General Chemistry 200
Practice Exam 2 Stoichiometry Calculations and Aqueous Systems

Chapter 3 Stoichiometry Calc. \& formulas

1 Chemical Equation
Type of Reactions
2 Atomic and Molc' Wt
AW, MW, FW
\% Composition
3 The mole
4 Empirical Formula determination
Mol. Formula determination
From Combustion Analysis
5 Stoichiometry problems:
Molecules to moles
Mass to moles
Volume to moles
Using the balance equation, moles a to molesb
6 Quantitative Information
Calculating Limiting reagents
Determining the amount of excess
\% yield calculations

1 Solution Composition
Concentrations and Molarity Dilution Calculation
2 Properties of Solution
Aqueous solution (Water)
Ions in Water
Molecules in Water
Electrolytes: Weak electrolytes: nonelectrolytes
3 Acid / Base
4 Ionic Equations
5 Metathesis Reaction
Ppt reaction and solubility table
6 Oxidation - Reduction
Electron transfer through single displacement Activity Series
7 Titration calculations and concepts
The experimental setup
Acid-Base Stoichiometry

Chapter 4 Aqueous Stoichiometry

Conversion information:

System	LENGTH:	VOLUME	MASS	Temperature
English:	$\begin{aligned} & 1 \mathrm{ft}=12 \mathrm{in} \\ & 1 \mathrm{mile}=5280 \mathrm{ft} \end{aligned}$	$\begin{aligned} & 1 \mathrm{gal}=4 \mathrm{qt} \\ & 1 \mathrm{qt}=2 \mathrm{pints} \\ & 1 \mathrm{pt}=16 \mathrm{floz} \\ & \text { foz } \end{aligned}$	$\begin{aligned} & 1 \mathrm{lb}=16 \mathrm{oz} \\ & 1 \text { ton }=2000 \mathrm{lb} \end{aligned}$	$\mathrm{T}_{{ }^{\circ} \mathrm{F}}=1.8 \mathrm{~T}_{{ }^{\text {C }} \text { }}+32$
SI-	$\begin{aligned} & 2.54 \mathrm{~cm}=1 \mathrm{in} \\ & 1.609 \mathrm{~km}=1 \mathrm{mi} \end{aligned}$	$\begin{aligned} & 0.946 \mathrm{~L}=1 \mathrm{qt} \\ & 3.785 \mathrm{~L}=1 \mathrm{gal} \\ & 29.57 \mathrm{~mL}=1 \mathrm{fl} \mathrm{oz} . \end{aligned}$	$\begin{aligned} & 453.6 \mathrm{~g}=1 \mathrm{lb} \\ & 28.35 \mathrm{~g}=1 \mathrm{oz} \\ & 1 \mathrm{~kg}=2.205 \mathrm{lb} \end{aligned}$	$\mathrm{T}_{{ }^{\circ} \mathrm{C}}=\frac{\left(\mathrm{T}_{{ }_{\mathrm{F}}}-32\right)}{1.8}$
Misc. info	1 mole $=6.02 \cdot 10^{23}$		Density $\mathrm{H}_{2} \mathrm{O}: 1.0 \mathrm{~g} / \mathrm{cc}$	

General Solubility Table:

Soluble substances containing -	Exceptions	Insoluble substances	containing -

Soluble - dissolve, no precipitate (aq -phase)
insoluble (or slightly soluble) - does not dissolve, precipitate forms. (s-phase)

1 Combustion of a sulfide of bismuth compound, $\mathrm{Bi}_{\mathrm{X}} \mathrm{S}_{y}(50.00 \mathrm{~g})$ in O_{2} produced 45.30 g of dibismuth trioxide ($\mathrm{Bi}_{2} \mathrm{O}_{3}$).
i) What is the IUPAC compound name, empirical formula and the formula weight of the bismuth sulfide $\left(\mathrm{Bi}_{\mathrm{X}} \mathrm{S}_{\mathrm{y}}\right)$ compound?
ii) What is the oxidation state of the sulfur and the bismuth in this compound?
iii) Suppose in your combustion experiment, the $\mathrm{Bi}_{\mathrm{X}} \mathrm{S}_{\mathrm{y}}$ compound also contained some bismuth oxide impurities, how would this affect the x -value in the empirical formula of $\mathrm{Bi}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}$ (higher or lower and state your reason)?
iv) Suppose instead of producing 45.30 g dibismuth trioxide in the final product of the combustion, 45.30 g of dibismuth pentaoxide is produced instead, how would this affect the y -value in the empirical formula of $\mathrm{Bi}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}$?

2 Balance the following equations.
i) $__{\mathrm{KOH}}^{(\mathrm{aq})}{ }^{+}$ $-\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow$ \qquad $\mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})$
ii) $\quad \ldots \mathrm{C}_{4} \mathrm{H}_{14(\mathrm{l})}+\ldots \mathrm{O}_{2(\mathrm{~g})} \rightarrow \ldots \mathrm{CO}_{2(\mathrm{~g})}+\ldots \ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
iii) $\quad \mathrm{N}_{2} \mathrm{H}_{4(\mathrm{l})}+\ldots \mathrm{O}_{2(\mathrm{~g})} \rightarrow \ldots \mathrm{NO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
iv) $\quad \ldots \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\ldots \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})} \rightarrow \ldots \mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\ldots \ldots \mathrm{CO}_{2(\mathrm{~g})}+\ldots \ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
v) Arsenic(III) oxide + Hydrochloric acid \rightarrow Arsenic(III) chloride + Dihydrogen monoxide
vi) Phosphorus + Bromine \rightarrow Phosphorus tribromide
vii) Calcium carbonate decomposes to calcium oxide and carbon dioxide
viii) Copper(II) sulfate pentahydrate is dehydrated to \qquad $+$ \qquad
Identify the type of reaction above.

