Chapter 3 Ionic compounds

3.1 lons

Atoms have the ability to gain or loose electrons and become ions.

<u>Ion</u>: an electrically charged atom or group of atoms.

<u>Cation</u>: an atom that has lost one or more electrons

(a positively charged ion).

tend to become <u>cations</u>.

<u>Anion</u>: an atom that has gained one or more electrons (a negatively charged ion.)

tend to become <u>anions</u>.

Writing Ions

We write the charge for an ion in the upper right-hand corner of the atomic symbol.

- One (+) for each electron lost

- one (-) for each electron gained.

The number comes **<u>before</u>** the +/- symbol.

Problem: An aluminum atoms loose three electrons when it becomes an ion.

a) Write the symbol for the ion that results.

b) Is it a cation or an anion?

Problem: An oxygen atoms gains two electrons when it becomes an ion.

a) Write the symbol for the ion that results.

b) Is it a cation or an anion?

(sections 3.2-3.5 will be saved till the end of the chapter)

3.6 Ions of Some Common Elements

E.g. Group 1 (1A) lose 1 e⁻ to become 1+ ions (Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺) Group 2 (2A) lose 2 e⁻ to become 2+ ions (Be²⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺) Group 13 (3A) lose 3 e⁻ to become 3+ ion (Al³⁺) Group 17 (7A) gain 1 e⁻ to become 1- ions (F⁻, Cl⁻, Br⁻, I⁻) Group 16 (6A) gain 2 e⁻ to become 2- ions (O²⁻, S²⁻, Se²⁻) Group 15 (5A) gain 3 e⁻ to become 3- ions (N³⁻, P³⁻)

3.7-3.8 Naming lons

The procedure for naming an ion will depend on if it looses electrons to become a cation or gains electrons to become an anion as well as a few other factors we will investigate.

1. Monatomic anions

Named by replacing the ending of the element's name with "ide".

Group 17 anions (of halogens) are called halides

Practice: Write the formula and give the name for the anion that forms when the following elements gain enough electrons to fill their octet.

<u>Element</u>	<u>ion symbol</u>	<u>ion name</u>
Cl		
F		
Ο		
S		
Ν		

2. Fixed Charge Cations

Groups 1, 2, Al^{3+}, and a few transition elements, which only form 1 valence state or charge, (e.g. $Zn^{2+}Cd^{2+}Sc^{3+}$ and Ag^{+}) form only one ion. They simply have the word "ion" added after their name.

Problem: Write the formula and give the name for the cation that can form from the following metals.

- Na – Mg
- Al

3. Polyatomic Anions

Polyatomic ion: An ion that is composed of more than one atom.

Most polyatomic anions contain oxygen.

The formulas includes <u>subscripts</u> to tell us how many of each type of atom is present in the one polyatomic ion

The atoms in a polyatomic ion are held together by <u>covalent</u> bonds. (a sharing of electrons)

The entire group of atoms <u>act as a single unit</u>.

Ions ending in "**ate**" are most common and indicate the **<u>base number of</u>** <u>**oxygens**</u> (typically 3 but sulfate and phosphate have 4). Charges vary!

Practice: write names for the following polyatomic ions:

• NO ₃ ⁻	nick the	
• CO_3^{2-}	<u>ca</u> mel had a	Consonants give the number of oxygen;
• ClO_3^-	<u>cl</u> am for	, , , , , , , , , , , , , , , , , , ,
• SO_4^{2-}	<u>supper</u> in	Vowels give the number of negative
• PO_4^{3-}	<u>ph</u> oenix	charges.

