

Asymptoto(s) is (are) line (s) whose distance from the curve tends to zero as point on curve moves towards $\stackrel{\circledR}{\curvearrowright}$ infinity along branch of curve.
(i) If $\underset{x \rightarrow a}{\operatorname{Lt}} f(x)=\infty$ or $\underset{x \rightarrow a}{\operatorname{Lt}} f(x)=-\infty$, then $x=a$ is asymptote of $y=f(x)$
(ii) If $\underset{x \rightarrow+\infty}{\operatorname{Lt}} f(x)=k$ or $\underset{x \rightarrow-\infty}{\operatorname{Lt}} f(x)=k$, then $y=k$ is asymptote of $y=f(x)$
(iii) If $\underset{x \rightarrow \infty}{\operatorname{Lt}} \frac{f(x)}{x}=m_{1}, \operatorname{Lt}_{x \rightarrow \infty}\left(f(x)-m_{1} x\right)=c$, then $y=m_{1} x+c_{1}$ is an asymptote. (inclined to right)
(iv) If $\underset{x \rightarrow-\infty}{\operatorname{Lt}} \frac{f(x)}{x}=m_{2}, \operatorname{Lt}_{x \rightarrow-\infty}\left(f(x)-m_{2} x\right)=c_{2}$, then $y=m_{2} x+c_{2}$ is an asymptote (inclined to left) Example: Find asymptote of $y=e^{-x}$

2. Quadrature :

$\underset{\sim}{\underset{\sim}{\sim}}$ (a) If $f(x) \geq 0$ for $x \in[a, b]$, then area bounded by curve $y=f(x), x$-axis, x-axis, $x=a$ and $x=b$ is $\int_{a}^{b} f(x) d x$

Find area bounded by the curve $y=\ell n x+\tan ^{-1} x$ and x-axis between ordinates $x=1$ and $x=2$.

Example : Find area bounded by $y=\log _{\frac{1}{2}} x$ and x-axis between $x=1$ and $x=2$.
A rought sketch of $\mathrm{y}=\log _{\frac{1}{2}} \mathrm{x}$ is as follows

$$
\begin{aligned}
\text { Area } & =-\int_{1}^{2} \log _{\frac{1}{2}} x d x=-\int_{1}^{2} \log _{e} x \cdot \log _{\frac{1}{2}} e d x \\
& =-\log _{\frac{1}{2}} e \cdot\left[x \log _{e} x-x\right]_{1}^{2} \\
& =-\log _{\frac{1}{2}} e \cdot\left(2 \log _{e} 2-2-0+1\right) \\
& =-\log _{\frac{1}{2}} e \cdot\left(2 \log _{e} 2-1\right)
\end{aligned}
$$

$\begin{array}{ll}\text { (d) } & \text { If } f(x) \geq g(x) \text { for } x \in[a, b] \text { the } \\ \sum_{i}^{b} & x=b \text { is } \int_{a}^{b}(f(x)-g(x)) d x .\end{array}$

Example : Find the area enclosed by curve $y=x^{2}+x+1$ and its tangent at $(1,3)$ between ordinates $x=-1$ and $x=1$.

Note: Area bounded by curves $y=f(x)$ and $y=g(x)$ between ordinates $x=a$ and $x=b$ is $\frac{\dot{\sim}}{\infty}$ $\int_{a}^{b}|f(x)-g(x)| d x$.

(e) If $g(y) \geq 0$ for $y \in[c, d]$ then area bounded by curve $x=g(y)$ and y-axis between abscissa $y=c$ and
FREE Download $y=d$ is $\int_{y=c}^{d} g(y) d y$

Example : Find area bounded between $\mathrm{y}=\sin ^{-1} \mathrm{x}$ and y -axis between $\mathrm{y}=0$ and $\mathrm{y}=\frac{\pi}{2}$.

$$
\begin{aligned}
& \Rightarrow \quad x=\sin y \\
& \text { Required area }=\int_{0}^{\frac{\pi}{2}} \sin y d y \\
&=-\cos y]_{0}^{\frac{\pi}{2}}=-(0-1)=1
\end{aligned}
$$

Note : The area in above example can also evaluated by integration with respect to x .
Area $=\left(\right.$ area of rectangle formed by $\left.x=0, y=0, x=1, y=\frac{\pi}{2}\right)-\left(\right.$ area bounded by $y=\sin ^{-1} x$, x-axis between $x=0$ and $x=1$)
$=\frac{\pi}{2} \times 1-\int_{0}^{1} \sin ^{-1} x d x=\frac{\pi}{2}-\left(x \sin ^{-1} x+\sqrt{1-x^{2}}\right)^{1}$
$=\frac{\pi}{2}-\left(\frac{\pi}{2}+0-0-1\right)=1$

Some more solved examples

Example: Find the area contained between the two arms of curves $(y-x)^{2}=x^{3}$ between $x=0$ and $x=1$.
Solution
For arm $(y-x)^{2}=x^{3} \Rightarrow y=x \pm x^{3 / 2}$
FREE Download Study Package from website: www.TekoCl

