the numbers which are: i square numbers ii cube numbers.
a $50,20,64,30,1,80,8,49,9$
b $10,21,57,4,60,125,7,27,48,16,90,35$
c $137,150,75,110,50,125,64,81,144$
d $90,180,125,100,81,75,140,169,64$

## ResulisPlus <br> Examiner's Tip

You need to be able to recall

- integer squares from $2 \times 2$ up to $15 \times 15$ and the corresponding square roots
- the cubes of $2,3,4,5$ and 10 .
Example 5 Find a $(-3)^{2}$
b $\sqrt{100}$
c $(-4)^{3}+\sqrt[3]{125}$
a $(-3)^{2}=-3 x-3=9$
Two signs the same so answer is positive.
b $\sqrt{100}=10$

$$
\begin{aligned}
& \text { c } \left.\begin{array}{rl}
(-4)^{3}=-4 \times-4 \times-4=-64 \\
\begin{array}{rl}
\sqrt[3]{125}=5 \\
(-4)^{3}+\sqrt[3]{125} & =-64+5 \\
& =-59
\end{array}
\end{array} . \begin{array}{rl}
(-4
\end{array}\right)
\end{aligned}
$$

$5^{3}=125$ so the cube root of 125 is 5 .

Resulisplus Examiner's Tip

Remember, when multiplying or dividing:
two signs the same give a + two different signs give a -

## Exercise 1C

1 Work out
a $3^{2}$
b $7^{2}$
c $4^{3}$
d $10^{3}$
e $11^{2}$

2 Write down
a $\sqrt{36}$
b $\sqrt{16}$
c $\sqrt{81}$
d $\sqrt{1}$
e $\sqrt{64}$

3 Work out
a $(-6)^{2}$
b $(-2)^{3}$
c $(-9)^{2}$
d $(-1)^{3}$
e $(-12)^{2}$

4 Write down
a $\sqrt[3]{8}$
b $\sqrt[3]{-27}$
c $\sqrt[3]{-1}$
d $\sqrt[3]{64}$
e $\sqrt[3]{1000}$

5 Work out
a $3^{2}+2^{3}$
b $\sqrt{4} \times 5^{2}$
c $5^{2} \times \sqrt{100}$
d $\sqrt[3]{-8}+4^{2}$
e $\sqrt[3]{1000} \div \sqrt{100}$
f $4^{3} \div 2^{3}$
g $(-1)^{3}+2^{3}-(-3)^{3}$
h $4^{2}+(-3)^{3}$
i $\frac{6^{2}}{2^{2}}$
j $5^{2} \times \frac{\sqrt{16}}{\sqrt[3]{8}}$
k $2^{3} \times \frac{\sqrt{100}}{\sqrt{64}}$
| $\frac{4^{2}-\sqrt[3]{-8}}{\sqrt{9}}$

### 1.3 Understanding the order of operations

## Objective

You know and can apply the order of operations.

## Get Ready

1. Work out
a $6 \times 3$
b $4^{2}$
c $70 \div 7$

## Why do this?

When following a recipe, you need to add the ingredients in the right order. The same is true of calculations such as $3 \times 4+2 \times 5$. The operations must be carried out in the correct order or the answer will be wrong.

## Key Points

© BIDMAS gives the order in which each operation should be carried out.
© Remember that B D M A stands for:
B rackets If there are brackets, work out the value of the expression inside the brackets first.
1 ndices Indices include square roots, cube roots and powers.
D ivide If there are no brackets, do dividing and multiplying before adding and subtracting, no
M ultiply matter where they come in the expression.

A dd
S ubtract
If an expression has only adding and subtracting then work it out from left to right.

## Example 6

$$
\begin{aligned}
10 \times 2^{2}-5 \times 3 & =10 \times 4-5 \times 3 \\
& =40-15 \\
& =25
\end{aligned}
$$

Work out $2^{2}$ first, then do all the multiplying before the subtraction.

## Example 7

$$
\begin{aligned}
(12-2 \times 5)^{3} & =(12-10)^{3} \\
& =2^{3} \\
& =8
\end{aligned}
$$

The sum in the bracket is worked out first. Work out $2 \times 5$ and then do the subtraction.

