
Oracle on IBM z Systems CPU Reduction Tips April 30, 2015

Mike Zechman - Database Consultant, Convertible Technology, Inc.

Copyright and Trademark Information

- For IBM can be found at <u>http://www.ibm.com/legal/us/en/copytrade.shtml</u>
- For Oracle can be found at <u>http://www.oracle.com/us/legal/index.html</u>
- Any performance results/observations in this presentation are purely for education and planning purposes. No Test results should be construed as indicative of any particular customer workload or benchmark result.

Introduction

- Goal: To share what we've learned in our pursuit to reduce CPU cycle usage over the last 4 5 years
 - Beneficial for Virtual Environment
 - Shares CPU and Memory
 - Can be used in any environment
 - My Customers Service Provider(s)
 - History of why and how we got to this point
 - Last several years CPU Reduction Sessions on SIG Site
 - This session includes some items of previous years, but mostly includes what we have reviewed this past year

Agenda

- Why reduce CPU cycle usage?
- Targeting CPU Usage and Statistics
- CPU Resource Consumption Tips
- CPU Updates (IBM z13, Oracle 12c, Oracle Enterprise Manager)
- Comments/Questions

Why Reduce CPU Usage ?

- Goal: To share what we've learned in our pursuit to reduce CPU cycle usage
 - Money, saving, and not wasting \$'s SAVE MONEY!
 - Helps Performance
 - Helps Service Provider (data center)
 - Helps Customers
 - z/VM manages SUSE Linux Virtual Servers

Service Provider

- Reduce the number of required CPU's
- CPU Physical Cost factor
- Hardware costs
- Software cost/licensing
- Smaller Footprint in Data Center
- COST Per CPU Potential hundred thousand plus per year
- \$ per CPU includes overhead for Service Providers

Customer

- Customer billed by CPU cycle usage
- Customers share Software cost
- Reduce CPU Usage for databases and applications
- Keeps you honest and system tuned
- Some apps are not honest!
- Some are!
- Wide variety of simple and complex solutions

Targeting CPU Usage

- Make sure Oracle database is tuned/goals!
- Requires regular database monitoring.
- Monitor Processes at the Server level
- Target Processes at Server level to reduce CPU usage on the server
- Target Processes at the Database level to reduce CPU

- Gather INDIVIDUAL PROCESS CPU usage statistics (all processes)
- Variety of tools to gather statistics
- Some Free, some not
- We use Velocity software at the z/VM level for process CPU
- Keep CPU usage for each process at 5 minute intervals
- Summarize Top 5 or 10 CPU usage processes by each Server for an hour, every hour, for each day.
- Remainder of process OTHER
- Load Statistics into Oracle Tables
- Created standard SQL's to view statistics

Process Reports

- I1g SELECT PIVOT works great. (SUM, GROUP BY, ROLLUP)
- Target high CPU usage processes
- Surprised at what we FOUND!
- Compare production systems
- Compare test systems
- Compare OS and Database Upgrades

Some Processes

- Oracle was biggest consumer most of the time on Oracle Guests
- Other processes combined were anywhere between 20 to 90% of the CPU usage on a server
- Test Servers Oracle was less
- Production Servers Oracle was more
- Administrative Tasks Use CPU Cycles
- ZIP, GZIP, TAR, RMAN, TAR, Perl, JAVA, BPBKAR, auditd

CPU Resource Consumption Tips

- Oracle was biggest consumer
- Other processes combined were anywhere between 20 to 90% of the CPU usage on a server
- Test Servers Oracle was less
- Production Servers Oracle was more
- Administrative Tasks Use CPU Cycles

Reduce Linux RPM's that are Installed For ORACLE Guests

- Helps reduces the Disk space & the Number of Linux services created.
- Reduces the software updates/bug/security updates that are required.
- Use the Oracle RPM checker
 - Requirements for Installing Oracle Database 12c on RHEL 6 on IBM: Linux on System z (s390x) (Doc ID 1574413.1)
 - -Requirements for Installing Oracle Database 12c on SLES 11 on IBM: Linux on System z (s390x) (Doc ID 1574414.1)
- Oracle 12c database no longer requires the 31-bit s390 libraries

-Oracle client still requires 31-bit libraries (not typically installed on DB server)

13

- Oracle 10.2.0.5 monitoring agent is consuming high cpu
- Per Oracle, Oracle's new 12c Agent consumes less CPU.
- 12c Release 4
- Per Oracle, 12.1.0.4 Agent must less CPU resource intensive

Oracle RMAN Backup Compression

Backup Compression	Backup Time	Compression Size Source DB - 1.29 GB	% Compression / Input MB/s
'Basic' 10gR2	02:48 (168 s)	278.95 MB	78.9 %
(BZIP2) Compression			7.89 MB/s
'High' 11gR2	08:41 (521 s)	224.82 MB	83.0 %
(BZIP2) Compression			2.54 MB/s
'Medium'	01:08 (68 s)	295.53 MB	77.6 %
(ZLIB) Compression			19.46 MB/s
'Low'	00:28 (28 s)	357.03 MB	73.0 %
(LZO) Compression			47.26 MB/s

