
www.serena.com

USING CHANGEMAN® ZMF
WEB SERVICES
A Practical Business Use Case with Sample Code

January 2010

1 Using ChangeMan ZMF Web Services

TABLE OF CONTENTS

Executive Summary 2

Using the ChangeMan ZMF Web Services 2

Where the ChangeMan ZMF Web Services Fit 3

Choosing a web services implementation 3

Flexible user access, integration, and customization 3

Web Services Technology in ChangeMan ZMF 3

Accessing web service functions 5

Thick client or thin client 4

Web services messaging 3

Web Services Use Case: A Software Change Approval Checklist 5

Business as usual: software change approvals 6

Web services solution: an on-demand software approval checklist 6

Implementing the Package Approval Checklist 7

Package approval checklist processing servlet 7

Package approval checklist viewer 7

ZMF web services interface 10

Obtaining the ChangeMan ZMF Web Services API 14

2 Using ChangeMan ZMF Web Services

Executive Summary

USING THE CHANGEMAN ZMF WEB SERVICES
Serena® ChangeMan® ZMF is the leading software change management tool for
z/OS mainframe systems. ChangeMan ZMF ensures reliable control of software assets
and automates the migration of software changes from a development environment to
multiple test and production environments.

A wide variety of interfaces are provided in ChangeMan ZMF to assist customers
with using the product, integrating it with other tools in the customer development
environment, and customizing its function to suit customer needs. Among these
interfaces is the ChangeMan ZMF Web Services Application Programmer Interface
(API), which implements the latest Web 2.0 and Service Oriented Architecture (SOA)
technologies. The ZMF Web Services API was introduced in ChangeMan ZMF 6.1.

This white paper illustrates the use and implementation of the ChangeMan ZMF Web
Services in a practical business application: a change package approval checklist that
can be browsed from the World Wide Web. The checklist is generated on demand and
shows all change packages awaiting approval by management prior to deployment into
production. Any desired mix of packages may be approved at once.

Sample code is provided to illustrate the technology and to assist customers with rapid
implementation of this ZMF Web Services application.

3 Using ChangeMan ZMF Web Services

ISPF

User Exits

Windows GUI

Eclipse IDE

XML Services

Web Services

Where the ChangeMan ZMF Web Services Fit

FLEXIBLE USER ACCESS, INTEGRATION, & CUSTOMIZATION
Serena® ChangeMan® ZMF automates the migration of software changes from a
development environment to multiple test and production environments. Along the way, it
protects software assets by packaging changes in discrete units, versioning the modules
affected by change, synchronizing the disparate objects required to implement a build,
auditing the changes for possible errors, soliciting change approvals from management,
deploying changes to production in a controlled way, and backing them out smoothly in
the event something goes wrong. All these functions are accessible to developers from
a variety of interfaces, including programmatic interfaces for customization and cross-
product integration.

The user and developer interfaces to ChangeMan ZMF include:

• An interactive ISPF interface for 3270 mainframe devices or emulators
• Predefined exits in the ZMF software which may be customized with user-

written code
• A Windows GUI interface to ZMF change management functions and files
• An Eclipse integrated developer environment (IDE) on Windows and Unix platforms
• An XML Services application programmer interface (API) for programmatic access

to all ChangeMan ZMF functions from a local mainframe program or a TCP/IP client
• A Web Services API for programmatic access to ChangeMan ZMF functions from a

client on an intranet, extranet, or the World Wide Web

CHOOSING A WEB SERVICES IMPLEMENTATION
The Web Services API was introduced in ChangeMan ZMF 6.1. Choose a ChangeMan
ZMF Web Services implementation when:

• Remote access is needed to the full functionality of ChangeMan ZMF
• Connectivity is supported through an intranet, extranet, or the World Wide Web
• Custom ZMF processing or custom integration with third-party software is required
• Online transaction processing (that is, a limited number of request/response cycles

serviced on demand) is suitable for performing the desired task

Web Services Technology in ChangeMan ZMF

WEB SERVICES MESSAGING
The ChangeMan ZMF Web Services API is a Web-enabled messaging layer built on top
of the native XML Services API. To a service requestor on the Web, a ZMF Web Services
message looks like a ZMF XML Services message wrapped in open-standard messaging
syntax called SOAP (Simple Object Access Protocol).

