
Building a
Model Checker

Theo C. Ruys
http://www.cs.utwente.nl/~ruys/

System Validation 2007/2008 kw4
Lecture 3 - Wednesday, 7 May 2008

SV #3
7 May 2008

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

SV Lectures 2

date topic material

1

2

3

4

5

6

7

Mon 14 April SPIN [Gerth 1997, SPIN QuickRef, Hatcliff 2001]

 Wed 16 April no lecture

Mon 21 April Linear Temporal Logic [Merz 2000]

 Wed 23 April no lecture

Wed 7 May Building a Model Checker [Kattenbelt et.al. 2007]

Wed 14 May Partial Order Reduction [Peled 1999, Flanagan & Godefroid 2005]

Mon 19 May Hashing [Kuntz & Lampka 2004]

Mon 26 May Compression [Holzmann 1997]

 Mon 2 June no lecture

Mon 9 June Software Verification
[Visser et.al. 2003, Ruys & Aan de Brugh 2007,
Ball & Rajamani 2001]

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Announcements

Due to Whit Monday (‘tweede Pinksterdag’), the deadline
for the SPIN exercises is postponed to

Tuesday, 13 May 2008, 23.59h (was: Mon 12 May)

3

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Overview of lecture 3

Model Checking LTL

Kripke Structures

Büchi automaton

Model checking LTL by language inclusion

Implementation of a model checker

Architecture, global algorithm

Layered Architecture

ANTLR

SUMO project

4

The ‘Model Checking LTL’ part is based
upon [Wolper 2000] and presentations
by Joost-Pieter Katoen and Ralf Huuck.

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Model Checking 5

M |=φ
State space explosion:
the state space grows
exponentially in the
number of parallel
components.

Model Checker

yes! no! +

byte n;
proctype Foo() {
 do
 :: n = (n+1) % 10;
 od
}

model

M

[] (n < 10)

property

φ

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Safety properties 6

program check(M: model)

 foreach s in init(M) do

 dfs(s)

 od

end

proc dfs(s: state)

 if error(s) then report error fi

 add s to statespace

 foreach successor t of s do

 if t not in statespace then dfs(t) fi

 od

endproc

• invariants

• (local) assertions

• deadlocks

• dead code

Properties

s0

s1 s4

s2 s3 s5

Depth First Search (DFS)

What about liveness properties?

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Finite State Automaton (1)

A finite state automaton A is a tuple (!, S, I, ", F) where

! is an alphabet,

S is a finite set of states,

I ⊆ S is the set of initial states,

" ⊆ S " ! " S is a labelled transition relation,

F ⊆ S is the set of accept states.

7

s0 s1 s2

c

a b

b

b

! = {a, b, c}

S = {s0, s1, s2}

I = {s0}

F = {s2}

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Finite State Automaton (2)

Given a finite state automaton A is a tuple (!, S, I, ", F).

A run is a finite sequence of states # = s0 s1 ... sn such that
s0 ∈ I and si $ai" si+1 for all 0 ! i < n for some ai ∈ !.

Run # is called accepted by A iff sn ∈ F.

A finite word w = a0a1...an-1 ∈ !* is accepted by A iff there exists an
accepting run # = s0s1...sn such that si $ai" si+1 for all 0 ! i < n.

The language accepted by A, denoted by L(A), is the set of finite

words accepted by A, i.e. L(A) = { w ∈ !* | w is accepted by A }.

8

c b

s0 s1 s2
a b

b

some accepted runs:
cab
cabbcab
cabbbbbcabbbb

L(A) = c!ab+(bc!ab+)!

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Model Checking LTL 9

Model Checking Problem: M |= '

M is given as a Kripke structure

' is given in temporal logic

Idea: model checking as language inclusion checking

Encode M as an automaton, which accepts L(M)

Encode ' as an automaton, which accepts L(')

Check: L(M) ⊆ L(')

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Kripke Structure

A Kripke structure K is a tuple (S, I, R, Label) where

S is a countable set of states,

I ⊆ S is the set of initial states,

R ⊆ S " S is a transition relation satisfying,

Every state has a successor
∀s ∈ S . (∃s' ∈ S . (s, s') ∈ R)

Label: S " 2AP is an interpretation function on S.