- RMAN Command -> CONFIGURE COMPRESSION ALGORITHM 'Low'

- Oracle Advanced Compression Feature required for Low, Medium, High

- Very High CPU observed with BZIP2

- Biggest Challenge is to use same strategy for all platforms while reducing CPU
- Originally went to disk, then Veritas offload to Tape

Currently Being Tested

- RMAN Differential Incremental's (0 and 1)
- Oracle Block Change Tracking (BCT) Without it full scan
- Archive REDO Logs
- Direct to NET BACKUP To DATA DOMAIN
- DATA DOMAIN DISK (Compression)
- Allows Mirroring of Backups on Disk

- Oracle's VKTM timer service centralizes time tracking and offloads multiple timer calls from other clients.
- VKTM is responsible for providing a wall-clock time and reference-time counter (updated every 20ms) even when the database is idle for a long time (CPU Idle).

SUSE 10

kernel timer interrupt frequency is approx. 100 Hz

SUSE 11

kernel timer interrupt frequency is approx. 4000 Hz or higher

VKTM – OS Upgrade Reduces CPU Usage

18

OLD SYSTEM (SUSE 10) ps -ef | grep vktm oracle 1534 1 0 08:00 ? 00:00:08 ora_vktm_0XXX oracle 1599 1 0 08:00 ? 00:00:08 ora_vktm_0XXX home/oracle> strace -cp 1534 Process 1534 attached - interrupt to quit Process 1534 detached % time seconds usecs/call calls errors syscall 99.210.1742491116455nanosleep0.790.001393033214gettimeofday 100.00 0.175642 49669 total NEW SYSTEM 1 (SUSE 11) ps -ef | grep vktm oracle 4030 1 0 10:29 ? 00:00:00 ora_vktm_oxxx oracle 4212 3957 0 10:30 pts/1 00:00:00 grep vktm oracle(0140):/home/oracle> strace -cp 4030 Process 4030 attached - i % time seconds usecs/call calls errors syscall 100.00 1.520628 7 218891 nanosleep 4 1 restart_syscall 0.00 0.000004 100.00 1.520632 218892 total

IBM

VKTM with Oracle 12c & 11gR2

IBM

Default Values 11gR2 & 12c:

_disable_highres_ticks False _timer_precision 10

VKTM Changes to Help Reduce CPU***:

_disable_highres_ticks TRUE _timer_precision 2000

*** Get Oracle support approval before using.

% time	seconds	usecs/call	calls	errors syscall
100.00 0.00	0.069437 0.000000		1 25092 1	nanosleep restart_syscall
100.00 19	0.069437	1	25093	total

errors syscall	calls	secs/call	seconds ι	% time
nanosleep restart_syscal	1496 1	1 4	0.002063 0.000004	
tota	1497		0.002067	100.00

- Backups
- Auditing Storing
- Audit data review and storage
- FLASHBACK especially for test system recovery
- Security Hardening and Monitoring We have been doing it for years, but some processes need tweaked/tuned.

IBM

Keep the golden image as lean as possible in terms of processor usage, some of these services can be turned off with chkconfig command:

Red Hat 6.4+

chkconfig iptables off # chkconfig ip6tables off # chkconfig auditd off # chkconfig abrtd off # chkconfig atd off # chkconfig cups off # chkconfig mdmonitor off

Sles 11 sp3+

chkconfig fbset off # chkconfig network-remotefs off # chkconfig postfix off # chkconfig splash off # chkconfig splash_early off # chkconfig smartd off # chkconfig smartd off

IBM

Significant Performance & Security Improvements when upgrading OS Distribution levels:

Red Hat Memory Performance:

	RHEL 5.5	RHEL 6.0	% improvement
Write Speed	1295 MB/s	2019 MB/s	56%
Read Speed	2471 MB/s	7735 MB/s	213%

Red Hat - <u>A Performance Comparison Between RHEL 5 and RHEL 6 on System z</u>

- Virtual Dynamically-linked Shared Object (VDSO) is a shared library provided by the kernel. This allows normal programs to do certain system calls without the usual overhead of system calls like switching address spaces.
- Example by using the new VDSO implementation we have seen six times reduction in the number of function calls.
- Newer Linux distributions (RHEL 5.9 & 6.x, SLES 11) have this feature and it's enabled by default.
- Oracle calls Linux gettimeofday() hundreds of times a second for reporting statistics.
 (Less Oracle Oracle products you install the less number of user calls)
- ■₂By upgrading Linux, VDSO reduces cpu costs, especially in virtualized environments

SQL> execute dbms_stats.gather_system_stats('stop');

run some workload....

Oracle Optimizer Hints

- Oracle calculates the cpu cost for a sql query plan with:
 - number cores (cpu_count)
 - optimizer_mode (all_rows, first_rows etc) and
 - the number of rows and Bytes in table.

