1. What are the shape of p sublevels? \qquad dumbell \qquad What shape are s orbitals?_sphere
2. Write the electron configuration for Cl . $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
3. Write the electron configuration for Fe .

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}
$$

4. Identify the element:
a. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}{ }_{-} S$ \qquad b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{9}$ \qquad
\qquad
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}{ }_{-} N a$ \qquad
5. Write the orbital diagram for:

b. silicon

6. Match the following: $\mathrm{Cl}, \mathrm{Ar}, \mathrm{I}$, with one of the following statements
a. Which has the highest occupied energy level? \qquad
b. Which has five electron in its 3 p sublevel? \qquad C1 \qquad
c. Which has its highest energy level filled? \qquad Ar \qquad
7. In the sixth period after Ba what sublevel gets filled with the next 14 elements? \qquad
8. In the fourth period after the first 2 elements what sublevel gets filled? __3d__
9. Which one of the following will have the first pair of electrons in the p sublevel? Si P S Cl
10. What is the electron configuration for the element with 5 protons?

$$
1 s^{2} 2 s^{2} 2 p^{1}
$$

11. As the wavelength of light increase the frequency__decreases \qquad .
12. How many electrons can occupy the $3^{\text {rd }}$ energy level? -18
13. How many electrons can occupy the $4^{\text {th }}$ energy level? 32 \qquad
14. How many orbitals are in the $3^{\text {rd }}$ energy level? \qquad 9
15. When does an atom emit light?

When an atom jumps from a higher energy level to an lower one.
16. What is the lowest energy state called? Ground state
17. Another name for a quanta or particle of light is called a \qquad photon \qquad .
18. What color of light has the longest wavelength? _red \qquad
19. What color of light has the shortest wavelength? \qquad violet 20. What is the wavelength of an EM wave traveling at the speed of light with a frequency of 300 Hz ?
$3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}=? 300 \mathrm{~Hz}$
$?=1.0 \times 10^{6}$
21. What speed do all electromagnetic waves travel at? \qquad $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ \qquad
22. Which EM waves have the highest frequencies? gamma \qquad
23. Which EM waves have the lowest frequencies? \qquad radio \qquad
24. Electrons entering orbitals of the lowest energy first... follows what principle? \qquad Aufbau \qquad
25. What must be true for 2 electrons to be in the same orbital? \}

They must have opposite spins.
26. How many half filled orbitals are in nitrogen?

3
27. How many unpaired electrons are in Mg ?

0
28. If you have 5 electrons to fill a 3d sublevel, how should you draw the orbital diagram?

3d
29. Which has the lowest energy? 4d, 4f, 5s, 5p
30. True or false: When is light given off?
a. When electrons absorb energy.__F
b. When protons move. \qquad F
c. When electrons return to their normal atomic orbital. \qquad T \qquad
d. When atoms collide. \qquad T \qquad
31. What is the maximum number of oribitals in the d sublevel? _5 \qquad
32. Which sublevels are in the $3^{\text {rd }}$ energy level? \qquad $\mathrm{s}, \mathrm{p}, \mathrm{d}$ \qquad
33. What is the Pauli exclusion principle?

In order for 2 electrons to both be in the same orbital they must have opposite spins.
34. What is Aufbau's principle?

Electrons fill orbitals from the lowest energy level to the highest energy level.
35. What is Hund's rule?

All orbitals in sublevel each get one electron before any are filled.

