Practice DEPARTMENTAL FINAL EXAMINATION

2015

MATH-M 119

BRIEF SURVEY OF CALCULUS

Directions

- DO NOT OPEN this test booklet until you are asked to do so.
- There are six pages on this exam with 20 problems.
- PRINT your name and student ID\# and check your section below.
- You have two hours to complete this examination.
- No scratch paper - if you need extra paper use the back of the cover sheet.
- Sharing calculators is not permitted.
- The only permissible calculator is the TI-30XA

NO notes, books; Cell phones should be OFF. Earpieces are not permitted.

NEATNESS COUNTS. CORRECT NOTATION COUNTS.

To receive credit show supporting work.

NAME (Print Clearly)	
UNIV ID\#	

Do Not Write In This Area		
Page 2	10	
Page 3	10	
Page 4	10	
Page 5	10	
Page 6	10	
TOTAL	50	
$\mathbf{x 2}$	$=$	$\%$
	$=$	$/ 150$

1. Given $y=\frac{3}{x^{4}}+2 x^{4}$ find $\frac{d y}{d x}$
2. Given $f(x)=\ln \left(x^{2}+3 x\right)$ Find $f^{\prime}(1)$
3. Differentiate: $y=e^{-x} \cdot x^{5}$
4. Given $=8 \sqrt{x}$. Find $\left.\frac{d y}{d x}\right|_{x=25}$ and simplify.
5. If $f(x)=3 x^{2}(4 x+1)^{5}$ find $f^{\prime}(x)$. Simplify your answer by multiplying constants together.
6. Write an equation of the tangent line to the curve $y=f(x)=x^{3}+1$ at $x=-2$.
7. A state park charges $\$ 100$ for an annual pass. At this rate 750 people purchase passes every year. For each $\$ 5$ decrease in price 15 more people purchase a pass. What price should the park charge in order to maximize revenue? Use calculus and show your work.
8. Consider the polynomial $y=f(x)=x^{3}-6 x^{2}$ on the closed interval [-1,7]. Find the absolute maximum and the absolute minimum points for the function on the interval $[-1,7]$. Be sure to include both x and y coordinates for your points.

Abs max \qquad

Abs min \qquad
9. The demand function for suits is given by $p=156-0.4 x$ and we also know that the total cost to produce x freezers is $C(x)=4000+0.25 x^{2}$. How many suits should be sold in order to maximize profit?
10. Find each indefinite integral:
a. $\int\left(\frac{4}{x^{3}}+\frac{7}{x}\right) d x$
b. $\int\left(2 e^{5 x}+1\right) d x$
c. $\left(\frac{1}{\sqrt{x}}-5 x^{6}\right) d x$
(2)
11. Find $f(x)$ such that $f^{\prime}(x)=9 x^{2}+4 x-5$ and $f(0)=3$.
12. Rock Industries finds that the marginal cost of producing the $\mathrm{x}^{\text {th }}$ climbing harness is $C^{\prime}(x)=x^{3}-x$. Find the total cost to produce 40 harnesses, assuming that fixed costs are $\$ 6500$.
13. Approximate the area under the graph of $f(x)=x^{2}+1$ over the interval $[0,4]$. Use the left-hand sum and compute the area of 4 rectangles.
14. $\int_{1}^{2}\left(4 t^{3}-1\right) d t$
15. $\int_{4}^{25} \sqrt{x} d x$
16. Larry's Lawncare estimates that its sales are growing continuously at a rate given by $S^{\prime}(t)=10 e^{t}$ where $S^{\prime}(t)$ is given in dollars per day, on day t . Find the accumulated sales for the first 5 days.

Evaluate each definite integral. Then choose the best description of the area of the region involved.
a. More area is above the x-axis than is below.
b. More area is below the x-axis than is above.
c. The areas above and below the x-axis are equal.
17. $\int_{-1}^{1}\left(x^{3}+4 x\right) d x$
18. $\int_{0}^{2}\left(x^{2}-x\right) d x$

Answer for 17: \qquad

Circle one: a b c

Answer for 18: \qquad

Circle one: a b c
19. Find the present value of $\$ 10,000$ due 8 years in the future, if interest is compounded continuously at an annual rate of 4%.
20. Find the accumulated present value of a continuous income stream of $\$ 10,000$ per year for 8 years, if interest is compounded continuously at an annual rate of 4%.

M119 Practice Final Exam ANSWERS

1. $-12 x^{-5}+8 x^{3}$
2. $5 / 4$
3. $5 x^{4} e^{-x}-x^{5} e^{-x}$
4. $4 / 5$
5. $60 x^{2}(4 x+1)^{4}+6 x(4 x+1)^{5}$
6. $y=12 x+17$
7. $\$ 175$
8. absolute max at $(7,49)$; absolute \min at $(4,-32)$
9. 120

10a. $-2 x^{-2}+7 \ln x+C$
10b. $\frac{2}{5} e^{5 x}+x+C$
10c. $2 \sqrt{x}-\frac{5}{7} x^{7}+C$
11. $3 x^{3}+2 x^{2}-5 x+3$
12. $\$ 645,700$
13. 18
14. 14
15. 78
16. $\$ 1474.13$
17. 0 c
18. $2 / 3$ a
19. $\$ 7261.49$
20. $\$ 68,462.74$