A compound of $\mathrm{Ca}, \mathrm{C}, \mathrm{N}$, and S was subjected to quantitative analysis and formula mass determination, and the following data were obtained. A 0.250 g sample was mixed with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to convert all of the Ca to 0.160 g of CaCO_{3}. A 0.0268 g sample of the compound was carried through a series of reactions until all of the S was changed to 0.0802 g of BaSO_{4}. A 0.712 g sample was processed to liberate all of its N as NH_{3}, and $0.155 \mathrm{~g} \mathrm{NH}_{3}$ was obtained. The formula mass was found to be $156 \mathrm{~g} / \mathrm{mol}$. Determine the empirical and molecular formulas of this compound.

2,4,6-Trinitrotoluene (TNT), $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}$, can be prepared by the following two step synthesis:
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{4} \rightarrow \mathrm{C}_{7} \mathrm{H}_{8}+\mathrm{H}_{2}$
$2 \mathrm{C}_{7} \mathrm{H}_{8}+6 \mathrm{NO}_{2} \rightarrow 2 \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}+3 \mathrm{H}_{2}$
If each step in this synthesis gives a 50% yield, how much $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{6}$ (TNT) in grams can be produced starting with 780 g of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$?

Ethyl alcohol (booze), $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, also called grain alcohol, can be made by the fermentation of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, which often comes from starch in grain:
$\ldots \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq}) \rightarrow-\ldots \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+\ldots 2 \mathrm{CO}_{2}(\mathrm{~g})$

Determine the maximum mass (theoretical yield) of ethyl alcohol which could be produced from 750 g of glucose. If 150 L of CO_{2} is collected after the fermentation, what is the \% yield. Density of $\mathrm{CO}_{2}(\mathrm{~g})$ is $1.96 \mathrm{~g} / \mathrm{L}$.

Determine which of the following will dissolve in water, then classify these as
(s) strong electrolyte, (w) weak electrolyte or (n) non-electrolyte.
i) NH_{3}
ii) PbSO_{4}
iii) KHSO_{4}
iv) $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
v) HNO 3
vi) $\mathrm{NH}_{4} \mathrm{OH}$
vii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Explain your answer

Write the net ionic equation for any reaction that occurs upon mixing each pair of solution:
i) silver nitrate and barium chloride
ii) Magnesium sulfate and barium hydroxide
iii) Hydrochloric acid and strontium hydroxide.
iv) Iron(III) sulfide and nitric acid

In each of the following reaction, indicate which metal ion is the stronger oxidizing agent, that is rank each metal Zn, Ag and Pb in order of ease of oxidation. (i.e., Most easily oxidized $>$ next easily oxidize $>$ most difficult to oxidize)
i) $\mathrm{Zn}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
ii) $\mathrm{Pb}(\mathrm{s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$
iii) $\mathrm{Pb}(\mathrm{s})+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{NR}$.

Some sulfuric acid is spilled on a lab bench. It can be neutralized by sprinkling some sodium bicarbonate on to the sulfuric acid. The reaction produces sodium sulfate, carbon dioxide and water.
i) Write the molecular, ionic and net ionic equation and balance the equation (include the phases).
ii) What is the limiting reagent and how much remains if 35 ml of 6.0 M sulfuric acid is spilled and 50 grams of sodium bicarbonate is added?
iii) What is the mass of carbon dioxide gas (g) that is produced ?
iv) How many molecules of carbon dioxide is produced?
v) If 5.00 ml of water is actually produce, what is the $\%$ yield of water?
vi) How many oxygen atoms are involved in this reaction?
vii) If all the liquid is evaporated, what is the mass of sodium sulfate that is produced ?
viii) What is the concentration of sodium sulfate if 20.0 g sodium sulfate is dissolved in the 5.00 ml water?
ix) Suppose potassium hydroxide is substituted for sodium bicarbonate in the above reaction. What mass of potassium hydroxide is required to neutralize 35 ml of 6.0 M sulfuric acid.

Balance the following equations and then answer the questions below.
Potassium permanganate is added to hydrochloric acid to produce
chlorine gas, potassium chloride, manganese(II) chloride and water.
i) How many moles of hydrochloric acid are required to react with 45 grams of potassium permanganate ?
ii) How many chlorine molecules will be produced using 5.0 moles of potassium permanganate ?
iii) To produce 55.0 grams of manganese(II) chloride, what mass of hydrochloric acid is required?
iv) How many moles of water will be produce when 7.00 moles of potassium permanganate is consumed ?
v) What is the maximum weight of chlorine that can be produced by reacting 35.0 g of potassium permanganate with 45.0 g of hydrochloric acid ?
vi) In v (above), if the \%yield of chlorine in the reaction is 76%, how much (g) chlorine was actually recovered?

Consider $\mathbf{1 0 0}$ formula units (or molecules) of each:
a) $\operatorname{Tin}(I V)$ hypoiodite
b) carbon tetraiodide
c) cadmium iodite
i) Which compound contains the largest mass of iodine? How much is this mass in grams?
ii) Which contains the greatest mass of metal atoms? For a 100 unit sample, what is the total of these metal atoms ?
iii) If all three of these substances were mixed and added to water, calculate the total number of ions in solution.