10

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Kripke to Automaton

Let Kripke Structure K = (S, I, R, Label) with Label: S " 2AP.

The corresponding automaton A = (!, S%, I%, ", F%), where

! = 2AP

S% = S ∪ {s}, with s ∉ S

I% = {s}

F = S%

" is the smallest relation satisfying
s $&" s'! iff! s' ∈ I and & = Label(s')

s' $&" s''! iff! (s', s'') ∈ R and & = Label(s'')

11

Thus:

• Add an additional initial node s to A.

• Propositions p are attached to
incoming edges.

• All nodes in A are accepting.

Runs through A are now words of
“sets of the propositions” of K.

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Example 12

s0 s1 s2

Green

Yellow

Red

s3
Yellow
Blinking

{Green}

{Yellow}

{Red}

{Yellow,
Blinking}

{Green} {Yellow}
s0 s1 s2s

s3

A Kripke structure
of a traffic light.

The corresponding
automaton.

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Semantics of LTL

A path in K is an infinite sequence of states # = s0 s1 s2 ...
with (si, si+1) ∈ R.

The semantics of LTL is defined as follows:

|= a# iff# a ∈ Label(#[0])

|= ¬(# iff# not (# |= ()

|= (∨)# iff# (# |= () or (# |=))

|= X (# iff# #1 |= (

|= (U)# iff# ∃j $ 0 . (#j |=) and (∀0 ! k < j . #k |= ())

13

where #[i] denotes the i-th state in the path #

and #i denotes the suffix of # by removing the first i states

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Büchi automata 14

A Büchi automaton has the same ingredients as the finite
state automaton. Only the acceptance condition is different.

A infinite trace is accepted by a Büchi automaton when it
visits an accept state infinitely often.

Infinite words (or *-words) are sequences of symbols
isomorphic to the natural numbers. Precisely, an infinite
word over an alphabet ! is a mapping w: N " !.

Because ! is finite, this means that certain (sequences of)
symbols will be repeated infinitely often.

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Example (1) 15

fill

kick

coffee

coffeecoffee

L*(A)!= kick* . fill . coffee . (coffee | coffee . kick* . fill . coffee)*

! = kick* . fill . (coffee . (- | kick* . fill))*

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Example (2) 16

a

a

A1

a

a

A2

L(A1) = L(A2)

L*(A1) " L*(A2)

L(A1) " L(A2)

L*(A1) = L*(A2)

A1

a

a

A2

a

a

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Model Checking LTL 17

Model Checking Problem: M |= '

M is given as a Kripke structure

' is given in temporal logic

Idea: model checking as language inclusion checking

Encode M as an automaton, which accepts L(M)

Encode ' as an automaton, which accepts L(')

Check: L(M) ⊆ L(')

reminder Language Inclusion 18

all sequences

L(') - sequences satisfying '

L(M) - model executions

L(M) ⊆ L(')

L(')

L(M)

L(M) ⊆ L(')%

L(M) ∩ L(') & ∅!
L(')

L(M)

L(')!
This is called emptiness checking.

So to check that L(M) ⊆ L('),

we can equivantly check:

L(M) ∩ L(') = ∅, or

AM ∩ A' = ∅
!
!

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Problems to solve

So we need to check L(M) ∩ L(') = ∅
or equivalently: AM ∩ A' = ∅

Problems to solve:

1. How to intersect two automata?

2. How to complement an automaton?

3. How to check for emptiness of an automaton?

4. How to translate a LTL formula to an automaton?

19

!
!

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Complementation

Complementation of automata is hard!