Before updating System Statistics

SQL> select * from sys aux_stats\$ where sname='SYSSTATS_MAIN': SQL> select * from sys aux_stats\$ where sname='SYSSTATS_MAIN';

After updating System Statistics

SNAME	RNAME	PVAL1	PVAL2	SNAME	PNAME	PVAL1	PVAL2
SYSSIAIS MAIN SYSSIAIS MAIN SYSSIAIS MAIN SYSSIAIS MAIN SYSSIAIS MAIN SYSSIAIS MAIN SYSSIAIS MAIN	CPUSP IOSEEK IOTERS SREAD MREAD	EEDNW (TIM SPEED	1866.16702 10 4096	SYSSTATS MAIN SYSSTATS MAIN SYSSTATS MAIN SYSSTATS MAIN SYSSTATS MAIN SYSSTATS MAIN	CPUSP IOSEEK IOTERS SREAD MREAD	EEDNW	1866.16702 10 4096 .238 2701
SYSSIATS MAIN SYSSIATS MAIN SQL> execute dbms	MAXTH SLAVE stats.gather_s	THR	p'):	SYSSIATS MAIN SYSSIATS MAIN SYSSIATS MAIN	MBRC MAXTH SLAVE	ere IR IHR	885868544 52770816

Oracle Optimize – Running Statics

exec DBMS_STATS.GATHER_SYSTEM_STATS('NOWORKLOAD');

SYSSTATS_MAIN Linux bogomips per cpu: 3	CPUSPEEDNW	3123
z13: SNAME	PNAME	PVAL1
	CPUSPEEDNW	2613
zEC12: SNAME	PNAME	PVAL1
	CPUSPEEDNW	2335
z196: SNAME	PNAME	PVAL1
SYSSTATS_MAIN Linux bogomips per cpu:	CPUSPEEDNW 6510.00	533
 SNAME 	PNAME	PVAL1

Should be done for hardware upgrades on an idle system for each DB (dynamic)

Linux Huge Pages

Consider Using Linux Huge Pages for Oracle Database Memory

→In general 10-15% can be gained by the reduction in CPU usage as well as more memory for applications that would be otherwise consumed in Linux Page Tables...

procs	memor	·y	swa	ар	·j	.0	-syste	∋m—— -	C	pu-					SKeclaimable:	386028 kB
r b swpc	free	buff ca	ache si	80	bi	Ьо	in	CS l	us isy	id	wa s	st			SUnreclaim:	222484 kB
338 8 17668	20 1096980) 1200	158901132	1	467	11419	721	2140	2724	1 :	93	0	0	7	KernelStack:	<u> 16880 kB </u>
125 13 17670	88 1096700) 1316	158896948	8	135	7199	1092	2227	4262	2 3	91	0	0	7	PageTables:	91964268 kB 🔶 👘
420 4 17673	96 1073704	4 1416	158891792	17	137	18407	25048	5875	11215	i 6	80	- 4	-5	I	NFS_Unstable:	Ú kB
302 5 17675	88 1089200) 1424	158876220	- 3	172	1256	329	1705	1483	0 3	93	0	0	6	Bounce:	0 kB
227 7 17676	52 1088700) 1448	158870652	9	97	4889	361	1987	1926	1 :	92	0	0	7	WritebackTmp:	0 kB
165 16 17677	96 1093696	5 1444	158858216	0	129	3617	605	2205	2874	2 3	91	0	0	7	CommitLimit:	173377556 kB
452 16 17689	80 1074352	2 1480	158858772	35	453	11801	14244	4667	8128	5 :	85	2	2	6	_Committed_AS:	214527304 kB
257 14 17692	04 1096292	2 1276	158828368	5	- 84	1320	505	2066	2657	2 3	91	0	0	7 🎆	<u>VmallocTotal:</u>	134217728 kB
177 6 17691	72 1098028	8 1320	158821092	~ 0	- 20-	-1647	447	1761	1984	2 3	91	0	0	7 🎆	VmallocUsed:	2629972 kB
217 16 17696	00 1095124	4 1364	158816144	19	224	2167	1055	2029	2703	2 3	91	0	0	7 🎆	VmallocChunk:	1314537 <u>96 kB</u>
144 17 17700	68 1088160) 1256	158814320	12	239	1760	659	1884	2295	2 3	91	0	0	7 🎆	HugePages_Total:	Û.
122 11 17715	76 1082412		1,9810608	11	561	1817	868	1862	2049	2 3	92	0	0	7 🎆	HugePages_Free:	0
219 10 17727	68 1073684	4 1260	158807908	- 29	408	2385	863	2200	2916	2 3	91	0	0	7 🎆	HugePages_Rsvd:	0
315 3 20332	92 1076748	3 1152	158561024	100	86901	. 21179	9 87940) 4554	40 332	83	0.9	93	0	0 🎆	HugePages_Surp:	0
				<u> </u>											Hugepagesize:	1024 kB
															∭oracle0cnsiorap;	:/home/oracle>

- Can not use **MEMORY_TARGET** with Huge Pages.
 - Set manually to **SGA_TARGET** not including the **PGA_AGGREGATE_TARGET**.
- Not swappable: Huge Pages are not swappable
- General guideline consider when combined Oracle SGA's are greater than 8 GB (particularly if a lots of connections)
- Decreased page table overhead; more memory can be freed up for other uses. i.e. more Oracle SGA memory, and less physical I/O's (See also Oracle Note: 361468.1)