4 Using ChangeMan ZMF Web Services

Web Services messages are exchanged in a simple request/response pattern between a
requestor on the Web and a ChangeMan ZMF started task on the mainframe. Mediating
between the requestor and responder is a Web Services application server, such as
Apache Tomcat on a distributed server system or IBM WebSphere on the mainframe. The
application server provides a SOAP messaging service that maps unique Web Service
names to specific URLs and routes messages accordingly. The ChangeMan ZMF Web
Services reside on the Web Services application server (Figure 1).

THICK CLIENT OR THIN CLIENT
Although all roads to the ZMF Web Services pass through SOAP, customer-written
applications have a choice of approaches for enabling end-user access to those services.
Using the “thick client” approach, a special-purpose Web client application can be written
for installation on the remote PC. The thick client issues SOAP requests to the ZMF Web
Services over the Web using the HTTP transport protocol. No Web browser is involved.

Alternatively, using the “thin client” approach, no special software is installed on the
remote PC. Instead, the end-user browses to a designated URL on the Web Services
application server using a standard Web browser. The landing page for the URL contains

Figure 1.
ZMF Web Services

Message Flow

=OR=
Custom Code
(Thick Client)

Web Browser
(Thin Client)

SOAP
Messages

HTML
Pages

HTTP Server

SOAP HTML

SOAP

SOAP Messaging
Server

Custom Java
Servlet (URL)

ZMF Web Services API MainframeXML
Services

Messages

XML
Services

SERNET

ChangeMan
ZMF

Started
Tasks

ZMF
Connector

Servlet

Other ZMF Web
Services (URLs)

Package Lifecycle
Service (URL)

5 Using ChangeMan ZMF Web Services

a server-side dynamic element that invokes a customer-written servlet. This servlet,
which resides on the application server, sends HTML pages to the remote end-user and
responds to user actions by issuing SOAP requests to the ZMF Web Services API —
either locally or on another application server. The ZMF Web Services API is agnostic
regarding the choice of thick or thin clients; it handles either.

When a ZMF Web Service receives a SOAP message, it validates the message, then
passes it to a back-end ZMF connector servlet. The connector servlet manages the
TCP/IP link between the application server and SERNET, a connectivity component
of ChangeMan ZMF on the mainframe. On an inbound request message, the servlet
transforms the SOAP message into XML Services syntax and forwards the request
to SERNET. SERNET parses the XML request and schedules the desired service for
execution by the desired ZMF started task.

ChangeMan ZMF returns the outcome of request execution to SERNET. SERNET
formats an appropriate XML Services response message, then routes it to the back-
end ZMF connector servlet on the Web Services application server. On an outbound
message, the servlet wraps the XML Services response in SOAP message syntax and
returns it to the appropriate ZMF Web Service. That service, in turn, forwards the SOAP
response to the appropriate requestor.

ACCESSING WEB SERVICE FUNCTIONS
Each Web Service is identified by a unique service name in the SOAP message header.
This name is bound to a port number on the application server when the Web Service is
installed. (All Web Services on the same application server share the same IP address.)
Mapping between service name and port ID is handled by the SOAP messaging server at
run time.

Each Web Service supports multiple functions. For example, the package lifecycle
management service supports separate functions to create a package, freeze a package,
and approve a package. The particular function desired is identified by a named method
in the SOAP message header. Method names are mapped to executable entry points by
the Web Service.

Seventeen Web Services are currently provided in the ChangeMan ZMF Web Services
API. These services cover all the developer functionality of ChangeMan ZMF, as well as
the basic connectivity and dataset management functions supported by SERNET. Some
ChangeMan ZMF administrator functions are supported as well in read-only mode.