- BrO_3^-
- IO₃⁻

Other polyatomic ions you should know:

Ion Name	Formula	I on Name	Formula	
Thiosulfate	S ₂ O ₃ ²⁻	Acetate	CH ₃ COO aka CH ₃ CO ₂	
			aka $C_2 H_3 O_2$	
Permanganate	MnO ₄ -	Chromate	CrO4 ²⁻	

Hydroxide	OH	Hydrogen sulfite	HSO ₃ ⁻
Dichromate	$Cr_2O_7^{2-}$	Thiocyanate	SCN
Hydrogen		Hydrogen	HPO ₄ ²⁻
Carbonate	HCO ₃ ⁻	phosphate	
(Bicarbonate)	_		
Oxalate	$C_2 O_4^{2-}$	Dihydrogen	$H_2PO_4^-$
		phosphate	
Cyanide	CN⁻	Hydrogen sulfate	HSO ₄ ⁻
		(Bisulfate)	

Some polyatomic anions can form a series,

ClO ₄	perchlorate ion	"per" means" "O" than "ate"
ClO ₃	chlorate ion	
ClO ₂	chlor <u>ite</u>	"ite" means "O" than "ate"
ClO	hypochlor <u>ite</u>	"hypo" means "O" than "ate"

4. Variable Charge Cations

- Transition metals (most) can have multiple different charges.
- New **Stock System** uses metal name with the valence shown as a Roman Numeral in parenthesis.
- Old Greek/Latin System uses "ic" ending for the <u>higher</u> common charge and "ous" ending for the <u>lower</u> common charge.

These just need to be memorized!

Practice: give the New and Old System names for the following ions.

Old System New System (Stock System) Fe²⁺ Fe³⁺ Many others that are on a list for Sn^{2+} you to memorize. Sn⁴⁺ Hg^{2+}

5. Polyatomic cations (only 3 common ones)

$\mathrm{Hg_2}^{2+}$	
$\mathrm{NH_4}^+$	ammonium ion
H_3O^+	hydronium ion

3.9-10 Formulas and Naming of Ionic Compounds

Naming Ionic Compounds

Name of cation followed by name of anion Do not include the work "ion" in the name of the compound Do not name quantities of each ion.

Formulas of Ionic Compounds

- All compounds are neutral.
- The total positive charge (from the cations) must equal
 - the total negative charge (from the anions).
- Polyatomic ions are treated as a single unit. **Case 1**: If the charge of the cation and the anion are the same:
 - 1) Write the cation followed by the anion.
 - 2) Do not show charges of the ions in the final formula
 - 3) Do not use parentheses.

Practice:	<u>Formula</u>	<u>Name</u>	
$K^+ + F^- \rightarrow$			
$Ca^{2+} + O^{2-} \rightarrow$			
$Al^{3+} + N^{3-} \rightarrow$			
$\mathrm{Sr}^{2+} + \mathrm{SO_4}^{2-} \rightarrow$			
$\mathrm{NH_4^+} + \mathrm{Br^-} \rightarrow$			

Case 2: If the charges on the anion and cation are different,

- 1) Use the charge of the cation as a subscript for the anion.
- 2) Use the charge of the anion as a subscript for the cation.
- 3) Include polyatomic ions in parentheses if the subscript is >1.
- 4) Do not show charges of the ions in the final formula.

Note: If both charges are even, divide both numbers by 2.

© 2013 Pearson Education, Inc.

Practice – using fixed charge cations (Note: Reactants are not balanced.)

<u>Ions</u>	<u>Formula</u>	Name	<u>.</u>
$Li^+ + O^{2-} \rightarrow$			
$Mg^{2+} + Cl^- \rightarrow$			
$Al^{3+} + S^{2-} \rightarrow$			
$Cd^{2+} + NO_3^- \rightarrow$			
$NH_4^+ + N^{3-} \rightarrow$			
$\mathrm{Sr}^{2^+} + \mathrm{S}^{2^-} \rightarrow$			
$Pb^{4+} + O^{2-} \rightarrow$			

More Practice – using variable charge cations:			
<u>Formula</u>	<u>new (Stock) name</u>	<u>old name</u>	
Cu ₂ SO ₄			
Sn(NO ₃) ₄			
PbCO ₃			
Hg_2Br_2			
FePO ₄			

3.11 H⁺ and OH⁻ lons: An Introduction to Acids & Bases

Acids and Bases

Two of the most important ions we will study are

the hydrogen ion: _____ and

the **hydroxide ion:** _____ ions.

