System Validation 2007/2008 kw4
Lecture 3 - Wednesday, 7 May 2008

Building a

MOde| CheCker‘ 7 May 2008

Theo C. Ruys

http://www.cs.utwente.nl/~ruys/

SV Lectures

.

Announcements

» Due to Whit Monday (‘tweede Pinksterdag’), the deadline
for the SPIN exercises is postponed to

Tuesday, |3 May 2008, 23.59h (was:Mon 12 May)

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

2

| date topic material

I | Mon 14 April | SPIN [Gerth 1997, SPIN QuickRef, Hatcliff 2001]

2 | Mon 21l April | Linear Temporal Logic [Merz 2000]

3 | Wed 7 May Building a Model Checker [Kattenbelt et.al. 2007]

4 | Wed 14 May | Partial Order Reduction [Peled 1999, Flanagan & Godefroid 2005]

5 |Mon 19 May | Hashing [Kuntz & Lampka 2004]

6 |Mon 26 May | Compression [Holzmann 1997]

7 |Mon 9]June | Software Verification [Bvai”sz:;ﬂ;::io;ég;’]ys S anl s Blehi200
Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Overview of lecture 3 4

» Model Checking LTL

» Kripke Structures

» Blchi automaton

» Model checking LTL by language inclusion

» Implementation of a model checker

» Architecture, global algorithm

» Layered Architecture

» ANTLR

» SUMO project

The ‘Model Checking LTL’ part is based
upon [Wolper 2000] and presentations
by Joost-Pieter Katoen and Ralf Huuck.

Theo C.Ruys

Lecture 3 - Building a Model Checker

SV 2007/2008

Model Checking

model

byt 8
pi’gzt;pe FooQ { M
% n - (D % 10; property

od
} [(n < 10) ¢

N/

State space explosion:
exponentially in the Model Checker M ¢

number of parallel
components. / \

yes! no! +

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Safety properties .

(s0) Depth First Search (DFS)

program check(M: model)
foreach s in init(M) do
dfs(s)

oo -
Ly -

proc dfs(s: state)

Properties if error(s) then report error fi

* invariants add s to statespace

° g“:"') assertions foreach successor t of s do

. - . .
ZLLTS if t not in statespace then dfs(t) fi

* dead code

/ od
What about liveness properties? endproc
Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Finite State Automaton ()

> A finite state automaton A is a tuple (2, S, I, =, F) where

» > is an alphabet,

v

S is a finite set of states,

v

| € S is the set of initial states,

» — C Sx2 xSisa labelled transition relation,

» F C Sis the set of accept states.
c b
> ={ab,c}
a ,~ b S ={so, s, s2}
% N @ I = {so}
b F={ss}

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Finite State Automaton -

» Given a finite state automaton A is a tuple (2, S, I, =, F).

» A run is a finite sequence of states 0 = s¢s; ... S5 such that
so € land s; —a;— s+ for all 0 < i < n for some g; € 2.

> Run o is called accepted by A iff s, € F.

> A finite word w = aoa,...an.; € Z* is accepted by A iff there exists an
accepting run o = sosj...s, such that s; —ai— si+; for all 0 < i <n.

» The language accepted by A, denoted by L(A), is the set of finite
words accepted by A, i.e. L(A) = {w € 2* | wis accepted by A }.

c b
some accepted runs: a b
cab —
cabbcab & $J @ L(A) = ckab+(bckab+)*
cabbbbbcabbbb b
Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Model Checking LTL

» Model Checking Problem: M |= ¢

» M is given as a Kripke structure

> & is given in temporal logic

» |dea: model checking as language inclusion checking
» Encode M as an automaton, which accepts L(M)
> Encode ¢ as an automaton, which accepts L(db)

» Check: L(M) € L(d)

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Kripke Structure

» A Kripke structure K is a tuple (S, 1, R, Label) where

» Sis a countable set of states,

v

| € Sis the set of initial states,

v

R € § x Sis a transition relation satisfying,

> Every state has a successor
VseS.(Is'€S.(s5) €R)

v

Label: S = 2”7 is an interpretation function on S.

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Kripke to Automaton

> Let Kripke Structure K = (S, I, R, Label) with Label: S — 2.

» The corresponding automaton A = (2, 8", I’, =, F’), where
b > = AP

> S"=SuU{shwithses
> | = {S}
Thus:
4 =9
F=s ¢ Add an additional initial node s to A.
» — is the smallest relation satisfying * Propositions p are attached to

s —a—s' iff s'eland o = Label(s') lusemilg s

s —a— s" iff (s,s") € Rand a = Label(s") ¢ All nodes in A are accepting.