Required are $a=\int_{0}^{1}\left(x+x^{3 / 2}-x+x^{3 / 2}\right) d x$

$$
\left.=2 \int_{0}^{1} x^{3 / 2} d x=\frac{2 x^{5 / 2}}{5 / 2}\right]_{0}^{1} \quad=\frac{4}{5}
$$

Find area contained by ellipse $\quad 2 x^{2}+6 x y+5 y^{2}=1$

$$
\begin{array}{ll}
& 5 y^{2}+6 x y+2 x^{2}-1=0 \\
& y=\frac{-6 x \pm \sqrt{36 x^{2}-20\left(2 x^{2}-1\right)}}{10} \\
\because \quad y=\frac{-3 x \pm \sqrt{5-x^{2}}}{5} \\
\Rightarrow \quad y \text { is real } \Rightarrow \text { R.H.S. is also real. } \\
\text { If } & -\sqrt{5} \leq x \leq \sqrt{5} \\
\text { If } & x=-\sqrt{5}, \quad y=3 \sqrt{5} \\
\text { If } \quad & x=0, \quad y=-3 \sqrt{5} \\
\text { If } & y= \pm \frac{1}{\sqrt{5}}
\end{array}
$$

FREE Download Study Package from website: www.TekoClasses.com \& www.MathsBySuhag.com

$$
\begin{aligned}
& \text { If } \begin{aligned}
y=0, & x= \pm \frac{1}{\sqrt{2}} \\
\text { Required area } & =\int_{-\sqrt{5}}^{\sqrt{5}}\left(\frac{-3 x+\sqrt{5-x^{2}}}{5}-\frac{-3 x-\sqrt{5-x^{2}}}{5}\right) d x \\
& =\frac{2}{5} \int_{-\sqrt{5}}^{\sqrt{5}} \sqrt{5-x^{2}} d x \\
& =\frac{4}{5} \int_{0}^{\sqrt{5}} \sqrt{5-x^{2}} d x
\end{aligned} \\
& \begin{aligned}
& \text { Put } x=\sqrt{5} \sin \theta: d x=\sqrt{5} \cos \theta d \theta \\
& \begin{aligned}
\text { U.L }: x & =0 \Rightarrow \theta=0
\end{aligned} \\
&=\sqrt{5} \Rightarrow \theta=\frac{\pi}{2} \\
&=\frac{4}{5} \int_{\theta=0}^{\frac{\pi}{2}} \sqrt{5-5 \sin ^{2} \theta} \sqrt{5} \cos \theta d \theta \\
&=4 \int_{0}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta=4 \frac{1}{2} \frac{\pi}{2}=\pi
\end{aligned}
\end{aligned}
$$

Example : Let $A(m)$ be area bounded by parabola $y=x^{2}+2 x-3$ and the line $y=m x+1$. Find the least area $\mathrm{A}(\mathrm{m})$.
$\begin{array}{ll}\text { Solution. } & \begin{array}{l}\text { Solving we obtain } \\ x^{2}+(2-m) x-4=0\end{array} \\ & \end{array}$
Let α, β be roots $\Rightarrow \alpha+\beta=m-2, \alpha \beta=-4$
$A(m)=\int_{\alpha}^{\beta}\left(m x+1-x^{2}-2 x+3\right) d x \mid$
$2 x-3$ and the line $y=m x+$
$x+1$. the le leas
 8

$$
=\left|\int_{\alpha}^{\beta}\left(-x^{2}+(m-2) x+4\right) d x\right|
$$

$$
=\left|\left(-\frac{x^{3}}{3}+(m-2) \frac{x^{2}}{2}+4 x\right)_{\alpha}^{\beta}\right|
$$

$$
=\left|\frac{\alpha^{3}-\beta^{3}}{3}+\frac{m-2}{2}\left(\beta^{2}-\alpha^{2}\right)+4(\beta-\alpha)\right|
$$

$$
=|\beta-\alpha| \cdot\left|-\frac{1}{3}\left(\beta^{2}+\beta \alpha+\alpha^{2}\right)+\frac{(m-2)}{2}(\beta+\alpha)+4\right|
$$

$$
=\sqrt{(m-2)^{2}+16}\left|-\frac{1}{3}\left((m-2)^{2}+4\right)+\frac{(m-2)}{2}(m-2)+4\right|
$$

$A(m)=\frac{1}{6}\left((m-2)^{2}+16\right)^{3 / 2}$
Leas $A(m)=\frac{1}{6}(16)^{3 / 2}=\frac{32}{3}$.

$$
=\sqrt{(m-2)^{2}+16}\left|\frac{1}{6}(m-2)^{2}+\frac{8}{3}\right|
$$

$\begin{array}{ll}\text { 1. } & \text { Find the area between curve } \mathrm{y}=\mathrm{x}^{2}-3 \mathrm{x} \\ \text { (i) } & \text { (i) bounded between } \mathrm{x}=1 \text { and } \mathrm{x}=2 . \\ \text { (ii) bound between } \mathrm{x}=0 \text { and } \mathrm{x}=2 .\end{array}$
Ans. $\frac{1}{6}$
Ans. 1