Recommendation: Use Huge Pages under z/VM

- Under z/VM (which has 4K pages) it's still recommended to use Huge Pages for SGA's > 10GB particularly with many connections
- Saves Memory that would otherwise be used for pagetables
- Stability for user process spikes (avoiding swap)
- Less work to manage smaller number of pagetables
- ~10% improvement (ROT) for memory intensive databases

Oracle Upgrade 11.2.0.4 -> 12.1.0.1 - CPU Intensive Test IBM

18.9% improvement in response time between 11.2.0.4 & 12.1 (cpu intensive test)

	pro	ocs		memo	ory		sw	ap		io	s	ystem-			cpu		
Oracle 11.2.0.4	r	b	swpd	free	buff	cache	si	30		bi	bo i		us s	-			
	0	0		64919572				0	0	8070	73	0	28	1	1 90	_	0
Pupping Parallal Processos: 22	0	0		64919476				0	0	0	19	04		0	0 10		0 0
Running Parallel Processes: 32	32 32	0		64659544 64659172				0	0	188	101 12		914 9 567 1		1 44		
real 0m12.01s	32	ŏ	_	64659172				ŏ	0	0	151		536 1		ŏ		
user 0m0.20s	25	ŏ		64713216				ŏ	ŏ	21	51	04		100	ŏ		0 0
	64	ō	0	64398020		8 14758		ō	ō	171	180	0 6		93		5 0	0
sys 0m0.13s	64	0	0	64398020	20262	8 14758	68	0	0	0	100	0 4	754 1	100	0	0 0	0 0
	64	0	0	64398020	20263	6 14758	68	0	0	21	201	0 4	757 1	100	0	0 0	0 0
Dupping Devalled Dreesesson 64	64	0	0	64398020	20263	6 14758	68	0	0	0	12	0 4	746 1	100	0	0 0	0 0
Running Parallel Processes: 64	64	0	0	64396484	20264	8 14758	68	0	0	4	37	04	749 1	100	0	0 0	0 0
real 0m23.84s	64	0		64396500				0	0	21	32	04		100	0	0 0	0 0
user 0m0.40s	64	0		64396500				0	0	21	17	04		100	0	0 0	0 0
	29	0	-			4 14758		0	0	0	19		967 1		0	~ .	0 0
sys 0m0.26s	0	0	_	64909796				0	0	21	29	04		34	0 60		0
-	0	0	0	64910676	2026/	0 14/50	80	0	0	0	45	04	5/1	0	0 10	10 0	0 0
	pro	cs -		memor	:y		-swa	p		-io	sys	tem		-cpi	1		
Oracle 12.1.0.1	r	b	swpd	free		ache	si	30	b		o in	cs u	з зу	id	wa :	st	
	0	0		64820020				0		8090	73	0 2		1	96	_	D
Running Parallel Processes: 32	0	0		64819800				0	0	43	12	0 436		0		0	0
real 0m10.12s	32 32	0		64571376 64570896				0	0	107 43	116 16		9 56 8 10	, 1	43	0 (0
	28	õ		64600612				0	0	21	156		9 10	_	0 0	0	0
user 0m0.16s	64	õ		64319352				ŏ	ŏ	192	247	0 780		2	5	-	ດັ
sys 0m0.14s	64	0		64317628				0	0	43	33		4 10	o (0 0	0	0
,	64	0	0 (64317212	202312	163281	5	0	0	21	204	0 474	5 10	0 (0 0	0	0
	64	0	0 (64317260	202320	1632820)	0	0	21	35	0 470	5 10	0 (0 0	0	0
Running Parallel Processes: 64	64	0	0 (64316640	202324	1632820)	0	0	43	37	0 473	5 10	0 (0 0	0	0
real 0m20.05s	64	0		64317012				0	0	21	29		5 10	-	0 0	0	0
	55	0		64395324				0	0	43	43		4 10		0_0	0	0
цser 0m0.34s	0	0		64812836				0	0	43	29		8 45	0	55		0
<mark>uşer 0m0.34s</mark> Sys 0m0.27s	0	0	0 (64812852	202344	1632630	2	0	0	21	47	0 435	1 0	0	100	0	0

11.2.0.4 -> 12.1.0.1 - I/O Test

Oracle I/O Calibrate (high I/O) Test:

- Not much change between releases (for this particular I/O test)

	Ora	cle 11.	2.0.4				Oracle 12.1.0.1										
	lat	ency =	s = 3329 = 0 os = 310				max_ic latency max_m										
avg-cpu:	%user 12.56	<pre>%nice 0.00</pre>	-	<pre>%iowait 41.64</pre>	<pre>\$steal 1.92</pre>												
Device: sdz sdba sdcb sdem dm-17	1	rrqm/s 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00	r/s 3029.33 3033.33 2995.00 3033.00 12113.67	0.00 0.00 0.00 0.00	rsec/s 24234.67 24266.67 23986.67 24264.00 96909.33	wsec/s 0.00 0.00 0.00 0.00 0.00	8.01 8.00	vgqu-sz 20.84 14.70 53.64 23.24 113.11	await 6.89 4.89 17.74 7.68 9.31	0.33	<pre>%util 98.00 94.00 99.67 100.00 100.67</pre>					
30																	

Trace File Analyzer Collector (TFA): collects log and trace files from all nodes and products into a single location.