Web Services Use Case: A Software Change Approval Checklist
The following example shows how you might build a custom application that invokes the
ChangeMan ZMF Web Services using the “thin client” approach.

ZMF WEB SERVICES

Connect

Package Search & Summary

Package Lifecycle

Package Information
Management

Package Configuration

Package Validation

Package Component
Management

Component Lifecycle

Component Version
Management

Component Information
Management

Component Security

Dataset Management

Database Management

Approver Notification

Change Library Administration

Developer Environment
Administration

Install Site Administration

6 Using ChangeMan ZMF Web Services

BUSINESS AS USUAL: SOFTWARE CHANGE APPROVALS
At Fearless Financial Group, no change to mainframe production software takes place
without the prior approval of the IT Operations Manager. ChangeMan ZMF enforces
this requirement automatically. When approval is needed for deployment of a change
package into production, ZMF issues an approval request notice for that package by
email. Deployment of the change is placed on hold until all required approvals are
received. At that point deployment is allowed to go forward on a date designated in the
ZMF installation calendar.

The standard notification and approval process is fine for most purposes. However,
it has limitations. For example, when approval request notifications are received one
package at a time, the big picture of overall deployment activity is unclear at the moment
the approval decision is made. In addition, deployment calendar rules do not recognize
variations in package complexity or risk, and they take no account of the people on hand
to oversee deployments.

WEB SERVICES SOLUTION: AN ON-DEMAND SOFTWARE APPROVAL CHECKLIST
The Fearless IT Operations Manager would like to have a software change approval tool
tailored for use by senior managers. This tool would show him the big picture of pending
deployments before he approves a change package. It would also allow him to approve
a judicious mix of packages all at once. With such a tool, the Operations Manager could
use his approvals to:

• Smooth out peaks and valleys in scheduled software change activities
• Match change package content to the availability of expert personnel at install time
• Minimize competing deployment activity during rollouts of complex or high-risk

changes

A custom application using ZMF Web Services is written to meet these
requirements (Figure 2).

Figure 2.
ZMF Web Services

Package Approval Checklist

 

7 Using ChangeMan ZMF Web Services

The custom application adopts a “thin client” approach, so there is no special software for
the Operations Manager to install or use. Whenever the Operations Manager wishes to
see a list of software change packages awaiting his approval, he browses to the URL of a
normal HTML Web page that functions as a package checklist viewer.

The viewer displays a package approval checklist table and invokes a Java servlet to
populate it. The Java servlet uses the ZMF Web Services to request a list of all software
change packages in ChangeMan ZMF that are currently waiting for the manager’s
approval. A list of pending packages is returned by ZMF to the servlet, which passes
them to the HTML page for display. The Operations Manager checks the packages he
wishes to approve on the Web page, then clicks the Approve Checked button. On this
click, Javascript on the HTML viewer page passes a list of the approved packages to the
Java servlet, which generates package approval request messages for them and sends
those messages in a batch to ChangeMan ZMF. When ZMF records the approvals, the
packages are ready for deployment into production.

Implementing the Package Approval Checklist
Sample code for the Package Approval Checklist in Figure 2 is available for download
from Serena at http://www.serena.com/docs/repository/products/zmf/ZMF_Web_Svcs_
Approval_Chklst_Sample_Code.zip. Portions of that code are shown here for illustration.

PACKAGE APPROVAL CHECKLIST VIEWER
Code to build and display the checklist table and handle the Approve Checked button
can be found in the download file ZMFSample.java, which resides in the zmf > sample >
client directory of the downloadable code sample. This code is written using the Google
Web Toolkit (GWT), which is available at http://code.google.com/webtoolkit/. The package
checklist viewer does not itself call the ZMF Web Services, so it is not shown here.