But if we know how to translate an LTL formula '
to a Büchi automaton, we can:

Build an automaton A for ', and complement A, or

Negate the property, obtaining ¬'.
(i.e. the sequences that should never occur).
And then build an automaton for ¬', i.e. A¬'.

We choose this option, so we do not have
to bother with complementation.

20A'
!

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Emptiness checking (1)!

We need to check if there exists an accepting run
(passes through an accepting state infinitely often).
If no such run exists, then L*(A) = ∅.

Formally: L*(A) & ∅ iff there exists s0 ∈ I and s' ∈ F such

that s' is reachable from s0 and s' is reachable from s'.

21L(A) = ∅

L(A) is non-empty = A has a reachable
cycle that contains an accept state.

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Emptiness checking (2) 22

Nested DFS

If there is an accepting run, then it contains at least one accept
state an infinite # of times.

This state must appear in a cycle.

So, find a reachable accepting state (DFS) on a cycle.

How to detect a cycle?

Find a reachable strongly
connected component (SCC)
with an accepting node.

L(A) = ∅

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

LTL to Büchi 23

For any LTL-formula (, a Büchi automaton A(over alphabet
! = 2AP can be constructed such that
L*(A() = { # ∈ (2AP)* | # |= (}

A(accepts all traces satisfying (.

The number of states in A(is in O(2|(|).

[Wolper, Vardi and Sistla, 1983]

A(

See [Wolper 2000] for details.

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Intuition (1) 24

L* = p*

LTL formula: G p

L* = (¬p)*p (p ∨ ¬p)*

LTL formula: F p

p

p ∨ ¬p
p

¬p

A(

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Intuition (2) 25

L* = ((q ∧ ¬p)* (p ∧ ¬q))*

LTL formula: G ((q ∧ ¬p) U (p ∧ ¬q))

q ∧ ¬p p ∧ ¬q

p ∧ ¬q

q ∧ ¬p

A(

model checker

Summary 26

Büchi Automaton AM Büchi Automaton A¬'

Model M Property '

 ¬'

Check emptiness

“yes” “no” (+ counter example)

Product automaton

 AM ⊗ A¬'

SV 2007/2008

27

Automata

parser

AST

generator

checker

AST

compiler

Architecture of a straightforward,
on-the-fly model checker

Automaton

property
compiler

A
r
c
h
i
t
e
c
t
u
r
e

scheduler
state store

DFS stack
explorer

property

e.g. LTL

model

e.g. Promela

verdict + trace to error

Not needed for
checking safety
properties (e.g.

deadlocks).

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Global algorithm - DFS 28

proc dfs(s0: state)

 push s0 on stack S

 while S is not empty do

 s ! top(S)

 if error(s) then report error fi

 add s to state store

 foreach successor t of s do

 if t not in state store then

 push t on stack S

 fi

 od

 od

endproc

For the state store, typically
a hash table is used:

• addition is fast

• query is fast

Other, more effective
(iterative) implementations
are possible.

scheduler
state store

DFS stack
explorer

29

spin.exe

M |=φ

correct
error

(+ counter example)

pan.c ANSI C

gcc

verifier

simulator verifier generator LTL translator

SPIN (1)

M
model

φ
property

spin.exe

verifier generator

pan.c

• defines almost
all functions

• includes all
other pan files

pan.h

• data types

• state vector
definition

• tables

pan.t

• automata for all
processes (i.e.
transitions)

pan.m

• forward moves
(C code for
transitions)

pan.b

• backward
moves (C code
for transitions)

specific to the
model and property

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

SPIN (2) 30

SPIN supports many optimisations to tune the verification.

partial order reduction (-DNOREDUCE)

bitstate hashing (-DBITSTATE)

hash compaction (-DHC)

safety verification run (-DSAFETY)

minimised automaton (-DMA)

multi-core verification (-DCORE)

state collapsion (-DCOLLAPSE)

breath first search (-DBFS)

verbose debugging printing (-DVERBOSE)

...