Runs through A are now words of
“sets of the propositions” of K.)

Example 12

RN

Green Red

A Kripke structure
of a trdffic light.

Yellow
Blinking

{Green}

The corresponding
automaton.

—>® {Green}

{Yellow}

{Yellow} (

{Yellow,
Blinking}

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Semantics of LTL

» A path in K is an infinite sequence of states o =sosi ;...
with (Si, Si+|) e R.

» The semantics of LTL is defined as follows:

1
Q

oo iff a e Label(a[0])

» o= iff not (o |= P)

o= dVvVY iff (cl=P)or(c|=VY)

iff o|=®

iff 3j20.(c'|=W¥and (VO<k<j.o"|=d))

a q
oo
e X
cC &
-€

. where Ofi] denotes the i-th state in the path &
and @' denotes the suffix of O by removing the first i states

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

BlUchi automata

> A Biichi automaton has the same ingredients as the finite
state automaton. Only the acceptance condition is different.

> A infinite trace is accepted by a Biichi automaton when it
visits an accept state infinitely often.

» Infinite words (or w-words) are sequences of symbols
isomorphic to the natural numbers. Precisely, an infinite
word over an alphabet 2 is a mapping w: N = 2.

Because X is finite, this means that certain (sequences of)
symbols will be repeated infinitely often.

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Example)

kick

coffee

Lw(A) = kick* . fill . coffee . (coffee | coffee . kick* . fill . coffee)™

kick* . fill . (coffee . (- | kick* . filly)®

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Example @ l

- |
Al —»OC'—@ Al —>©\/>O

O a
8o o

L(A)) = L(A7) L(A1) # L(A2)
Luw(A1) # Los(A2) Lw(A1) = Lw(A2)

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Model Checking LTL reninde

» Model Checking Problem: M |= ¢

» M is given as a Kripke structure

> & is given in temporal logic

» |dea: model checking as language inclusion checking
» Encode M as an automaton, which accepts L(M)
> Encode ¢ as an automaton, which accepts L(db)

» Check: L(M) € L(d)

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Language Inclusion n

LM) € L(d) LM) £ L(d)

L(d)

L(M) - model executions

L(¢) - sequences satisfying

all sequences

So to check that L(M) € L(d),
we can equivantly check:
LM) N L(P) = D, or L(M)
AvNAy =D L(d)

This is called emptiness checking.

LM) N L(P) # D

Problems to solve n

> So we need to check L(M) N L($) = &
or equivalently: Ay N'Ap =D

» Problems to solve:
I. How to intersect two automata?
2. How to complement an automaton?
3. How to check for emptiness of an automaton?

4. How to translate a LTL formula to an automaton?

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Complementation

» Complementation of automata is hard!

» But if we know how to translate an LTL formula ¢
to a Blichi automaton, we can:

» Build an automaton A for ¢, and complement A, or

> Negate the property, obtaining —d.
(i.e. the sequences that should never occur).
And then build an automaton for —d, i.e. A-4.

We choose this option, so we do not have
to bother with complementation.

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Emptiness checking «

» We need to check if there exists an accepting run
(passes through an accepting state infinitely often).
If no such run exists, then Lw(A) = &.

» Formally: Lw(A) # @ iff there exists so € | and s' € F such
that s' is reachable from sp and s' is reachable from s'.

L(A) is non-empty = A has a reachable
cycle that contains an accept state.

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Emptiness checking o

» Nested DFS

> If there is an accepting run, then it contains at least one accept
state an infinite # of times.

> This state must appear in a cycle.
» So, find a reachable accepting state (DFS) on a cycle.
> How to detect a cycle?
» Find a reachable strongly

connected component (SCC)
with an accepting node.

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

LTL to Buchi

» For any LTL-formula @, a Biichi automaton As over alphabet
> = 2P can be constructed such that
Lu(As) = {o € ()% |0 |= B}

» Ao accepts all traces satisfying ®.

» The number of states in Ae is in O(2/?).

[Wolper, Vardi and Sistla, 1983] See [Wolper 2000] for details.