- Written in Java with its own JVM
- Large memory footprint for the heap etc.
- Can be disabled with a single command
- Note: next time you run rootcrs.pl (patching for example) it may reinstall itself.

31

Stop TFA # /etc/init.d/init.tfa stop

Start TFA # /etc/init.d/init.tfa start

Stop and removes related inittab entries # /etc/init.d/init.tfa shutdown

Oracle 12c Trace File Analyzer Disable

Oracle 12c Cluster Verification Utility (CVU) - Disable

Cluster Verification Utility (CVU):

- The CVU tool automatically runs, pointing out configuration issue.
- In Oracle 12.1.0.2, scheduled to run automatically every time the cluster is started and periodically after that.
- The CVU itself and checks use CPU and RAM resources, and are better run manually when such resources are limited.
- It's a quick removal

crs_stat -t

srvctl stop cvu -force

OC4J:

 Every Oracle 12c grid install contains OC4J

Oracle 12c OC4J – Ensure Disabled

- Linux on System z oc4j is disabled by default.
- Ensure oc4j is disabled.

crs_stat -t

Name	Туре	Target	State	Host

oraER.lsnr oraer.type ONLINE ONLINE clone01
oraN1.lsnr oraer.type ONLINE ONLINE clone01
oraN2.Isnr oraer.type ONLINE ONLINE clone01
oraN3.lsnr oraer.type ONLINE ONLINE clone01
ora.OCR2.dg oraup.type ONLINE ONLINE clone01
ora.asm ora.asm.type ONLINE ONLINE clone01
oraSM1.asm application ONLINE ONLINE clone01
ora01.lsnr application ONLINE ONLINE clone01
orae01.ons application ONLINE ONLINE clone01
orae01.vip orat1.type ONLINE ONLINE clone01
ora.cvu ora.cvu.type OFFLINE OFFLINE
oranetwork orark.type ONLINE ONLINE clone01
ora.oc4j ora.oc4j.type OFFLINE OFFLINE
ora.ons ora.ons.type ONLINE ONLINE clone01
ora.scan1.vip oraip.type ONLINE ONLINE clone01
ora.scan2.vip oraip.type ONLINE ONLINE clone01
ora.scan3.vip oraip.type ONLINE ONLINE clone01

 New in Oracle 12.1.0.1+ JIT Compiler for Java Stored Procedures versus interpreted.

Oracle 11.2.0.4

alter session set java_jit_enabled=true; ERROR: ORA-02097: parameter cannot be modified because specified value is invalid

var time_compiled NUMBER; var time_interpreted NUMBER; exec :time_compiled := factorial(20);

alter session set java_jit_enabled=false;

exec :time_interpreted := factorial(20);

INTERP_TIME_MS 2893

JIT_TIME_MS 2856

Oracle 12.1.0.1

alter session set java_jit_enabled=true;

-- Force compile select dbms_java.compile_method ('JITDemo', 'factorial', '(J)J') from dual;

var time_compiled NUMBER; var time_interpreted NUMBER; exec :time_compiled := factorial(20);

alter session set java_jit_enabled=false;

exec :time_interpreted := factorial(20);

INTERP_TIME_MS 4148 JIT_TIME_MS 182

Oracle FIPS 140-2 Security Compliance

- NIST US Government Organization for Security Compliance certifications
- Statement of Direction from Oracle's Advanced Security Team
- Included in 12.1.0.2 release
- 11.2.0.4 -> Patch 19207156: MES BUNDLE ON TOP OF RDBMS 11.2.0.4.2
- FIPS140 Transparent Data Encryption (TDE) activated with parameter:
 - ALTER SYSTEM SET DBFIPS_140 = TRUE;
- FIPS140 Secure Sockets Layer (SSL) activated with SQL*Net parameter:
 - \$ORACLE_HOME/Idap/admin/fips.ora SSLFIPS_140=TRUE

June 2014 Oracle Database 11g Release 2 (including Oracle Advanced Security Option) Statement of Direction for FIPS 140-2 Compliance

DATABASE

ORACLE

Customer Case:

- Running Oracle with Linux on System z since 2010.
- Moved a new workloads to Linux on System z.
- Encountered some unique performance challenges with one Application moving to System z.

Customer Experience Case (pg 2)

Testing new workload with Linux on System z, higher than expected CPU observed in testing.