Most (if not all) of these
features are controlled

using C compiler options.

Beware of feature interaction!

The effectiveness of these
advanced and powerful
options account for the

popularity of SPIN.

SV 2007/2008

31

#if NCORE>1 && defined(FULL_TRAIL)
! ! ! if (upto > 0)
! ! ! {! Pop_Stack_Tree();
! ! ! }
#endif
! ! ! goto Up;
! ! ! }
#ifdef CHECK
! ! ! printf("not seed\n");
#endif
! ! }
#endif
! ! if (!(trpt->tau&8)) /* if no atomic move */
! ! {
#ifdef BITSTATE
#ifdef CNTRSTACK
! ! ! II = bstore((char *)&now, vsize);
! ! ! trpt->j6 = j1; trpt->j7 = j2;
! ! ! JJ = LL[j1] && LL[j2];
#else
#ifdef FULLSTACK
! ! ! JJ = onstack_now();
#else
#ifndef NOREDUCE
! ! ! JJ = II; /* worstcase guess for p.o. */
#endif
#endif
! ! ! II = bstore((char *)&now, vsize);
#endif
#ifdef MA
! ! ! II = gstore((char *)&now, vsize, 0);
#ifndef FULLSTACK
! ! ! JJ = II;
#else
! ! ! JJ = (II == 2)?1:0;
#endif

(typical) fragment
of C code in pan.c

The resulting verifier
is fast and tuned to

the maximum.

But hard to maintain
(spaghetti-code) and
imposssible to reuse.

S

P

I

N
(3)

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

32Modular approach

Motivation: model checkers are specialised.

Reusing functionality requires model transformations.

Most tools use their own formalism.

Typically built from scratch.

Idea

Implement functionality generically.

Reusable functionality for different models.

Focus on explicit-state model checking.

[Kattenbelt et.al. 2007]

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Concept 33

Tool A

Promela

LTL checkerSimulator

SIR (Some Intermediate Representation)

Simulator

Tool B

SIRPromela

Simulator LTL checker

Model

Framework

Reuse through inheritance.

SV 2007/2008

Generated by
Promela compiler

Tool Layer

Abstract Layer

Generic Layer

34

Model

Verification
Algorithms

Process

Storage
Techniques

Simulation
Techniques

Abstract
Promela Process

Model
Decorator

Concurrent
Model

*

Abstract
Promela Model

*

Generated
Promela Model

Generated
Promela Process

*

SpinJ

S

p

i

n

J

[de Jonge 2008]

SV 2007/2008

35

Architecture of a straightforward,
on-the-fly model checker

A
r
c
h
i
t
e
c
t
u
r
e

Automata

parser

AST

generator

checker

AST

compiler

Automaton

property
compiler

scheduler
state store

DFS stack
explorer

property

e.g. LTL

model

e.g. Promela

verdict + trace to error

Not needed for
checking safety
properties (e.g.

deadlocks).

SV 2007/2008

36
x=1;
y=x+x;
z=y-x;

NUMBERIDENT BECOMES PLUSSEMICOLON

MINUS

BECOMESIDENT IDENT

IDENT SEMICOLON IDENT BECOMES IDENT IDENT SEMICOLON

null

BECOMES

PLUS MINUSIDENT

x

NUMBER
1

IDENT

y

IDENT

z

IDENT

x

BECOMES BECOMES

IDENT

y

IDENT

x

IDENT

x

{x=1,y=2,z=1}

source
program

token stream

AST

target

lexer

parser

evaluate

Abstract
Syntax

Tree

How does a compiler work?

(several) ‘walks’
over the AST

A

N

T

L

R
(1)

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

ANTLR (2)

ANTLR

input: language descriptions using EBNF grammar

output: recognizer for the language

ANTLR can build recognizers for three kinds of input:

character streams (i.e. by generating a scanner)

token streams (i.e. by generating a parser)

node streams (i.e. by generating a tree walker)

ANTLR uses the same syntax for all its recognizer descriptions.