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Inturtion ()

L(,u = Pw
A’CC:DQP LTL formula: G p

LTL formula: F p

—>8L><C>Qp vap Lw=(EPp (VP
-p

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Intuition) 2

pA—q

qmpCOC(@QPMq

qAp

Lw = ((@ A p)* (p A 1q))®
LTL formula: G ((g A =p) U (p A =q))

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Summary %

Model M Property ¢

|
¢
|

Biichi Automaton A Biichi Automaton A—-q;

N ~

Product automaton

Av ® A-¢

|

Check emptiness

re N

I ”»

yes “no” (+ counter example)

Architecture of a straightforward,
on-the-fly model checker

Automata scheduler 7
 schecuior g pmmm—

explorer

27
e.g.Promela
model property
&= | A
[r
¥ Not needed for C
AST checking safety h
roperties (e.g. o
\2 prop: g
deadlocks). 1
7 =
AST t
Automaton e
generator
compiler i C
A t
u
r
e

A\
verdict + trace to error

SV 2007/2008

Global algorithm - DFS 2

A

o
scheduler
proc dfs(so: state) -\

push so on stack S exerer
while S is not empty do
s « top(S)
if error(s) then report error fi
add s to state store For the state store, typically

a hash table is used:
® addition is fast
® query is fast

foreach successor t of s do
if t not in state store then
push t on stack S

fi
od
od Other, more effective
endproc (iterative) implementations

are possible.

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

SPIN ¢y 2

spin.exe
verifier generator

pan.c pan.h pan.t pan.m pan.b

* defines almost * data types e automata forall forward moves = ¢ backward
all functions * state vector processes (i.e. (C code for moves (C code
eincludes all definition transitions) transitions) for transitions)
other pan files o tables

~
specific to the
model and property

SPIN

>

» SPIN supports many optimisations to tune the verification.

partial order reduction (-DNOREDUCE)

> bitstate hashing (-DBITSTATE
8) The effectiveness of these
» hash compaction (-DHC) advanced and powerful
. . options account for the
» safety verification run (-DSAFETY) popularity of SPIN.
» minimised automaton (-DMA)
» multi-core verification (-DCORE)
» state collapsion (-DCOLLAPSE) Most (if not all) of these
features are controlled
> breath first search (-DBFS) using C compiler options.
» verbose debugging printing (-DVERBOSE) [Hawzire 6l i (i edei
> .
Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

#if NCORE>1 8& defined(FULL_TRAIL) .
if (upto > 0) (typical) fragment
§ Pop_stack_Tree(); of C code in pan.c

#endif
goto Up;

#ifdef CHECK
printf("not seed\n");
#endif

#endif
if (!1(trpt->tau&8)) /* if no atomic move */
{

#ifdef BITSTATE

#ifdef CNTRSTACK
II = bstore((char *)&now, vsize);
trpt->j6 = j1; trpt->j7 = j2;
13 = LL[j1] && LL[2];

The resulting verifier

is fast and tuned to
#else

#ifdef FULLSTACK the maximum.

13 = onstack_now();
#else

#ifndef NOREDUCE) . . But hard to maintain
endif JJ = II; /* worstcase guess for p.o. */ (spaghetti-code) and
#endif imposssible to reuse.
II = bstore((char *)&now, vsize);
#endif
#ifdef MA
II = gstore((char *)&now, vsize, 0);
#ifndef FULLSTACK
JJ) = 1I;
#else
3 = (IT == 2)71:0;
#endif

SV 2007/2008

Modular approach

[Kattenbelt etal. 2007] 32

» Motivation: model checkers are specialised.

» Reusing functionality requires model transformations.

»

>

Most tools use their own formalism.

Typically built from scratch.

> |ldea

>

» Reusable functionality for different models.

» Focus on explicit-state model checking.

Implement functionality generically.

Theo C.Ruys

Lecture 3 - Building a Model Checker

SV 2007/2008

Concept

Theo C.Ruys

Lecture 3 - Building a Model Checker

Tool A
| Promela | Framework
T T I | Promela | | SIR
| Simulator || LTL checker $ $
| Model
Tool B 4 4
| SIR (some Intermediate Representation)
T ' | Simulator | | LTL checker

Reuse through inheritance.)