PACKAGE APPROVAL CHECKLIST PROCESSING SERVLET
The following ZMF Web Services are needed to implement the package approval
checklist and perform the listed functions:

• Connect — mainframe logon and logoff
• Package Search and Summary — search for packages awaiting approval

by manager
• Package Lifecycle — approve packages
• Developer Environment Administration — define valid approval codes

The first three services — Connect, Package Search and Summary, and Package
Lifecycle — are invoked directly by Java servlet PackageManagementImpl.Java. The
checklist viewer invokes this servlet to populate the checklist table with the results of a
package search, and to submit a list of package approval messages to ZMF. Sample
code for this servlet is shown in Figure 3. Code for this member can also be found in the
zmf > sample > server directory of the downloadable code sample.

8 Using ChangeMan ZMF Web Services

The checklist processing servlet could be supplemented in several ways by calling
additional ZMF Web Services. For example, it could display the scheduled install dates
for the packages awaiting manager approval in the checklist. More elaborately, the
application could supplement the package approval checklist view with a deployment
calendar view that shows all approved packages scheduled for installation over the
next week or month. The Operations Manager could then toggle between the package
approval checklist view and the deployment calendar view from within the HTML viewer
page. For simplicity, however, such options are not included in this example.

Figure 3.

Package Approval Checklist
Processing Servlet

package com.serena.zmf.sample.server;

import java.util.LinkedList;

import com.serena.zmf.sample.client.PackageManagement;
import com.serena.zmf.sample.client.common.ApprovalInfo;
import com.serena.zmf.sample.client.common.PackageInfo;
import com.serena.zmf.webservices.client.internal.PackageLifeCycle.ApprovePackageRequest;
import com.serena.zmf.webservices.client.internal.PackageLifeCycle.ApproverAction;
import com.serena.zmf.webservices.client.internal.PackageSearchSummary.TypeYesNo;
import com.serena.zmf.webservices.client.internal.Connect.LogonRequest;
import com.serena.zmf.webservices.client.internal.PackageSearchSummary.QueryPackagesRequest;
import com.serena.zmf.webservices.client.internal.PackageSearchSummary.QueryPackagesResults;
import com.serena.zmf.webservices.client.internal.PackageSearchSummary.QueryPackagesResultsResult;
import com.google.gwt.user.server.rpc.RemoteServiceServlet;

@SuppressWarnings(“serial”)
public class PackageManagementImpl extends RemoteServiceServlet implements
 PackageManagement {

 /***
 * Logon with ixed userid and password to ixed ZMF started task. In real life, a
 * more lexible method would be used.
 ***/
 private void logon(ZMFServer zServer) {

 LogonRequest request = new LogonRequest();

 request.setUser(“someUser”);
 request.setPassword(“somePassword”);
 request.setNewpassword(null);
 request.setSubsystemid(“someZMFSubsysID”);
 request.setVersion(“610”);
 request.setHost(“someHost”);
 request.setPortid(“6011”);

 zServer.logon(request);
 /*
 * Note we have no error checking here. We should make sure we can actually log in.
 */
 }

 public QueryPackagesResults getPackagesForApprover(ZMFServer zServer, String entity) {

 QueryPackagesRequest request = new QueryPackagesRequest();
 request.setApprovalEntity(entity);
 request.setSearchForApprovalPending(TypeYesNo.Y);
 request.set_package(“*”);
 QueryPackagesResults results = zServer.getPackages(request);
 return results;
 }

9 Using ChangeMan ZMF Web Services

 /***
 * Get packages awaiting approval by entity “someUser”.