ANTLR 3.x

LL(!) compiler generator

generates recognizers in Java, C++, C#, Python, etc.

37http://www.antlr.org/

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

ANTLR (3)

Documentation on ANTLR

Getting started with ANTLR3:
http://www.antlr.org/wiki/display/ANTLR3/FAQ+-+Getting+Started

See also the course on Compiler Construction (Vertalerbouw)
http://fmt.cs.utwente.nl/courses/vertalerbouw

Lecture 4 gives an extensive introduction to ANTLR3.

See also the laboratory (‘practicum’) files of week 3 for an complete
compiler, checker and interpreter for a small language (i.e. Calc).

Book

Terence Parr.
The Definitive ANTLR Reference.
Pragmatic Bookshelf, 2007.

38

Hard copy: $36.95
PDF: $24.00

not really needed for
this course though

SV 2007/2008

39

source
program

token stream

AST

AST

target
program

lexer

parser

context checker

code generatorANTLR

ANTLR

ANTLR

ANTLRlexer grammar SumoLexer

SumoLexer.g

parser grammar SumoParser

SumoParser.g

tree grammar SumoChecker

SumoChecker.g

tree grammar SumoEncoder

SumoEncoder.g

SumoLexer.java

SumoParser.java

SumoChecker.java

SumoEncoder.java

Lexer and parser specifications are typically
combined in a single grammar file (e.g. Sumo.g).

Using ANTLR to generate a compiler:

A

N

T

L

R
(4)

40

grammar Vars;

options {
 k=1;
 output=AST;
}

tokens {
 BECOMES = '=' ;
 SEMICOLON = ';' ;
 PLUS = '+' ;
 MINUS = '-' ;
}

program : assign+ EOF! ;
assign : IDENTIFIER BECOMES^ expr SEMICOLON! ;
expr : operand ((PLUS^ | MINUS^) operand)* ;
operand : IDENTIFIER | NUMBER ;

IDENTIFIER : LETTER (LETTER | DIGIT)* ;
NUMBER : DIGIT+ ;
WS : (' ' | '\t' | '\f' | '\r' | '\n')+
 { $channel=HIDDEN; }
 ;

fragment DIGIT : ('0'..'9') ;
fragment LOWER : ('a'..'z') ;
fragment UPPER : ('A'..'Z') ;
fragment LETTER : LOWER | UPPER ;

ANTLR (5)

x=1;
y=x+x;
z=y-x;

} parser rules
(start with lowercase letter)

fragment rules are not turned into tokens

Annotations for building the AST

T^

T!

make T the root of this rule

discard T

lexer rules (tokens)
(start with UPPERCASE letter)}

generate AST

In ANTLR 3, the lexer and
scanner specification can

be conveniently combined.

&|+

&+

&*

either & or +

one or more occurences of &

zero or more occurences of &

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

ANTLR (6) 41

x=1;
y=x+x;
z=y-x;

program : assign+ EOF! ;
assign : IDENTIFIER BECOMES^ expr SEMICOLON! ;
expr : operand ((PLUS^ | MINUS^) operand)* ;
operand : IDENTIFIER | NUMBER ;

null

BECOMES

PLUS MINUSIDENT

x

NUMBER
1

IDENT

y

IDENT

z

IDENT

x

BECOMES BECOMES

IDENT

y

IDENT

x

IDENT

x

42

tree grammar VarsWalker;

options {
 tokenVocab=Vars;
 ASTLabelType=CommonTree;
}

@members {
 private SortedMap<String,Integer> store
 = new TreeMap<String,Integer>();
}

program : assign+
 { System.out.println(store.toString()); }
 ;
assign : ^(BECOMES id=IDENTIFIER val=expr)
 { store.put($id.text,val); }
 ;
expr returns [int val]
 : z=operand { val=z; }
 | ^(PLUS x=expr y=expr) { val=x+y; }
 | ^(MINUS x=expr y=expr) { val=x-y; }
 ;
operand returns [int val]
 : id=IDENTIFIER
 { if (!store.containsKey($id.text))

 store.put($id.text, 0);
 val = store.get($id.text); }
 | n=NUMBER
 { val = Integer.parseInt($n.text); }
 ;