Chapter 5

1. Which is the largest atom? $\mathrm{Cl} \mathrm{Cl}^{-} \mathrm{F}^{-} \mathrm{Ne}$
2. What is the magic number in chemistry? \qquad 8
3. True or False: When an atom becomes an ion it: a. loses electron \qquad F \qquad b. remains the same size__ $\mathrm{F} \quad$ __ c. becomes larger__ T__ d. becomes smaller ___ F
4. Mg and Ca have the same properties because they have the same _ \# of valence electrons. 5. How many valence electrons do noble gases have? __ 8 _ How many do alkaline metals have? ___ 2 How many do halogens have? \qquad
5. What is the most reactive non-metal? ___ _ _
6. What is the most reactive metal? __Fr
7. What is the charge for the alkali metals? __-1 \qquad the alkaline metals? __-2 \qquad
8. Give the group name for each element: Ar _noble gases \qquad Se_oxygen group \qquad
$\mathrm{Ca} \quad$ _alkaline metals \qquad I Halogens \qquad
9. Which is a metal? N P As Bi
10. Which metal reacts most with water? Na K Rb Cs
11. What do noble gases not do?

form compounds easily

13. Yes or No. State whether each of the following increases as you go down group 2
a. electron affinity __ N \qquad b. ionization energy __N \qquad c. number of valence electrons \qquad N \qquad
d. atomic radius \qquad
\qquad
14. What is an atom's tendency to attract shared electrons? \qquad electronegativity \qquad
15. Which has the lowest electron affinity? Br Cl Se S
16. Which has the highest electron affinity? Br ClSe S
17. Which group has the highest electron affinity? _halogens_

Which has the lowest?_alkali metals
18. Which has the smallest ionization energy? $\mathrm{C} \mathrm{N} \mathrm{P} \mathrm{Si}, \mathrm{Rb} \mathrm{CaK} \mathrm{Sr}$
19. The energy required to remove an electron from an atom is called ionization energy
20. Which element has the smallest atomic radius? a. Be CaFClb . Se C 1 Br S
21. Which is the largest? K ion, Br ion, or Ca ion
22. What subatomic particle plays the biggest part in determining physical and chemical properties of elements? electron
23. The periodic table is arranged in order of increasing _atomic number \qquad .
24. What is another name for semimetal? \qquad metalloids \qquad
25. Name and define the periodic trends

1 atomic radius-size of an atom. Decreases from bottom left to top right.

2 electron affinity - desire or want for electrons. Increases from bottom left to top right.

3 ionization energy - energy needed to remove an electron from an atom. Increases from bottom left to top right.

4 electronegativity - ability to attract electrons in an atomic bond. Increases from bottom left to top right.

Ch 7\&8

1. How many electrons are shared in a polar bond? _ 2 but unequally \qquad
2. What is the bond angle in a trigonal planar molecule? \qquad 120° \qquad
3. What are the shape and bond angle for the following?
(You may have to draw some to find out shape)
CH_{4} _tetrahedral__109.5${ }^{\circ}$ ___
O_{2} _linear__ 180°
BCl_{3} _trigonal planar___ 120° \qquad
$\mathrm{H}_{2} \mathrm{~S}$ _bent \qquad 105°
NH_{3} _pyramidal___1070 \qquad
HI _linear \qquad 180° \qquad

- \qquad -
BeF_{2} _linear_ 180° \qquad
$\mathrm{H}_{2} \mathrm{O}$ \qquad bent \qquad 105° \qquad

4. To account for the shape of molecules we use the \qquad VSEPR \qquad theory.
5. State the type of bond that occurs between each pair of elements.

N and C__Polar covalent_ \qquad Mg and $\mathrm{Cl}_{\text {_ }}$ ionic \qquad Li and $\mathrm{Cl}_{\text {_ionic }}$ \qquad S and O_polar \qquad C and C_nonpolar \qquad H and B __nonpolar \qquad
6. Yes or No. Which are diatomic molecules?
\qquad S_N__P_N $\mathrm{Ne}_{-} \mathrm{N}$ H_Y I__ \qquad
7.
$1-\mathrm{ABC} \quad 2-\mathrm{A}_{3} \mathrm{~B} \quad 3-\mathrm{AB}_{2}$
a. Which molecules are polar? $1 \& 3$ \qquad
b. The arrow points to what end of the dipole? \qquad negative \qquad Why? It has the higher electronegativity
8.
a. Which one is tetrahedral? 3 \qquad b.Which is bent? \qquad
\qquad
c. Which is trigonal planar__ \qquad d. Which is pyramidal?__2 \qquad
12. Draw and label the positive and negative ends of a water molecule.