SV 2007/2008

Generated by
Promela compiler

Generated % Generated
Promela Model "| Promela Process

Tool Layer

Av4 Av4

Abstract * Abstract
Promela Model | Promela Process

Abstract Layer

Av4 Av4
Model Concurrent *
Decorator —D Model Process

Generic Layer

Av/4

A\ 4

Model [Kp——

T

[de Jonge 2008]

Architecture of a straightforward,

on-the-fly model checker

e.g.Promela
model property
e I| N
¥ Not needed for
AST checking safety
\ properties (e.g.
deadlocks).
v
AST
Automaton
generator
compiler i
A
AN DFS stack
explorer
N J
\ 4

verdict + trace to error

A
r
C
h

OISO

SV 2007/2008

Simulation Verification Storage
Techniques Algorithms Techniques S P| nJ
SV 2007/2008
How does a compiler work?
source ;f)l(ix.
program e

lexer

V

token stream

v

Abstract ¢

Sniax AST

Tree *

(several) ‘walks’ -
over the AST evaluate

v

target

IDENT ~ BECOMES NUMBER SEMICOLON ~IDENT ~ BECOMES ~ IDENT

IDENT SEMICOLON IDENT ~BECOMES IDENT ~ MINUS IDENT ~ SEMICOLON

null

_— T

BECOMES BECOMES BECOMES

VN

IDENT NUMBER TDENT PLUS IDENT MINUS
1 z

‘ N

IDENT IDENT IDENT IDENT

x x y x

{x=1,y=2,z=1}

PLUS

i
A
N
T
L
R

(€D

SV 2007/2008

37

ANTLR

http://www.antlr.org/

» ANTLR
> input: language descriptions using EBNF grammar

> output: recognizer for the language

» ANTLR can build recognizers for three kinds of input:
> character streams (i.e. by generating a scanner)
> token streams (i.e. by generating a parser)
> node streams (i.e. by generating a tree walker)

ANTLR uses the same syntax for all its recognizer descriptions.

» ANTLR 3.x
» LL(*) compiler generator

» generates recognizers in Java, C++, C#, Python, etc.

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

ANTLR g

» Documentation on ANTLR

> Getting started with ANTLR3:
http://www.antlr.org/wiki/display/ANTLR3/FAQ+-+Getting+Started

> See also the course on Compiler Construction (Vertalerbouw)
http://fmt.cs.utwente.nl/courses/vertalerbouw
> Lecture 4 gives an extensive introduction to ANTLR3.

> See also the laboratory (‘practicum’) files of week 3 for an complete
compiler, checker and interpreter for a small language (i.e. Calc).

» Book

> Terence Parr.
The Definitive ANTLR Reference.
Pragmatic Bookshelf, 2007.

Hard copy: $36.95
PDF:$24.00

not really needed for
this course though

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

lexer grammar Sumolexer e ANTLR B (55514 | Sumolexerjava
token stream

SumoParser.g

parser grammar SumoParser === @A\ NIRHIY oElscly) SumoParsetjava

AST

SumoChecker.g + SumoCheckerjava

tree grammar SumoChecker Eamad ANTLR Esmrad context checker

AST

Using ANTLR to generate a compiler: P —
program
SumolLexer.g (% R

SumoEncoder.g + SumoEncodenjava @)

tree grammar SumoEncoder —) ANTLR _')
N 1 J
v

target
Lexer and parser specifications are typically rogram
combined in a single grammar file (e.g Sumo.g). prog

SV 2007/2008

ANTLR) 40

ErEaET s x=1; In ANTLR 3, the lexer and
options { Y=X4X; scanner specification can
k=1; z=y-X; be conveniently combined.

output=AST; generate AST

tokens { q . o
RS T «|B either & or B Annotations for building the AST
gEngCOLON = U8 B o+ one or more occurences of & TA make T the root of this rule

=

. MINUS o %= 3 o* zero or more occurences of & = T! ' discard T

program : assign+ EOF! 3

assign : IDENTIFIER BECOMESA expr SEMICOLON! 5 arser rules

expr : operand ((PLUSA | MINUSA) operand)* 8 fmn it lereresal)

operand : IDENTIFIER | NUMBER 5

IDENTIFIER : LETTER (LETTER | DIGIT)* 5 T (tokens)

NUMBER 8 DIGIT+ 8

WS . CU L NE L NFT LN | "\ (start with UPPERCASE letter)

{ $channel=HIDDEN; }

5

fragment DIGIT ¢e'..'9") H
;:ggmz:z tgggs : E.zv é.g : fragment rules are not'turned into tokens
fragment LETTER : LOWER | UPPER

ANTLR) 41 ANTLR @)