## Exercise 1D

1 Work out
a $5 \times(2+3)$
b $5 \times 2+3$
c $20 \div 4+1$
d $20 \div(4+1)$
e $(6+4) \div-2$
f $6+4 \div 2$
g $24 \div(6-2)$
h $24 \div 6-2$
i $7-(4+2)$
j $7-4+2$
k $5 \times 4-2 \times 3$
| $28-4 \times-6$
m $14+3 \times 6$
n $6+3 \times 5-12 \div 2$
o $25-5 \times 4+3$
p $(15-5) \times(4+3)$

2 Work out
a $(3+4)^{2}$
b $3^{2}+4^{2}$
c $3 \times(4+5)^{2}$
d $3 \times 4^{2}+3 \times 5^{2}$
e $2 \times(4+2)^{2}$
f $3 \times \sqrt{25}+2 \times 3^{3}$
g $\frac{(2+5)^{2}}{3^{2}-2}$
h $\frac{5^{2}-2^{2}}{-3}$

## 3 Work out

a $(2+3)^{3} \div \sqrt{25}$
b $((15-5) \times 4) \div((2+3) \times 2)$
c $2^{3}+6^{2} \div \sqrt{9}-4 \times 3$
d $(\sqrt[3]{-27}-2)^{2}+\sqrt{3^{2} \times 2^{2}}$

### 1.4 Using a calculator

## Objectives

You can use a calculator.

- You can find and use reciprocals.


## Why do this?

Many jobs require the accurate use of calculators, such as working in a bank or as an accountant.

## Get Ready

1. Work out an estimate for:
a $234 \times 89$
b $318.2 \div 2.98$
c $(7.2)^{2}$

## Key Points

© A scientific calculator can be used to work out arithmetic calculations or to find the value of arithmetic expressions.
© Scientific calculators have special keys to work out squares and square roots.
Some have special keys for cubes and cube roots.
(c) To work out other powers, your calculator will have a $y^{x}$ or $x^{y}$ or $\wedge$ key.
( The inverse of $x^{2}$ is $\sqrt{x}$ or $x^{\frac{1}{2}}$, and the inverse of $x^{3}$ is $\sqrt[3]{x}$ or $x^{\frac{1}{3}}$.
(c) The inverse operation of $x^{y}$ is $x^{\frac{1}{y}}$.
© You can use the calculator's memory to help with more complicated numbers.
Example 8 Work out a $4.6^{2}+\sqrt{37}$ b $\frac{1.2^{3}+12.5}{(3.7-2.1)^{2}}$

Give your answers correct to 3 significant figures.

$$
(3.7-2.1)^{2}=2.56
$$

Work out the sum on the bottom of the fraction. Key in (3.7-2.1) $x^{2}$

$$
14.228 \div 2.56=5.5578125
$$

Divide your answers.

$$
=5.56
$$

Round the final answer to 3 significant figures.

Do not round your numbers part way through a calculation; use all the figures shown on your calculator. Only round the final answer.

## Exercise 1E

1 Work out:
a $\sqrt{961}$
b $\sqrt{40.96}$
c $\sqrt[3]{4913}$
d $\sqrt[3]{3.375}$
e $\sqrt{1024}$

2 Work out:
a $(3.7+5.9) \times 4.1$
b $3.1^{2}+4.8^{2}$
c $(-8.7+6.3)^{2}$
d $4.5^{3}+8^{2}$

3 Work out, giving your answers correct to one decimal place.
a $3.2^{3} \times 6.7$
b $\sqrt{24}+6.7^{3}$
c $9.2^{2} \div \sqrt{14}$
d $7.5^{3}-\sqrt{120}$

4 Work out, giving your answers correct to three significant figures.
a $\frac{5.63}{2.8-1.71}$
b $\frac{9.84 \times 2.6}{2.8 \times 1.71}$
c $\frac{6.78+9.2}{7.8-2.75}$
d $\frac{6.7^{2}}{5.6^{2}-2.1^{2}}$

5 Work out, giving your answers correct to three signific ant figures.
a $\sqrt{11.62}-\frac{6.3}{9.8}$
b $\frac{5.63}{2.8}+\frac{1.7}{0.3}$
c $\frac{\sqrt{342}}{1.8-1.71}$
d $\left(\sqrt{\frac{56}{0.18}}+657\right)^{2}$