13. What is true about a carbon dioxide molecule?
a. nonpolar, with nonpolar bonds b. polar, with nonpolar bonds
c. polar, with polar bonds d. nonpolar, with polar bonds
14. What determines the polarity of a bond? Electronegativity difference
15. What determines the polarity of a molecule? Electronegativity difference \& shape
16. How many pairs of electrons are in a double covalent bond?__ \qquad
17. What does the structural formula of a molecule tell you? Which atoms are bonded to each other.
18. Which bond is completely nonpolar? H-N O-C F-F F-Cl
19. How many pairs of shared and unshared are in the following?
a. HI __1 \qquad 3 __b. $\mathrm{O}_{2}{ }^{2}$ \qquad
\qquad c. $\mathrm{H}_{2} \mathrm{O} \quad{ }_{2}$ \qquad d. NH_{3} \qquad 3 \qquad 1
20. What is the charge on the cation in $\mathrm{Na}_{2} \mathrm{~S}$? + \qquad
21. How does an ionic bond work? Attraction between to oppositely charged ions.
22. What would be the Lewis Dot structure for an element with 12 electrons? • Mg
23. What is the octet rule? Atoms tend to lose, share, or gain electrons so that they have a complete outer shell of 8 electrons.
24. What happens when oxygen obeys the octet rule? _it gains 2 electrons \qquad How about Nitrogen? _gains 3 electrons \qquad How about Calcium? \qquad _loses 2 electrons \qquad
26. Yes or No. Which of the following have a complete octet?
a. Ba^{2+} \qquad b. $\mathrm{Ca}^{+} _\mathrm{N}$ \qquad c. $\mathrm{S}^{2-} \quad \mathrm{Y} __$d d. $\mathrm{CH} _\mathrm{Y}$ \qquad e. $A \mathrm{~B}^{3+} \mathrm{Y}^{-}$ \qquad f. $\mathrm{O}^{-}{ }_{-} \mathrm{N}^{-}$

Ch 13

1. Name the variables that change and the variable that stays constant for each law.
change constant
a. Charle's Law
b. Boyle's Law

c. Gay-Lussac's Law \qquad , \qquad P__ \qquad
2. Which is not a unit for measuring pressure? mL of water, mmHg , p.s.i., atm
3. What happens to the pressure of a gas when the temperature remains constant and the volume increases? decreases
4. What happens to the temperature of a gas when the volume remains constant and the pressure decreases? decreases
5. What happens to the volume of a gas when the pressure remains constant and the temperature increases? increases
6. Where is the air pressure greater, at the top of a mountain or at sea level?
7. Define absolute zero. Coldest possible temperature where the particles of a substance stop moving.
8. STP stands for what? Standard temperature and pressure
9. What are the values for STP? $1 \mathrm{~atm}, 273 \mathrm{~K}$
10. What gas law is used when no variable is held constant? Ideal gas law
11. What is the formula for number 10 ? $P V=n R T$
12. For the combined gas law what is the only variable that doesn't change? Amount of gas.
13. What are the parts of the Kinetic Theory of gases?
14. gases are made of very small particles 2 . distance between particles are very large.
15. particles are in constant motion. 4. collisions are perfectly elastic. 5. average kinetic energy is based on temperature. 6. gas particles exert no force on each other.
16. Write the equation relates density to molar mass? $D=M P / R T$

Ch 14

1. Match each phase change with its definition.
a. liquid to solid b. gas to liquid c. gas to solid d. solid to liquid e. solid to gas f. liquid to gas _b condensation _e_sublimation __f__vaporization _c_deposition _d__melting _a_freezing
2. What is a unit cell? Smallest repeating pattern which makes a crystal.
3. Describe the shape, volume, and motion of particles for:
solid definite definite vibrate back and forth in fixed posititions
liquid indefinite definite able to slide past one another
gas indefinite indefinite move about freely
4. What is the difference between amorphous and crystalline substances?

