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Radiosity

1 Form factors

Assume a scene is composed of n patches Pi. A subset of these
patches encloses the scene. Each patch receives light from other
patches and reflects light back into the scene. All reflections are
assumed to be diffuse only. The interaction between patch i and
patch j is given by a form factor fij . It determines how much light
Pi receives from patch Pj :

fij =
light from Pj to Pi

all light from Pj

.

We immediately have:

n∑
i=1

fij = 1; j = 1, . . . , n.

The fij are given by

fij =
1

‖Pi‖

∫
Pi

∫
Pj

cos Φi cosΦjdPj

πr2
(1)

where the meaning of the involved terms is from Figure 1.

In order to motivate (??), assume that Pi has very small area. Then,
again using Figure 1, we would have

fij =
cosΦi cos Φj‖Pj‖

r2
.

From this we arrive at (1) by integrating over the areas of Pi and
Pj . Note that we have

fij‖pi‖ = fji‖Pj‖. (2)

An easier way to determine the form factors is by the use of a
hemicube, a simplified model of a hemisphere. Subdivide each of
the five faces of the hemicube into squares (pixels), resulting in a
total of M pixels. Center the upper half of a cube at a subpatch
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Figure 1: The form factor geometry.

Pi,ρ of Pi such the top is parallel to Pi. We assume that are R such
subpatches.

Now project Pj onto the hemicube. Count all pixels visible from
Pi,ρ. Let the number of these pixels be ni,j,ρ. Keep in mind that
we only count pixels which are not occluded by other objects. We
repeat this for all subpatches Pi,ρ, which means a recentering of the
hemicube. Then

fij =
1

‖Pi‖

R∑
ρ=1

‖Pi,ρ‖nijρ

M

2 Setting up the linear system

Let bi the brightness of patch Pi. Let ei be the amount of light
emitted by Pi, let ρi be the reflectivity of Pi, and let ai be its area.
Now the total intensity of light leaving Pi is given by

aibi = aiei + ρi

n∑
j=0

fijajbj ; i = 1, . . . , n. (3)

The first term gives how much light is emitted by Pi. The second
term collects all contributions from the other patches; the factor ρi

shows how much of that is being reflected by Pi.
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Invoking (2), we may rewrite (3) as

aibi = aiei + ρi

n∑
j=0

fjiaibj ; i = 1, . . . , n

and simplify to

bi = ei + ρi

n∑
j=0

fjibj ; i = 1, . . . , n. (4)

In matrix form:
b = e + RFb (5)

or
e = [I − RF ]b (6)

where R is a diagonal matrix holding the ρi and F is the matrix of
form factors. The matrix I − RF has 1’s on the diagonal since we
can assume fii = 0.

3 Solving the system

This linear system for b may be huge, but it will always be sparse.
For such systems, an iterative solution is most effective. In an itera-
tive scenario, one produces a first guess b0 for b, e.g., by setting all
bi = 0.5. Then a next guess b1 is found from

b1 = e + RFb0

and this process is continued until convergence happens, which is
guaranteed for this scenario. In practice a vector bk is called the
solution if ‖bk −bk−1‖ < ǫ for some tolerance epsilon. This iterative
process is known as Gauss − Jacobi iteration.

In that method, all elements of bk is updated from bk−1 in one step.
A different strategy is usually more effective. Once the first element
of bk has been computed, the second element of bk may be computed
by using this new bk

1
instead of the old bk−1

1
. Similarly, the bk

3
may

be computed using bk
1

and bk
2
. This process of immediate updating

is known as Gauss-Seidel iteration.

The matrix I − RF is strictly diagonally dominant, with all eigen-
values less than unity in absolute value. For such matrices, a power
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expansion exists for the inverse:

[I − RF ]−1 =
∞∑
i=0

[RF ]i.

Thus

b =
∞∑
i=0

[RF ]ie = e + [RF ]e + [RF ]2e + . . .

Each term corresponds to one level of tracking reflections.
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