A hydrogen ion is simply a proton.

When acids dissolve in water, the proton can attach to a water molecule to form a <u>hydronium ion</u>.

Chemists use hydrogen and hydronium ions interchangeably in water solutions.

Acid – A substance that provides H+ ions in water.

(e.g. HCl, HNO₃, H_2SO_4 , H_3PO_4 are among the most common.)

Base – A substance that provides OH_2 ions in water. (e.g. NaOH, KOH, Ba(OH)₂, Ca(OH)₂, and NH₄OH are among the most common.)

Naming acids. (in water)

The name of the acid depends on the type of anion present.

Case 1: If the anion contains <u>no oxygen atoms</u>, the acid is named by adding a prefix of hydro to the name of the anion, changing the ending to ic, and adding the word acid.

HC1	<u>hydrochloric acid</u>	HF
-----	--------------------------	----

- HBr **hydrobromic acid** HCN
- HI <u>hydroiodic acid</u> H₂S
- Case 2: If the anion <u>contains oxygen</u> atoms, the acid is named based on the varying number of O atoms.

Show a formation reaction:

There is a series of "base" anions that you must memorize. These anions all end in "ate". The acids made by adding enough H atoms to get a neutral compound are named by changing the "ate" to "ic" and adding the work acid.

Convert the "base" oxyanion that we learned earlier to their corresponding acids.

Practice: write formulas & names for the acids made from the following polyatomic ions:

• NO_3^{-} <u>nitrate ion</u> • $CO_3^{2^{-}}$ <u>carbonate ion</u> • ClO_3^{-} <u>chlorate ion</u> • BrO_3^{-} <u>bromate ion</u> • $SO_4^{2^{-}}$ <u>sulfate ion</u> • $PO_4^{3^{-}}$ <u>phosphate ion</u> Acids can also be made from the series of oxyanions.

For the name, change "ate" to "ic or "ite" to "ous" and add the word acid.

Example

<u>Ion Formula</u>	Ion Name	<u>Acid Formula</u>	Acid Name
ClO ₄	perchlorate ion	HClO ₄	<u>per</u> chlor <u>ic</u> acid
ClO ₃ -	chlorate ion	HClO ₃	chlor <u>ic</u> acid
ClO ₂	chlor <u>ite</u>	HClO ₂	chlor <u>ous</u> acid
ClO	<u>hypo</u> chlor <u>ite</u>	HClO	hypochlorous acid
		Now student	<i>practice</i>

<u>Ion Formula</u>	Ion Name	Acid Formula	Acid Name
BrO ₄	perbromate ion		
BrO ₃	brom <u>ate</u> ion		
BrO ₂	brom <u>ite</u>		
BrO	<u>hypo</u> brom <u>ite</u>		
IO ₄	periodate ion		
IO ₃ ⁻	iodate ion		
IO ₂	iod <u>ite</u>		
IO ⁻	hypoiodite		

Protic Nature of Acids.

Different acids can provide different numbers of H^+ ions per acid molecule.

- Hydrochloric acid, HCl, provides one H⁺ ion per acid molecule. (_____)
- Sulfuric acid, H₂SO₄, can provide two H⁺ ions per acid molecule. (_____)
- Phosphoric acid, H₃PO₄, can provide three H⁺ ions per acid molecule. (_____)

Diprotic and triprotic can be grouped together as **polyprotic** acids.

Bases.

- Sodium hydroxide (NaOH) and potassium hydroxide (KOH) are bases.
- When these compounds dissolve, <u>OH</u>⁻ anions go into solution along with the metal cation.
- Different bases can provide different numbers of OH⁻ ions per formula unit.
 - Sodium hydroxide (NaOH) provides _____.
 OH⁻ ion per formula unit.
 - Barium hydroxide, Ba(OH)₂ can provides_____.
 OH⁻ ions per formula unit.