 *
* The code retrieves the matching packages, creates a linked list of transport
 * objects and converts those that to an array (a linked list would have
 * worked just as well as a linked list is GWT serializable.
 *
 * (non-Javadoc)
 *
 * @see com.serena.zmf.sample.client.PackageManagement#getPackages()
 ***/
 @Override
 public PackageInfo[] getPackages() {
 ZMFServer zServer = new ZMFServer();
 logon(zServer);
 QueryPackagesResults results = getPackagesForApprover(zServer, “someUser”);
 zServer.logoff();
 LinkedList<PackageInfo> packages = new LinkedList<PackageInfo>();
 if (results != null) {
 for (int i = 0; i < results.getResult().length; i++) {
 QueryPackagesResultsResult queryResult = results.getResult(i);
 PackageInfo queryPackage = new PackageInfo(queryResult.get_package(),
 queryResult.getApplName(),
 queryResult.getCreator(),
 queryResult.getLastPromoter(),
 queryResult.getPackageTitle(),
 queryResult.getPackageStatus().toString());
 packages.add(queryPackage);
 }
 }
 return packages.toArray(new PackageInfo[1]);
 }
 /***
 * Approve every package passed from the frontend in the ApprovalInfo array.
 * @see com.serena.zmf.sample.client.PackageManagement
 * #approvePackages(com.serena.zmf.sample.client.common.ApprovalInfo[])
 ***/
 @Override
 public Integer approvePackages(ApprovalInfo[] approvalInfo) {
 ZMFServer zServer = new ZMFServer();
 logon(zServer);
 for (ApprovalInfo approval : approvalInfo) {
 ApprovePackageRequest request = new ApprovePackageRequest();
 request.set_package(approval.getPackageID());
 request.setApplName(approval.getAppl());
 request.setApproverEntity(approval.getEntity());
 request.setApproverAction(ApproverAction.value1);
 zServer.approvePackage(request);
 }
 zServer.logoff();
 return null;
 }
}

The servlet imports additional code, not shown here, for message handling. In the
downloadable code sample, transport data classes are defined in the zmf > sample >
client > common directory. Web Services RPC calls are serialized and deserialized in
synchronous transmissions by member PackageManagement.java, and in asychronous
transmissions by member PackageManagementAsync.java. These members can be
found in the downloadable code directory zmf > sample > client.

10 Using ChangeMan ZMF Web Services

Figure 4.
ZMF Web Services Interface

package com.serena.zmf.sample.server;

import java.net.URL;
import java.rmi.RemoteException;

import com.serena.zmf.webservices.client.internal.Connect.*;
import com.serena.zmf.webservices.client.internal.DeveloperEnvironmentAdmin.*;
import com.serena.zmf.webservices.client.internal.PackageLifeCycle.*;
import com.serena.zmf.webservices.client.internal.PackageSearchSummary.*;

import org.apache.axis.client.Stub;
import org.apache.axis.transport.http.HTTPConstants;
import javax.xml.rpc.ServiceException;

/***
 * The code below represents a basic interface to the ZMF web services required
 * to search for eligible packages and then to approve them.
 **/
public class ZMFServer {

 // Host that the ZMF web server resides on (Tomcat or similar).
 private String webServicesHost = “localhost”;
 // Port that ZMF web services are listening on
 private String webServicesPort = “8080”;
 // We need a cookie to maintain session information after having authenticated
 private String cookie = null;
 // Name of logged in user
 private String user = null;

 public ZMFServer() {
 }

 public ZMFServer(String host, String port) {
 this.webServicesHost = host;
 this.webServicesPort = port;
 }

 /**
 ** Login
 **/
 public synchronized com.serena.zmf.webservices.client.internal.Connect.Response
 logon(LogonRequest request) {

 ConnectSOAPBindingStub binding = null;

 try {
 // Get the stub which implements the SDI.
 ConnectServicesLocator csl = new ConnectServicesLocator();

ZMF WEB SERVICES INTERFACE
The PackageManagementImpl.Java viewer processing servlet calls ZMFServer.java
to connect to the actual ZMF Web Services. This code also maintains session state for
the connection to ChangeMan ZMF. Sample code for ZMFServer.java is shown in
Figure 4. This code also resides in the zmf > sample > server directory of the
downloadable code sample.

Each ZMF Web Service needed by the package approval checklist servlet is accessed
through “stub” code shown below. One SOAP message binding stub is provided for each
Web Service.