6 Work out, giving your answers correct to three significant figures.
a $\frac{\sqrt{45}+6.3^{2}}{79.1-28.5}$
b $\sqrt{\frac{8.9 \times 2.3}{9.6+7.8}}$
c $\frac{4.2^{3}}{\sqrt{7.8^{2}+3.5^{2}}}$
d $\frac{(23.5+8.7)^{2}}{\sqrt{65^{2}+82}}$

## Reciprocals

## Key Points

© The reciprocal of the number $n$ is $\frac{1}{n}$. It can also be written as $n^{-1}$.
© When a number is multiplied by its reciprocal the answer is always 1 .
© All numbers, except 0 , have a reciprocal.
( The reciprocal button on a calculator is usually $1 / x$ or $x^{-1}$.
Example 9
Work out the reciprocal of a 8
b 0.25
c $\frac{1}{4^{3}}$.
a $\frac{1}{8}=0.125$
b $1 \div 0.25=4$
c $4^{3}$

## Exercise 1F

1 Find the reciprocal of each of the following numbers.
a 4
b 0.625
c 6.4
d $\frac{2}{2^{4}}$

### 1.5 Understanding the index laws

## Objectives

- You can use index notation.
- You can use index laws.


## Why do this?

Using the index laws you can work out that you have $2^{5}=32$ great great great grandparents.

## Get Ready

1. Work out $2^{5}$
2. Work out $5^{3}$
3. Work out $27^{4} \div 27^{2}$

## Key Points

( - A number written in the form $a^{n}$ is an index number.
© The laws of indices are:
$a^{m} \times a^{n}=a^{m+n} \quad$ To multiply two powers of the same number add the indices.
$a^{m} \div a^{n}=a^{m-n} \quad$ To divide two powers of the same number subtract the indices.
$\left(a^{m}\right)^{n}=a^{m \times n} \quad$ To raise a power to a further power multiply the indices together.
You will encounter negative and fractional indices in Chapter 25.

Example 10 Work out a $3^{4}$ b $2^{6}$

a | $3^{4}$ | $=3 \times 3 \times 3 \times 3$ |
| ---: | :--- |
|  | $=81$ |
| b $2^{6}$ | $=2 \times 2 \times 2 \times 2 \times 2 \times 2$ |
|  | $=64$ |



## Resulisplus

Watch Out!
Remember that $a^{3}$ means that you multiply three as together.
It does not mean $a \times 3$.

Example 11
Write each expression as a power of 5 . a $5^{6} \times 5^{4}$
b $5^{12} \div 5^{4}$
c $\left(5^{3}\right)^{2}$
a $5^{6} \times 5^{4}=5^{4+6}$

$$
=5^{10}
$$

b $5^{12} \div 5^{4}=5^{12-4}$

$$
=5^{8}
$$

c $\left(5^{3}\right)^{2}=5^{3 \times 2}$

$$
=5^{6}
$$

## Example 12 Work out $\frac{4^{7} \times 4}{4^{5}}$

$$
\frac{4^{7} \times 4}{4^{5}}=\frac{4^{7} \times 4^{1}}{4^{5}}
$$

$$
=\frac{4^{8}}{4^{5}} \longleftarrow
$$

Simplify the top of the fraction,

$$
=4^{3}
$$ add 7 and 1.

As the question asks you to 'Work out', the final answer must be a number.

## Resulisplus <br> Examiner's Tip

'Work out' means 'evaluate' the expression, rather than leaving the answer as a power.

