PRINCE SULTAN UNIVERSITY

Department of Mathematical Sciences

MATH 002 Midterm Examination

Tuesday, 29 November 2005 (051)

Time allowed: 120 minutes

Student Name:	
	_

Student ID number: _____

Section:

- 1. You may use a scientific calculator that does not have programming or graphing capabilities.
- 2. You may NOT borrow a calculator from anyone.
- 3. You may NOT use notes or any textbook.
- 4. There should be NO talking during the examination.
- 5. If your mobile phone is seen or heard, your exam will be taken immediately.
- 6. You must show all your work beside the problem. Be organized.
- 7. You may use the back of the pages for extra space, but be sure to indicate that on the page with the problem.
- 8. This examination has 13 problems, some with several parts. Make sure your paper has all these problems.

Problems	Max points	Student's Points
1, 2, 3	22	
4, 5, 6	18	
7, 8, 9	24	
10, 11	20	
12, 13	16	
Total	100	

- 1. (10 points) Approximate each expression using a calculator. Round your answer to three decimal places.
 - (a) $7^{\sqrt{3}} =$
 - (b) $e^{0.87} =$
 - (c) $\log_{0.3}(19) =$
 - (d) $\sec 55^{\circ} =$

(e)
$$\cos^{-1}\frac{3}{8} =$$

2. (6 points) Graph $f(x) = \log_4 x$ and $g(x) = \log_4 (x-3)$ in the same rectangular coordinate system. Plot at least 2 points. Give the domain of f(x) and g(x).

3. (6 points) Find the **exact** value of $\tan[\cos^{-1}(-\frac{1}{4})]$.

4. (8 points) Solve $e^{2x} - 2e^x - 3 = 0$. Express the solution set in terms of natural logarithms. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.

5. (6 points) Expand log $\left[\frac{10x^2\sqrt[3]{1-x}}{7(x+1)^2}\right]$ as much as possible.

- 6. (4 points) convert each angle in radians to degrees. Round to two decimal places
 - i. 3 radians =

ii.
$$\frac{\pi}{13}$$
 radians =

7. (6 points) Solve for x : $\log_4[\log_3(\log_2 x)] = 0$

8. (12 points) Find the exact value of each expression. Do not use a calculator.

i.
$$\cos 225^{\circ} =$$

ii.
$$\csc \frac{7\pi}{6} =$$

iii.
$$\cot \frac{9\pi}{4} =$$

9. (6 points) Solve the right triangle shown below. Round length to two decimal places and express angles to the nearest tenth of a degree. a = 30.4, c = 50.2

10. (12 points) Verify each identity.

(i)
$$(\cot^2 \theta + 1)(\sin^2 \theta + 1) = \cot^2 \theta + 2$$

(ii)
$$1 - \frac{\sin^2 x}{1 + \cos x} = \cos x$$

(iii)
$$\sin(x + \frac{3\pi}{2}) = -\cos x$$

11.(8 points) Solve the logarithmic equation $\ln \sqrt{x+3} = 1$. Then use a calculator to obtain a decimal approximation, correct to two decimal places, for the solution.

12.(8 points) Solve each of the following equations on the interval $[0, 2\pi)$.

(i) $\cos x - 2\sin x \cos x = 0$, $0 \le x < 2\pi$.

(ii) $\sin 3x = 1$

13. (8 points) Determine the amplitude, period and phase shift of $y = -2\sin \pi x$. Then graph one period of the function. Show the coordinates of the five key points on the graph.