Amorphous solids do not have a repeating crystal patern
5. Define viscosity Resistance to a liquid's flow.
6. Does viscosity increase or decrease with an increase in temperature? decrease
7. Define surface tension attractive forces between particles that allow objects of larger density to "float" on liquid.
8. Does surface tension increase or decrease with an increase in strength of intermolecular forces? increase
9. True or false? Water always boils at $100^{\circ} \mathrm{C}$. \qquad false \qquad
10. List the 3 intermolecular forces in order of increasing strength.
disperson, dipole-dipole, hydrogen bonding
11. What is the difference between vaporization and evaporation?

They both are phase changes from liquid to gas, but evaporation occurs below the boiling point.
12. What are 3 unusual properties of water?

Unusually high boiling point. Large heat capacity. High surface tension. Universal solvent.

Ch 15
1.Define solution. Homogeneous mixture that exists in one phase
2. Define solute and solvent solute gets dissolved, solvent does the dissolving
3. Once dissolved, do particles ever fall out of solution? Yes or No. 4. Number 3 is one property of a solution. What are the 2 others?

Made from very small particles, and particles are uniformly distributed.
5. What is the definition of molarity? Moles of solute per liters of solution
6. What is the definition of molality? Moles of solute per kilogram of solvent
7. If a solution is saturated you can dissolve more solute in it, true or false?
8. To make a supersaturated solution you first have to make a saturated solution and then heat it up, true or false?
9. Solvation is what? The process of the solvent particles surrounding the solute particles.
10. The amount of solute needed to form a saturated solution in a given amount of solvent is what term? molarity, molality, solubility, soluble, colligative property
11. When you dissolve sugar in water does the boiling point go up or go down?
12. When you dissolve salt in water does the freezing point go up or down?
13. Numbers 11 and 12 are examples of what? Colligative properties
14. When you dissolve a solute in a solvent you change the __physical properties _ of the _solvent \qquad
15. When you increase the temperature of soda do you increase or decrease the solubility of the gas in the soda?
16. When you increase the temperature of iced T do you increase or decrease the solubility of the sugar in the tea?
17. Nitrogen dissolves easier in blood at high or low pressure?
18. When you shake soda does the gas in it become more or less soluble?
19. What is the solubility of $\mathrm{Ba}(\mathrm{OH})_{2}$ at $76^{\circ} \mathrm{C}$? _ 80 g \qquad
20. At $40^{\circ} \mathrm{C}$ approximately 106 g of NaNO_{3} dissolves in 100 g of water. Describe the solution as saturated, unsaturated, or supersaturated.
21. 50 g of KCl are placed in 100 g of water as the solution cools from $75^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$. Is the
solution saturated, unsaturated, or supersaturated?
22. 50 g of NaCl are placed in 100 g of water at $20^{\circ} \overline{\mathrm{C}}$. How much dissolves? \qquad 36 g
23. How many grams of KI will dissolve in 200 g of water at $10^{\circ} \mathrm{C}$? \qquad 270 g \qquad

Ch 18\&19

1. A solid dissolves in water and feels slippery. Is the solution acidic or basic?
2. Magnesium falls in a solution and dissolves. Is the solution acidic or basic?
3. What is the Arrhenius definition of acid and base?
acid -- A substance when dissolved in water releases H^{+}ions.