11 Using ChangeMan ZMF Web Services

 // Update URL
 updateURL(csl);

 binding = (ConnectSOAPBindingStub) csl.getConnect();
 binding.setMaintainSession(true);

 } catch (ServiceException e) {
 return null;
 }

 Logon logon = new Logon(request);
 com.serena.zmf.webservices.client.internal.Connect.Response response = null;

 try {
 response = binding.logon(logon);
 } catch (RemoteException e) {
 return null;
 }

 // store cookie to maintain state

 cookie = (String) binding._getCall().getMessageContext().getProperty(
 HTTPConstants.HEADER_COOKIE);

 user = request.getUser();
 return response;
 }
 /**
 * Logoff
 **/
 public synchronized void logoff() {
 ConnectSOAPBindingStub binding = this.getConnectSOAPBindingStub();

 // Create connect logoff request.

 LogoffRequest logoffReq = new LogoffRequest(user);
 Logoff logoff = new Logoff(logoffReq);

 // logoff and destroy cookie

 try {
 binding.logoff(logoff);
 } catch (RemoteException e) {
 cookie = null;
 }

 cookie = null;
 }
 /***
 * Get Global Parameters
 **/
 public GetGlobalParmsResults getGlobalParms(GetGlobalParmsRequest request) {
 DeveloperEnvironmentAdminSOAPBindingStub binding =
 getDeveloperEnvironmentAdminSOAPBindingStub();
 GetGlobalParmsResults results = null;
 GetGlobalParms getGlobalParms = new GetGlobalParms(request);
 try {
 results = binding.getGlobalParms(getGlobalParms);
 } catch (RemoteException e) {
 }

 return results;
 }

12 Using ChangeMan ZMF Web Services

 /***
 * Update connection address with values from preference store.
 ***/
 private void updateURL(ConnectServicesLocator csl) {
 String strURL = updateURL(csl.getConnectAddress());
 csl.setConnectEndpointAddress(strURL);
 }

 private String updateURL(String strURL) {

 try {
 URL url = new URL(strURL);

 String strProtocol = url.getProtocol();
 String strFile = url.getFile();
 url.getRef();
 Integer nPort = new Integer(webServicesPort);

 URL url2 = new URL(strProtocol, webServicesHost, nPort
 .intValue(), strFile);
 return url2.toString();

 } catch (Exception e) {
 }

 return strURL;
 }

 // Maintain Session

 private void setCookieAndMaintainSession(Stub binding) {
 binding.setMaintainSession(true);
 binding._setProperty(HTTPConstants.HEADER_COOKIE, cookie);
 }

 // **
 // Stub Access....
 // **

 // Get ConnectSoapBindingStub

 private ConnectSOAPBindingStub getConnectSOAPBindingStub() {
 ConnectSOAPBindingStub binding = null;
 try {
 ConnectServicesLocator sl = new ConnectServicesLocator();
 sl.setConnectEndpointAddress(updateURL(sl.getConnectAddress()));
 binding = (ConnectSOAPBindingStub) sl.getConnect();
 setCookieAndMaintainSession(binding);
 } catch (javax.xml.rpc.ServiceException jre) {
 }
 return binding;
 }

 // Get PackageLifeCycleSOAPBindingStub
 private PackageLifeCycleSOAPBindingStub getPackageLifeCycleSOAPBindingStub() {

 PackageLifeCycleSOAPBindingStub binding = null;
 try {
 PackageLifeCycleServicesLocator sl = new PackageLifeCycleServicesLocator();
 sl.setPackageLifeCycleEndpointAddress(updateURL(sl

