Atomic Structure and Electron Configurations Multiple Choice

PSI Chemistry

Name:_____

- 1. Rutherford's Nuclear Model of the atom
 - A. is the currently accepted atomic model.
 - B. explains the unique emission spectra of different elements.
 - C. does not account for the stability of most atoms since accelerating electrons would quickly lose energy and fall into the nucleus, causing the atom to collapse.
 - D. Both b and c
- 2. When an excited electron in an atom moves from the ground state, the electron
 - A. absorbs energy as it moves to a higher energy state.
 - B. absorbs energy as it moves to a lower energy state.
 - C. emits energy as it moves to a higher energy state.
 - D. emits energy as it moves to a lower energy state.
 - (NY Regents June 2014)
- 3. During a flame test, a lithium salt produces a characteristic red flame. This red color is produced when electrons in excited lithium atoms
 - A. are lost by the atoms.
 - B. are gained by the atoms.
 - C. return to lower energy states within the atoms.
 - D. move to higher energy states within the atoms.
 - (NY Regents June 2014)
- 4. Bohr's atomic model
 - A. proposes that electrons occupy specific energy levels.
 - B. explains the emission spectra of hydrogen atoms.
 - C. predicts the energy levels of multi-electron atoms.
 - D. Both a and b
- 5. The quantum-mechanical model of the atom
 - A. describes an electron probability distribution that determines the most likely location of an electron.
 - B. is the currently accepted atomic model.
 - C. makes predictions based on Schrodinger's wave equation.
 - D. All of the above

- 6. In the quantum-mechanical model of the atom, which of the following is NOT one of the four quantum numbers needed to specify the probable location of an electron?
 - A. Principal quantum number (n) which describes the energy level/distance from the nucleus
 - B. Heisenberg number (H) which describes the electron's position and momentum.
 - C. Angular quantum number (l) which describes the shape of an electron's orbital
 - D. Magnetic quantum number (mi) which describes the orbitals orientation in space
- 7. The Heisenberg Uncertainty Principle
 - A. assumes that the electrons take positions predicted by Bohr's theory.
 - B. states that the position of an electron can be found by measuring its momentum.
 - C. states that the position and momentum of an electron in an atom cannot be found precisely because measuring the electron changes its momentum.
 - D. both a and b
- 8. In the quantum-mechanical model of the atom, an orbital is defined as a
 - A. region of the most probable proton location.
 - B. region of the most probable electron location.
 - C. circular path traveled by an electron around an orbital.
 - D. circular path traveled by a proton around an orbital.
 - (NY Regents June 2014)

9. _____ orbitals are spherically symmetrical.

A. s	C. d
В. р	D. f

10. _____ orbitals are dumbbell shaped

A.	S	С.	d
B.	р	D.	f

11. s orbitals can have how many different orientationsA. 1B. 3	s in space? C.5 D.7
12. d orbitals can have how many different orientationA. 1B. 3	s in space? C.5 D.7
 13. All orbitals can hold a maximum of electrons A. 1 B. 2 	C. 3 D. 4
14. All of the orbitals in a given electron shell have the quantum number.A. Principal (n)B. Angular (l)	same value for the C. Magnetic (m _l) D. Spin (m _s)
15. The quantum number defines the shape o A. Spin (m _s) B. Magnetic (mı)	f an orbital. C. Principal (n) D. Angular (l)
 16. The n = 1 shell contains p sub-orbitals. All p sub- orbitals. A. 3, 6 B. 0, 3 	l the other shells contain C. 6, 2 D. 3, 3
17. There are orbitals in the second shell. A. 1 B. 2	C. 4 D. 8
18. The lowest energy shell that contains d orbitals is the A. 3B. 2	he shell with n = C. 4 D. 1
19. The principal quantum number of the first d orbital A. 1 B. 2	l is C. 3 D. 4