## Exercise 1G

1 Write as a power of a single number
a $6^{5} \times 6^{7}$
b $4^{7} \div 4^{2}$
c $\left(7^{2}\right)^{3}$
d $5^{9} \div 5^{3}$
e $3^{8} \times 3^{2}$

2 Work out
a $10^{2} \times 10^{3}$
b $5^{7} \div 5^{4}$
c $\left(2^{3}\right)^{2}$
d $3^{4} \div 3^{2}$
e $4 \times 4^{2}$

3 Find the value of $n$
a $3^{n} \div 3^{2}=3^{3}$
b $8^{5} \div 8^{n}=8^{2}$
c $2^{5} \times 2^{n}=2^{10}$
d $3^{n} \times 3^{5}=3^{9}$
e $2^{6} \times 2^{3}=2^{n}$

4 Write as a power of a single number
a $\frac{3^{3} \times 3^{5}}{3^{4}}$
b $\frac{5^{6} \times 5^{7}}{5^{4}}$
c $\frac{2^{8} \times 2^{5}}{2^{7}}$
d $\frac{6^{15}}{6 \times 6^{9}}$
e $\frac{4^{2} \times 4^{7}}{4^{3} \times 4^{4}}$

5 Work out
a $\frac{3^{3} \times 3^{5}}{3^{6}}$
b $\frac{2^{6} \times 2^{2}}{2^{4}}$
c $\frac{4^{7}}{4 \times 4^{4}}$
d $\frac{10^{5} \times 10^{6}}{10^{7}}$
e $\frac{7^{8} \times 7}{7^{3} \times 7^{4}}$

6 Work out the value of $n$ in the following
a $40=5 \times 2^{n}$
b $32=2^{n}$
C $20=2^{n} \times 5$
d $48=3 \times 2^{n}$
e $54=2 \times 3^{n}$

## Chapter review

## Key Points

© Any factor of a number that is a prime number is a prime factor.
You can write any number as the product of its prime factors.
© The Highest Common Factor (HCF) of two whole numbers is the highest factor that is common to them both.
© The Lowest Common Multiple (LCM) of two whole numbers is the lowest number that is a multiple of both of them.
(ㄱ) A square number is the result of multiplying a whole number by itself.
© A cube number is the result of multiplying a whole number by itself then multiplying by that number again.
(c) To find the square of any number, multiply the number by itself.
(c) The square root of 25 is a number that when multiplied by itself gives 25 .

You can write the square root of 25 as $\sqrt{25}$.
The square root of 25 can also be -5 because $-5 \times-5=25$.
© To find the cube of any number, multiply the number by itself then multiply by the number again.
© The cube root of -8 is a number that when multiplied by itself, then multiplied by itself again, gives -8 . You can write the cube root of -8 as $\sqrt[3]{-8}$.
BIDMAS gives the order in which operations should be carried out.

## Chapter 1 Number

© Remember that BIDMAS stands for:
Brackets If there are brackets, work out the value of the expression inside the brackets first.
Indices Indices include square roots, cube roots and powers.
Divide If there are no brackets, do dividing and multiplying before adding and subtracting, no
Multiply matter where they come in the expression.
Add If an expression has only adding and subtracting then work it out from left to right.
Subtract
© A scientific calculator can be used to work out arithmetic calculations or to find the value of arithmetic expressions.
© Scientific calculators have special keys to work out squares and square roots.
Some have a special key for cubes and cube roots.

- To work out other powers, your calculator will have a $y^{x}$ or $x^{y}$ or $\wedge$ key.
(C) The inverse of $x^{2}$ is $\sqrt{x}$ or $x^{\frac{1}{2}}$, and the inverse of $x^{3}$ is $\sqrt[3]{x}$ or $x^{\frac{1}{3}}$.
(c) The inverse operation of $x^{y}$ is $x^{\frac{1}{y}}$.
© You can use the calculator's memory to help with more complicated numbers.
© The reciprocal of the number $n$ is $\frac{1}{n}$. It can also be written as $n^{-1}$.
(-) When a number is multiplied by its reciprocal the answer is always 1 .
© All numbers, except 0 , have a reciprocal.
© The reciprocal button on a calculator is usually $1 / x$ or $x^{-1}$.
© A number written in the form $a^{n}$ is an index number.
© The laws of indices are:
$a^{m} \times a^{n}=a^{m+n} \quad$ To multiply two powers of the same number add the indices.
$a^{m} \div a^{n}=a^{m-n} \quad$ To divide two powers of the same number subtract the indices.
$\left(a^{m}\right)^{n}=a^{m \times n} \quad$ To raise a power to a further power multiply the indices together.

Review exercise Except where indicated.