Base-A substance when dissolved in water realeases OH^{-}ions.
4. What is the Bronsted-Lowry definition of acid and base?
base-- H^{+}acceptor
acid-- H^{+}donator
5. Which solution is most basic? $\left[\mathrm{H}^{+}\right]=1 \times 10^{-2},\left[\mathrm{H}^{+}\right]=1 \times 10^{-5},\left[\mathrm{OH}^{+}\right]=1 \times 10^{-2}$
$\left[\mathrm{OH}^{+}\right]=1 \times 10^{-5}$
6. Which solution is most acidic? $\left[\mathrm{H}^{+}\right]=1 \times 10^{-2},\left[\mathrm{H}^{+}\right]=1 \times 10^{-5},\left[\mathrm{OH}^{+}\right]=1 \times 10^{-2}$
$\left[\mathrm{OH}^{+}\right]=1 \times 10^{-5}$
7. Which pH is most acidic? 157911
8. Which pH is most basic? 157911
9. Concentrations of acid and base solutions are measured by what value?

Molality, molarity, or mole fraction

PROBLEMS

1. $738 \mathrm{mmHg}=$ \qquad atm
$738 \mathrm{mmHg} \times \underline{1 \mathrm{~atm}}=0.971 \mathrm{~atm}$
760 mmHg
2. A large balloon contains 5.00 L of carbon dioxide at $27.0^{\circ} \mathrm{C}$. Determine the actual volume of CO_{2} in the balloon under standard conditions and assume the pressure remains constant.

$$
\text { Charle's law } \frac{5.00 \mathrm{~L}}{300 \mathrm{~K}}=\frac{\mathrm{V}_{2}}{273 \mathrm{~K}} \quad \mathrm{~V}_{2}=4.55 \mathrm{~L}
$$

3. A balloon has a volume of 810 mL at a pressure of 750 torr and a temperature of $-77^{\circ} \mathrm{C}$. The balloon is removed from this temperature and allowed to warm to room temperature, $25^{\circ} \mathrm{C}$, in a pressure chamber of 3.00 atm . Calculate the final volume of the balloon.

Combined gas law $\quad \underline{750 \text { torr } \times 810 \mathrm{~mL}}=\underline{2280 \text { torr } \times \mathrm{V}_{2}} \quad \mathrm{~V}_{2}=405 \mathrm{~mL}$ 196K 298K
4. Calculate how many moles of CH_{4} are in a sealed 800 mL flask at $22^{\circ} \mathrm{C}$ and 780 mmHg of pressure.
Ideal gas law $1.03 \mathrm{~atm} \times .800 \mathrm{~L}=\mathrm{n} 0.0821 \underline{\mathrm{~L} \cdot \mathrm{~atm} \times 295 \mathrm{~K}} \quad \mathrm{n}=.034 \mathrm{~mol}$
mol K
5. What pressure is exerted by 0.625 mole of a gas in a 45.4 L container at $-24.0^{\circ} \mathrm{C}$? ideal gas law

$$
\mathrm{P} \times 45.4 \mathrm{~L}=0.625 \mathrm{~mol} 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} 249 \mathrm{~K} \quad \mathrm{P}=0.28 \mathrm{~atm}
$$

6. What is the molarity of a solution formed by mixing 10.0 g of NaOH with enough water to make 100 mL of solution?
$\underline{0.25 \mathrm{~mol}}=2.5 \mathrm{M}$
0.100 L
7. How many grams of potassium chromate, KCrO_{4}, are needed to make 250 mL of a 0.250 M solution? $0.250 \mathrm{M}=\frac{\mathrm{mol}}{0.250 \mathrm{~L}} \quad 0.0625 \mathrm{~mol} \times \frac{155.1 \mathrm{~g}}{1 \mathrm{~mol}}=9.69 \mathrm{~g}$
8. What is the molality of a solution made up of 16.1 g of Cb dissolved in 5000 g of water?
$\frac{0.227 \mathrm{~mol}}{5.000 \mathrm{Kg}}=.0454 \mathrm{~m}$
9. What is the hydronium ion concentration and the pH of an aqueous solution that has a hydroxide concentration of 6.4×10^{-11} ?
$1.0 \times 10^{-14}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] 6.4 \times 10^{-11} \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.56 \times 10^{-4}$
$\mathrm{pH}=-\log 1.56 \times 10^{-4} \mathrm{pH}=3.8$