- 20. Which of the orbitals below do <u>not</u> exist due to the constraints upon the angular quantum number?
 - A. 3f B. 2s

- C. 2p D. all of the above
- 21. Which of the orbitals below do <u>not</u> exist due to the constraints upon the angular quantum number?
 - A. 3f
 C. 3p

 B. 3d
 D. 3s
- 22. Which one of the following is an incorrect orbital notation?
 - A. 4f
 C. 3s

 B. 2d
 D. 2p
- 23. There are ______ sub-orbitals in the 3rd shell. A. 25 C. 9 B. 4 D. 16
- 24. All of the sub-orbitals in a given orbital have the same value of the ______ quantum number.

A. Principal B. Angular	Magnetic A and B
25. The p-orbital can accommodate a maximum of	 electrons.

- A. 6
 C. 10

 B. 2
 D. 3
- 26. How many quantum numbers are necessary to designate a particular electron in an atom?

А.	3	C.	2
B.	4	D.	1

- 27. At a maximum, an f-orbital can hold_____ electrons, a d-orbital can hold_____ electrons and a p-orbital can hold ______ electrons.
 - A. 14, 10, 6 C. 14, 8, 2
 - B. 2, 8, 18 D. 2, 12, 21
- 28. The lowest orbital energy is reached when the number of electrons with the same spin is maximized. This statement describes _____.
 - A. Pauli Exclusion Principle
 - B. Hund's Rule
 - C. deBroglie hypothesis
 - D. Heisenberg Uncertainty Principle
- 29. Which electron configuration correctly denotes an atom in its ground state?

- 30. The word Aufbau means building up in German. The Aufbau Principle describes that
 - A. electrons with the same spin cannot occupy the same orbital.
 - B. Since electrons repel each other, electrons will occupy single orbitals within and energy level before doubling up.
 - C. electrons fill lower energy levels first before occupying higher energy levels.
 - D. None of the above.
- 31. Which ground state electron configuration represents a violation of the Aufbau Principle?

32. Which electron configuration represents a violation of the Pauli Exclusion Principle?

33. Which electron configuration represents a violation of the Pauli Exclusion Principle?

34. Which electron configuration represents a violation of Hund's rule for an atom in its ground state?

35. Which electron configuration represents a violation of Hund's rule for an atom in its ground state?

36. Which one of the following is the correct electron configuration for a ground-state nitrogen atom?

37. Which two elements have the same ground-state electron configuration?

- A. I and S
- B. Cu and Ag
- C. Li and Na
- D. No two elements have the same ground-state electron configuration

38. The ground state electron configuration of Fe is _____.

- A. $1s^2 2s^2 3s^2 3p^6 3d^6$
- B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^6$
- C. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
- $D. \ 1s^2\,2s^2\,2p^6\,3s^2\,3p^6\,4s^2\,4d^6$

39. The ground state electron configuration of Ga is ______.

- A. $1s^2 2s^2 3s^2 3p^6 3d^{10} 4s^2 4p^1$
- B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4d^{10} 4p^1$
- C. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^1$
- D. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4d^1$

40. The 2p orbital in the ground state of atomic Neon contains ______ electrons.

A.	2	С.	8
B.	6	D.	10

41. The second shell in the ground state of atomic Argon contains ______ electrons.

A.	2	С.	8
B.	6	D.	18

42. The _____ orbital is partially filled in the Manganese atom.

A. 3s	C. 4p
B. 4s	D. 3d

MC Answer Key

1. C	20. A	39. C
2. A	21. D	40. B
3. C	22. B	41. C
4. D	23. C	42. D
5. D	24. D	
6. B	25. A	
7. C	26. B	
8. B	27. A	
9. A	28. B	
10. B	29. D	
11. A	30. C	
12. D	31. C	
13. B	32. D	
14. A	33. B	
15. D	34. C	
16. B	35. B	
17. B	36. D	
18. A	37. D	
19. C	38. B	