Source non System z – 4 cpu cores no RAC

Top 5 Timed Foreground Events

Event	Waits	Time(s)	Avg wait (ms)	% DB time	Wait Class
DB CPU		3,060		49.80	
log file sync	308,417	1,746	6	28.43	Commit
direct path read	1,016,061	853	1	13.89	User VO
SQL*Net more data to client	1,953,042	282	0	4.60	Network
db file sequential read	39,396	118	3	1.92	User VO

Host CPU (CPUs: 4 Cores: 4 Sockets: 4)

Load Average Begin	Load Average End	%User	%System	%WIO	%Idle
		17.4	7.0		75.7

Target System z – 1 cpu core w/ RAC

Event	Waits	Time(s)	Avg wait (ms)	% DB time	Wait Class
gc cr block 2-way	462,628	2,246	5	8.94	Cluster
gc buffer busy acquire	122,076	1,172	10	4.67	Cluster
DB CPU		982		3.91	
gc current block 2-way	156,316	923	6	3.67	Cluster
log file sync	70,396	769	11	3.06	Commit

Host CPU (CPUs: 1 Cores: 1 Sockets: 1)

Top 5 Timed Foreground Events

	Load Average Begin				%WIO	%Idle
I	6.00	15.54	66.1	15.7	0.5	13.8

Initial Generic Recommendations:

- Sometimes with highly transactional Oracle RAC databases 4K Oracle block size can help.
 - Considered 4K block region for small indexes and sequences to reduce Interconnect times
- For Oracle RAC databases suggest creating a "service" for distinct workloads
- Oracle sequence caching, pre fetch 1000+ sequences (noorder) on each RAC Cluster node
- Tune SQL & Investigate index compression (pctfree 0) for queries with block contention.

Buffer Gets	Executions	Gets per Exec	%Total	Elapsed Time (s)	%CPU	%IO	SQL Id	SQL Module	SQL Text	
745,786	4,994	149.34	4.65	65.96	1.8	0	az33m61ym46y4	JDBC Thin Client	SELECT NULL AS table_cat, o.ow	
722,860	20	36,143.00	4.51	30.78	2.8	0	2ygr2axb9cxub	JDBC Thin Client	select * from (select detecto	
472,485	13	36,345.00	2.95	12.80	4.4	0	bd6amr4mdfq3y	JDBC Thin Client	select * from (select detecto	

SQL Ordered by Gets (AWR Report)

After Some Data.... Initial Recommendations...

(1) Turn REORDER (VM) off for Large Virtual Memory Oracle Linux guests.

- Reorder can delay the guest for approximately 1 seconds per 8g.
- Recommend turn REORDER off for any Oracle guest 8G or greater.
- Upgrade to z/VM 6.3 (which has re-order turned off automatically)

(2) Oracle Support Recommended -> turn off ASLR (System z Linux kernel parameter – Address Space

- ASLR Linux feature is enabled and it is recommended to disable it by setting kernel.randomize_va_space = 0.
- For it add/modify this parameter in /etc/sysctl.conf kernel.randomize_va_space=0

(3) Increase virtual memory from 8GB to 10GB on each guest

· Observed some Linux swap when running on just one Linux guest

(4) Implement HugePages for better memory management.

- · kernel parameter change, and re-start Oracle instances
- · Reduces the # of pages the kernel must manage and makes the system more efficient

(5) Increase Linux guests from 1 virtual CP to 2 virtual CPs

- Increase share so it can use 2 IFL's if it needs the resources.
- Objective is to get the workload to run; then scale back after we get the a successful run.

(6) Run the workload in a non RAC environment to tune, then implement with Oracle RAC

- Once ran with good performance single-node, then implement the desired 2-node environment to provide the high availability.
- 39

Resolution Steps

Adjusting # of Virtual IFLs from 1 -> 2 reduced Oracle concurrency and overall cpu load

Linux on System z – 2 virtual cpu non RAC

Top 5 Timed Foreground Events

Event	Waits	Time(s)	Avg wait (ms)	% DB time	Wait Class
DB CPU		4,811		67.43	
log file sync	322,112	548	2	7.68	Commit
direct path read	271,759	354	1	4.96	User VO
db file scattered read	24,153	152	6	2.13	User VO
latch: shared pool	774	89	115	1.25	Concurrency

Host CPU (CPUs: 2 Cores: 1 Sockets: 1)

Load Average Begin	Load Average End	%User	%System	%WIO	%Idle
0.71	3.88	45.9	3.8	5.2	49.1

Oracle Parm with 1 Virtual IFL

Parameter	Session Value	Instance Value
_spin_count cpu_count _lm_lms_spin _mutex_spin_count	1 FALSE 255	1 1 FALSE 255

Oracle Parm with 2 Virtual IFL's

Parameter	Sessi	on Value	Instance	Value
_spin_count	2000		2000	
cpu_count	2		2	
_lm_lms_spin	FALSE		FALSE	
_mutex_spin_count	255		255	

An Oracle latch helps prevent two processes from simultaneously updating the same area of the SGA.
 Oracle spin_count parameter is based on # of cpus. _spin_count will wait x# of cpu cycles per Oracle process that has to wait for a latch that is busy.