1 Jim writes down the numbers from 1 to 100 . Ben puts a red spot on all the even numbers and Helen puts a blue spot on all the multiples of 3 .
a What is the largest number that has both a red and a blue spot?
b How many numbers have neither a blue nor a red spot?
Sophie puts a green spot on all the multiples of 5 .
c How many numbers have exactly two coloured spots on them?
2 Find the missing numbers in each case.
a $? \times 3=-12$
b $(-20) \div(-5)=$ ?
c $(-6)+?=(-8)$
d $(-5) \times ?=(-20)$
e $6-?=8$

3 Find the missing numbers in each case.
a $2 \times ?+(-3)=(-7)$ b $(-4) \times ?+5=(-3)$
c $? \div 2+4=(-4)$

4 Neal works part time in a local supermarket, stacking shelves.
He has been asked to use the pattern below to advertise a new brand of beans.


This stack is 3 cans high.
a How many cans will he need to build a stack 10 cans high?
b If he has been given 200 cans, how many cans high would his stack be?
Next he is asked to stack cans of tomato soup in a similar shape, but this time it is two cans deep.


Use your answers to parts a and b to answer the following questions.
c How many cans will he need to build a stack 10 cans high?
d If he has been given 400 cans, how many cans high would his stack be?
5 A chocolate company wishes to produce a presentation box of 36 chocolates for Valentine's Day. It decides that a rectangular shaped box is the most efficient, but needs to decide how to arrange the chocolates.
How many different possible arrangements are there:
a using one layer
b using two layers
c using three layers.
Which one do you think would look best?

6 The number 1 is a square number and a cube number. Find another number which is a square number and a cube number.
$7 \quad 4^{2} \times 6^{2}=576$
Work out a $40^{2} \times 60^{2}$
b $400^{2} \times 6^{2}$
c $5760 \div 6^{2}$
d $4^{2} \times 60^{2}$
e $4^{3} \times 6^{2}$

8 Work out a $2+4 \div 4 \quad$ b $\quad 5^{3} \div 5+5 \quad$ c $\quad\left(2^{2}\right)^{3}-\left(2^{3}\right)^{2}$
9 Simplify a $\frac{3^{5} \times 3^{3}}{3^{6}}$
b $\frac{4^{4} \times 4^{7}}{4^{10}}$
c $\left(2^{4}\right)^{3}$
d $\frac{5^{12}}{5^{7} \times 5^{3}}$

10 a Express 252 as a product of its prime factors.
b Express $6 \times 252$ as a product of prime factors.

11 James thinks of two numbers.
He says 'The highest common factor (HCF) of my two numbers is 3 .
The lowest common multiple (LCM)
of my two numbers is $45^{\prime}$.
Write down the two numbers James could be thinking of.

## Resulisplus

## Exam Question Report

$75 \%$ of students answered this sort of question well because they chose the right method to answer the question.

June 2008
12 Write 84 as a product of its prime factors.
Hence or otherwise write $168^{2}$ as a product of its prime factors.
13 A car's service book states that the air filter must be replaced every 10000 miles and the diesel fuel filter every 24000 miles.
After how many miles will both need replacing at the same time?
14 Use your calculator to work out $\frac{\sqrt{19.2+2.6^{2}}}{2.7 \times 1.5}$
Write down all the figures on your calculator display.
$15 \quad 2^{30} \div 8^{9}=2^{x}$
Work out the value of $x$.
16 Write whether each of the following statements is true or false. If the statement is false give an example to show it.
a The sum of two prime numbers is always a prime number.
b The sum of two square numbers is never a prime number.
c The difference between consecutive prime numbers is never 2.
d The product of two prime numbers is always a prime number.
e No prime number is a square number.
17 a Take a piece of scrap A4 paper.
If you fold it in half you create two equal pieces. Fold it in half again; you now have four equal pieces.
It is said that no matter how large and how thin you make the paper, it cannot be folded more than seven times. Try it.
If you fold it seven times, how many equal pieces does the paper now have?
b In 2001, there were two rabbits left on an island.
A simple growth model predicts that in 2002 there will be four rabbits and in 2003, eight rabbits.
The population of rabbits continues to double every year.
How long is it before there are 1 million rabbits on the island?