ANTLR (7)

program : assign+ EOF! ;
assign : IDENTIFIER BECOMES^ expr SEMICOLON! ;
expr : operand ((PLUS^ | MINUS^) operand)* ;
operand : IDENTIFIER | NUMBER ;

Parser grammar

A tree parser (walker)
walks over a flattened

representation of the AST:
a tree node stream.

The original tokens
are used to identify

the tree nodes.

Matches a tree whose root is a
PLUS token with two children

that match the expr rule.

Some additional code is needed
to connect the lexer, parser and

tree parser, of course.
See the Calc (or SUMO) source

files for details.

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

SUMO project (1)

Develop a state space explorer for the modelling language
SUMO, a subset of Promela. The explorer should check for
safety properties.

input: system description in SUMO

output

no errors

error: deadlock / assertion violation
+ trace leading to error state

Implementation language: Java.

The state space explorer should be able to be compiled and
executed on a standard Unix/Linux system.

43

SUMO = Simple but Useful MOdelling Language

short variables

channels (capacity 1)

active proctype

expressions

assignment

send (!)

receive (?)

assert

if

do

break

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

SUMO project (2)

Basic grade for SUMO project:

44

grade status of implementation

0

! 5

$ 6

6

7

8

9

does not compile

does not work correctly on all test files

works correctly on all test files

30% slowest implementations

40% average implementations

30% fastest implementations

the fastest implementation

Beware: grade might be lowered due to flawed design, inefficient
implementation, bad programming style, missing test results, etc.

+0.5' shortest counterexample

+0.5' state compression

+0.5' bitstate hashing + hash compaction

+1.0' other Promela features (max +1.0!)

+1.5 ' partial order reduction

+2.0 ' LTL model checking

Bonus points

Note the #: even implementations that compile
and do ‘something’ might be rewarded with 0.

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

SUMO project (3)

Working in groups of preferably two (max) students.

Deadline: Wednesday, 11 June 2008 23:59h (was: Mon 9 June)

Project should be emailed as a zip-file, containing:

source code of the project

test files and results

small report as PDF-document (! 5 pages), describing the
architecture, design and implementation

Full description of “SUMO project” can be downloaded
from the SV website on Tuesday, 13 May 2008.

45

An ANTLR3 grammar of the
SUMO language will be provided.

46Possible Approaches (1)

model

Explorer

parser

AST

AST Explorer

Automata

parser

AST

code generator

model

Explorer

Automata Explorer

Java program

parser

AST

code generator

model

library

Explorer

Java Explorer

Perhaps surprisingly, the
implementation effort for
the three approaches is
more-or-less the same.

Theo C. Ruys SV 2007/2008Lecture 3 - Building a Model Checker

Possible Approaches (2) 47

tool / implementation language states / sec

SPIN 4.2.9

NIPS 1.2.7

SpinJ (July 2007)

(fastest) AST Explorer

(fastest) Automata Explorer

(fastest) Java Explorer

JPF / MoonWalker

C 340 (103

C 190 (103

Java 120 (103

Java 20 (103

Java 80 (103

Java 200 (103

Java / C# < 5 (103

Apple MacBook (June 2006).
2Ghz Intel Core Duo, 2Gb RAM.
Mac OS X 10.4.11, Java 1.5.

Typically. On different
benchmarks, of course.

Since the ‘competition’
element, the performance of
all explorers have improved.
Before, the slowest explorer could

visit less than 100 states/sec.

Limited benchmark set consisting
of 7 SUMO-like models:

120 (103 < # states < 1200 (103

Comparison (in terms of speed)
On basis of a very limited, light weight benchmark set.