Parser grammar

tree grammar VarsWalker; (AR : assign+ EOF! >
assign 8 IDENTIFIER BECOMESA expr SEMICOLON! 8
yeilg program B assign+ EOF! g options { expr 8 operand ((PLUSA | MINUSA) operand)* 3
XX ! assign B IDENTIFIER BECOMESA expr SEMICOLON! 5 tokenVocab=Vars; operand IDENTIFIER | NUMBER]
y=) expr ¢ operand ((PLUSA | MINUSA) operand)* 3 ASTLabelType=CommonTree; =
Z=y-X; operand : IDENTIFIER | NUMBER ; 3}
’ The original tokens A tree parser (walker)
2= o) are used to identify walks over a flattened
private SortedMap<String,Integer> store h d .
null = new TreeMap<String, Integer>(); EE R RS, representation of the AST:
} a tree node stream.
program : assign+
{ System.out.println(store.toString()); 1}
BECOMES BECOMES BECOMES assign : ACBECOMES id=IDENTIFTER val=expr)

{ store.put($id.text,val); }

. Matches a tree whose root is a
/\ expr returns [int val] PLUS token with two children
: z=operand { val=z; that match the expr rule.

}
| ACPLUS x=expr y=expr) { val= }
IDENT NUMBER IDENT PLUS IDENT MINUS | ACMINUS xmexpr ymexpr) 1§ valexey: 1

X 1 y z 5
operand returns [int val]
: id=IDENTIFIER Some additional code is needed

if (!st 5 tainsKey($id.text
IDENT IDENT IDENT IDENT BT R) e e ol e
52 % y 2 val = store.get($id.text); 3} tree parser, of course.
| n=NUMBER See the Calc (or SUMO) source
val = Integer.parseInt($n.text); ¥ files for details.
Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008 ’
&
<
SUMO proj - SUMO proj -1
project (=1 = project . 44
» Develop a state space explorer for the modelling language » Basic grade for SUMO project:

SUMO, a subset of Promela.The explorer should check for

grade | status of implementation

safety properties. SUMO = Simple but Useful MOdelling Language |

Note the <:even implementations that compile

0 | does not compile and do ‘something’ might be rewarded with 0.

. inPUt: system description in SUMO SliEriE Waireilas <5 |does not work correctly on all test files
channels (capacity 1) ~ 4
> output active proctype 26 |works correctly on all test files Bonus points
expressions
> no errors assignment 6 |30% slowest implementations +0.5 shortest counterexample
> error: deadlock / assertion violation R A *05 state compression
. - receive (?) 7 | 40% average implementations +0.5 bitstate hashing + hash compaction
+ trace leading to error state assert +1.0/ other Promela featuires (max +1.0)
if 8 | 30% fastest implementations R .
. - +1.5 partial order reduction
» Implementation language: Java. break 9 | the fastest implementation +2.0 LTL model checking

> The state space explorer should be able to be compiled and
executed on a standard Unix/Linux system. implementation, bad programming style, missing test results, etc.

Beware: grade might be lowered due to flawed design, inefficient

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008 Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

SUMO project) : .

» Working in groups of preferably two (max) students.

» Deadline:VWednesday, | | June 2008 23:5%h (was:Mon 9 june)

» Project should be emailed as a zip-file, containing:
» source code of the project
> test files and results

» small report as PDF-document (< 5 pages), describing the
architecture, design and implementation

» Full description of “SUMO project” can be downloaded
from the SV website on Tuesday, |13 May 2008.

An ANTLR3 grammar of the
SUMO language will be provided.)

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

Possible Approaches ()

AST Explorer

Automata Explorer

Java Explorer

model

|

AST

Perhaps surprisingly, the
implementation effort for

the three approaches is
more-or-less the same.

model

!

AST

|

Automata

!

model

|

AST

Java program

Possible Approaches fal

Apple MacBook (June 2006).

Comparison (in terms of speed) FEEERRE N (1

On basis of a very limited, light weight benchmark set.

tool / implementation language states / sec
SPIN 4.2.9 C 340-10° Limited benchmark set consisting
of 7 SUMO-like models:
NIPS 1.2.7 C 190 - 103 120 - 103 < # states < 1200 - 10°
Spin) (July 2007) Java 120 - 103
Since the ‘competition’
. 103
(fastest) AST Explorer Java 20- 10 ey A———
all explorers have improved.
(fastest) Automata Explorer Java 80- 103 Before, the slowest explorer could
visit less than 100 states/sec.
(fastest) Java Explorer Java 200 - 10°

Typically. On different
benchmarks, of course.

2Ghz Intel Core Duo, 2Gb RAM.

Theo C.Ruys Lecture 3 - Building a Model Checker SV 2007/2008