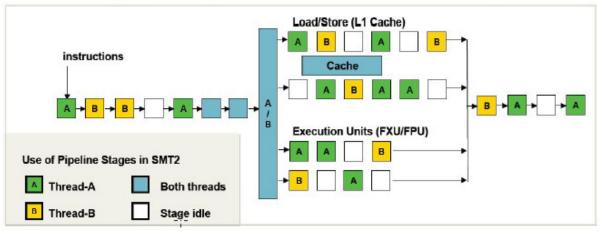
40

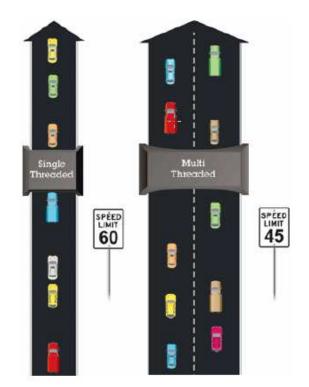
z/VM 6.3 with SMT Enabled

# vmcp q mt					
Multithreading is enabled.					
Requested Activated					
Threads Threads					
MAX_THRE	EADS	MAX	2		
CP core	MAX	1			
IFL core	MAX	2			
ICF core	MAX	1			

MAX

1

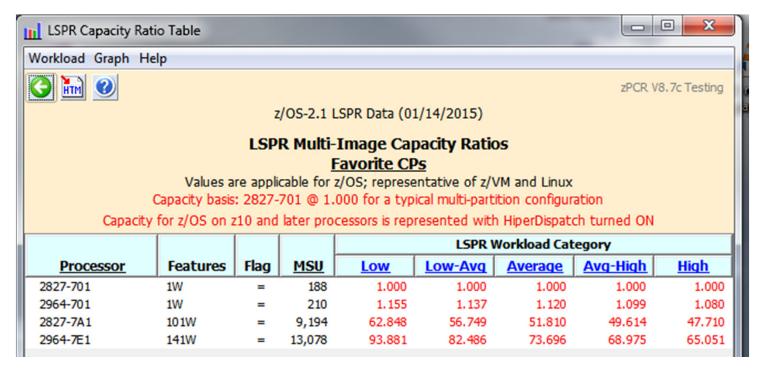

zIIP core


cat /proc/cpuinfo vendor_id : IBM/S390 # processors : 24
bogomips per cpu: 20325.00
features : esan3 zarch stfle msa ldisp eimm dfp etf3eh highgprs processor 0: version = FF, identification = 05DA97, machine = 2964 processor 1: version = FF, identification = 05DA97, machine = 2964 processor 2: version = FF, identification = 05DA97, machine = 2964 processor 3: version = FF, identification = 05DA97, machine = 2964
 processor 22: version = FF, identification = 05DA97, machine = 2964 processor 23: version = FF, identification = 05DA97, machine = 2964

- Oracle is licensed by the # of physical CPU Cores (IFLs) in a Hard Partitioned LPAR.
- With z/VM SMT enabled the number of processors will show as the number of virtual processor threads that have been allocated and is not what is licensed on.

z13 (z/VM with SMT Enabled)

- Double the number of hardware threads per core
 - Independent threads can be more effective utilizing pipeline
- Threads share resources may impact single thread perf
 - Pipeline (eg. physical registers, fxu, fpu, lsu etc)
 - Cache
- Throughput improvement is workload dependent


Which approach is designed for the highest volume of traffic? Which road is faster?

*Illustrative numbers only

IBM

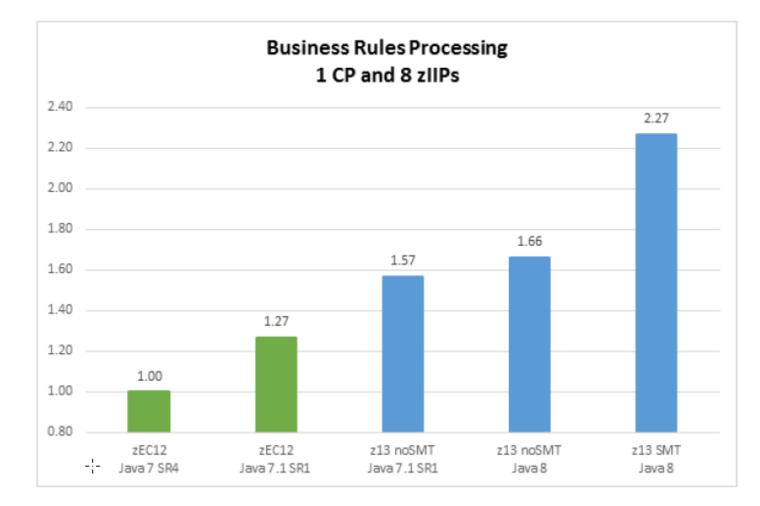
New! - IBM z13 CPU Performance

- IBM
- Published performance improvement with out SMT (threading) is 12% and 32% for workloads that can benefit from SMT.
- SMT Pre-install guidance based on internal testing and eventual field experience (20% for IFLs, 25% for zIIPs)
- For Oracle workloads were seeing performance gains consistent with these z13 SMT performance guidance.