13 Using ChangeMan ZMF Web Services

 .getPackageLifeCycleAddress()));
 binding = (PackageLifeCycleSOAPBindingStub) sl
 .getPackageLifeCycle();
 setCookieAndMaintainSession(binding);
 } catch (javax.xml.rpc.ServiceException jre) {
 }
 return binding;
}
 /***
 * Below are three SOAP stubs. There is one stub per web service group. The example
 * shows only those stubs which are actually used in this example.
 ***/
 // Get PackageSearchSummarySOAPBindingStub
 private PackageSearchSummarySOAPBindingStub getPackageSearchSummarySOAPBindingStub() {
 PackageSearchSummarySOAPBindingStub binding = null;
 try {
 PackageSearchSummaryServicesLocator sl =
 new PackageSearchSummaryServicesLocator();
 sl.setPackageSearchSummaryEndpointAddress(updateURL(sl
 .getPackageSearchSummaryAddress()));
 binding = (PackageSearchSummarySOAPBindingStub) sl
 .getPackageSearchSummary();
 setCookieAndMaintainSession(binding);
 } catch (ServiceException jre) {
 }
 return binding;
 }
 // Get DeveloperEnvironmentAdminSOAPBindingStub
 private DeveloperEnvironmentAdminSOAPBindingStub
 getDeveloperEnvironmentAdminSOAPBindingStub() {
 DeveloperEnvironmentAdminSOAPBindingStub binding = null;
 try {
 DeveloperEnvironmentAdminServicesLocator sl =
 new DeveloperEnvironmentAdminServicesLocator();
 sl.setDeveloperEnvironmentAdminEndpointAddress(updateURL(sl
 .getDeveloperEnvironmentAdminAddress()));
 binding = (DeveloperEnvironmentAdminSOAPBindingStub) sl
 .getDeveloperEnvironmentAdmin();
 setCookieAndMaintainSession(binding);
 } catch (ServiceException jre) {
 // throwCoreException(jre);
 }
 return binding;
 }
 /***
 * Find packages matching a particular criterion. There is a great deal of search
 * criteria which could be speciied here.
 ***/
 public QueryPackagesResults getPackages(QueryPackagesRequest request) {
 QueryPackagesResults results = null;
 PackageSearchSummarySOAPBindingStub binding = this
 .getPackageSearchSummarySOAPBindingStub();
 QueryPackages sfp = new QueryPackages(request);

 try {
 results = binding.queryPackages(sfp);
 } catch (RemoteException e1) {
 }
 return results;
 }

Copyright © 2010 Serena Software, Inc. All rights reserved. Serena, TeamTrack, ChangeMan, PVCS, StarTool, Collage, and Comparex are
registered trademarks of Serena Software, Inc. Change Governance, Command Center, Dimensions, Mover and Composer are trademarks
of Serena Software, Inc. All other product or company names are used for identiication purposes only, and may be trademarks of their
respective owners. Revised 3 January 2010.

 /***
 * Approve a package. The request deines the package, in particular name,
 * application and entity.
 ***/
 public void approvePackage(ApprovePackageRequest request) {
 PackageLifeCycleSOAPBindingStub binding = this
 .getPackageLifeCycleSOAPBindingStub();
 ApprovePackage ap = new ApprovePackage(request);

 try {
 binding.approvePackage(ap);
 } catch (RemoteException e1) {
 }
 }
}

ABOUT SERENA

Serena Software, the Change Governance leader, helps more than 15,000 organizations around
the world—including 96 of the Fortune 100 and 90 of the Global 100—turn change into a business
advantage. Serena is headquartered in Redwood City, California, and has offices throughout the
U.S., Europe, and Asia Pacific.

CONTACT

Website: www.serena.com
Phone: 800-547-7827
Email: info@serena.com

Obtaining the ChangeMan ZMF Web Services API
The ChangeMan ZMF Web Services API is provided at no extra charge on the product
media. When you unload the product media prior to transfering the host software to z/OS,
the Web Services API code is saved to the following location on the installation PC:

c:\Program Files\Serena\ChangeMan ZMF\v.r.m\WebServices

where v is the version number, r is the release, and m is the modification level of ZMF.
You must install this code separately on the desired Web Services application server.

Licensed customers may download the ChangeMan ZMF product media, including the
Web Services API, from the Serena Customer Support Web site at
http://support.serena.com.

Further information about the ZMF Web Services are available in the ChangeMan ZMF
Web Services Getting Started Guide. This document may also be downloaded from
Customer Support.