Testing on New z13 with 2 Dedicated IFLs

IBM

Instance Efficiency Percentages (Target 100%)

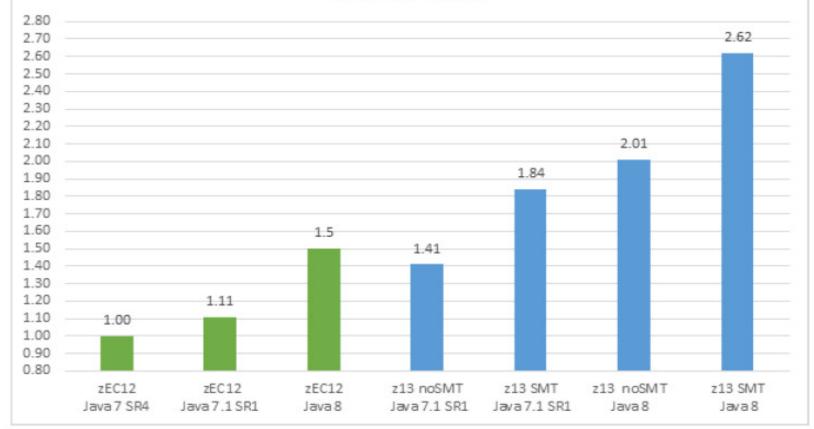

Buffer Nowait %:	100.00 Redo NoWait %:	100.00
Buffer Hit %:	100.00 n-memory Sort %:	100.00
Library Hit %:	99.99 Soft Parse %:	87.07
Execute to Parse %:	99.99 Latch Hit %:	100.00
Parse CPU to Parse Elapsd %:	100.00 % Non-Parse CPU:	99.99
Flash Cache Hit %:	0.00	

Top 10 Foreground Events by Total Wait Time

Event	Waits	Total Wait Time (sec)	Wait Avg(ms)	% DB time	Wait Class
DB CPU		239.6		99.6	
db file sequential read	328	.1	0.33	υ.	User VO
control file sequential read	298	.1	0.36	.0	System VO

- Silly Little Oracle Benchmark (SLOB) (Kevin Closson author)
- Logical I/O (Random memory access to Oracle SGA)
- Want to have 99% + DB CPU and 100% Buffer Hit Ratio for a clean test from Oracle Automatic Workload Repository (AWR) Report.

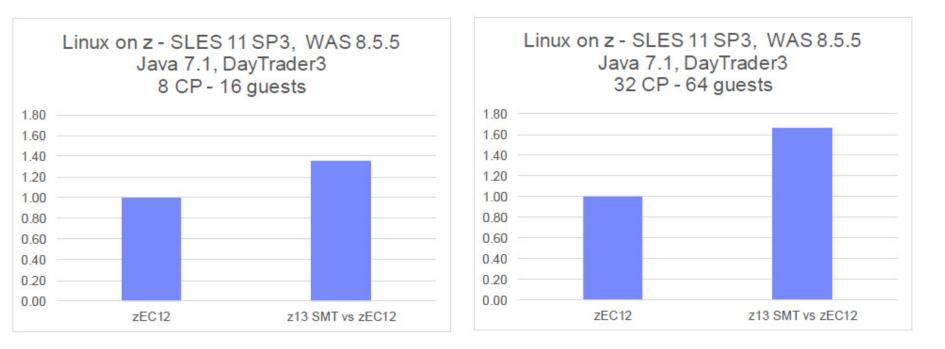
z13 Java Performance Improvements – z/OS


Aggregate 2.27x improvement from IBM Java 8 and IBM z13

IBM

z13 - SSL Performance Improvements

Secure Application Server with SSL (clear key)


1 CP and 4 zIIPs

2.6x improvement in throughput with IBM Java 8 and IBM z13

IBM

z<u>13 – WebSphere Performance Improvements</u> WebSphere – Linux on z Virtualized Cluster

Between 1.36x to 1.66x improved throughput for a virtualized WAS cluster running DayTrader 3.0 on IBM z13 when compared to zEC12

- Helps resolve the Issue of having the Application Team setup (multiple hours) and test each test run.
- Allows the capability to "capture" a production or test workload and replay in test with various configurations.

Replay Information						
Information	Replay	Capture				
Name	REPLAY-ATMSUATO-20140606142341	CAPTURE-OPENTMS-WINUAT-20140515				
Status	COMPLETED	COMPLETED				
Database Name	ATMSUATO	OPENTMS				
Database Version	11.2.0.3.0	11.2.0.3.0				
Start Time	15-05-14 14:21:06	15-05-14 14:21:37				
End Time	15-05-14 15:43:37	15-05-14 15:36:31				
Duration	1 hour 22 minutes 31 seconds	1 hour 14 minutes 54 seconds				

Rei	play	v Inf	form	ation

Replay Statistics

Statistic	Renlav	Canture
DB Time	6988.917 seconds	36918.593 seconds
Average Active Sessions	1.38	8.22
User calls	16901532	16901520

IBM

IBM z13 DEMO

IBI ΥĪ

Questions?

Increase the security of existing applications and address regulatory mandates that call for separation of duties, least privilege, and other preventive controls to ensure data integrity and data privacy. Oracle Database Vault proactively protects application data stored in the Oracle database from being accessed by privileged database users.

Oracle Database Vault 12.1.0.1.0 is certified on IBM: Linux on System z SLES 11

Oracle Database Vault 12.1.0.1.0 is certified on IBM: Linux on System z Red Hat Enterprise Linux 6

Oracle Audit Vault and Database Firewall

Monitor Oracle and non-Oracle database traffic to detect and block threats, as well as improve compliance reporting by consolidating audit data from databases, operating systems, directories, and other sources.

Master Note For Oracle Audit Vault (Doc ID 1199033.1)

Oracle Database Vault & Audit Vault

Oracle Database Vault

DBA vendors select * from finance.vendors

