Name:			()	I	Oate:	
9. Volume	tric analy	/sis (Acid-b	ase titrati	<u>on)</u>			
A standard sol by dissolving a	known mass	of	in		to make u	p a known	amount of
solution in a		-	The standar	d solution	can be use	d to dete	rmine the
concentration of							
concentration of	of an unknov	wn solution. Th	is is done by a	dding	Π	Į.	
the standard solution from a into a that contains a known volume (usually					Retort		ette containing ndard solution
20.0 cm ³ or 25.	.0 cm³, meas	sured with a) of	†	#	
the unknown s titration. The co	The titra	ation is stopped	when the ind	icator f the	Conical	/ \	ution of unknown centration and
be determined				·	flask	indi	cator
Conical flasBurette/pipBurette reaThe standa	ipette should ke should be bette should ding: to 2 d. rd solution soft the conica	out: I be rinsed out rinsed out with be read at eye p., Pipette read hould be addec I flask can be fl	deionised wa level. ling: to 1 d.p I while swirlin	ter. g the conic	al flask.	uld this not	affect the
Commonly used Phenolphth Why is phe	nalein –	only used whe	in acid, n the base is i	n the bure	_ in base tte and not in	the conical	flask?
 Methyl ora colour char 			in acid,		in base,		at
 Screened 		ange – blour change.		_ in aci	id,		in base,

<u>Titration procedures to think about:</u>

- The first titration is usually a rough titration.
- The titration is repeated, adding the standard solution dropwise towards the end of the titration.
- The titration should be repeated until at least 2 consistent (+/- 0.10 cm³) results are obtained.
- Readings should be recorded in a table.

Worked example 1:

P is an aqueous solution of sodium hydroxide (NaOH) of concentration 0.250 mol/dm³.

Q is an aqueous solution of hydrochloric acid (HCI).

Calculate the concentration of HC/ based on your titration results.

Titration number	1	2							
Final burette reading / cm ³									
Initial burette reading / cm ³									
Volume of NaOH used / cm ³									
Best titration results ($$)									
Summary									
cm ³ of NaOH required cm ³ of HC <i>I</i> for complete reaction.									
Colour change of indicator from to									
Step 1: Write a balanced equation.									
Step 2: Calculate the number of moles of NaOH used.									
Step 3: Use the mole ratio to determine the number of moles of HC/ present									
Step 4: Calculate the concentration of HCI.									

Worked example 2:

16.80 cm³ of sulfuric acid was required to exactly neutralize 25.0 cm³ of a 0.102 mol/dm³ NaOH solution. Calculate the concentration of the sulfuric acid.

Step 1: Write a balanced equation

Step 2: Calculate the number of moles of NaOH used

Step 3: Use the mole ratio to determine the number of moles of H₂SO₄ present

Step 4: Calculate the concentration of the sulfuric acid

Worked example 3:

A household ammonia solution was analysed to determine its ammonia content. $25.0~\text{cm}^3$ of the ammonia required $21.90~\text{cm}^3$ of $0.110~\text{mol/dm}^3$ sulfuric acid to achieve the end-point of titration. Calculate the concentration, in mol/dm^3 , of the household ammonia solution.

Worked example 4:

16.6 g of a metal carbonate, M_2CO_3 , was made up to 1000 cm³ of aqueous solution. 25.0 cm³ of this solution required 30.00 cm³ of 0.200 mol/dm³ HC/ for complete neutralisation.

- a) Calculate the number of moles of HCI used in this reaction
- b) Write the equation for the reaction between M₂CO₃and HCl.
- c) Calculate the number of moles of M_2CO_3 present in 25.0 cm 3 of solution, and hence, 1 dm 3 of solution.
- d) Calculate the relative molecular mass of M₂CO₃ and the relative atomic mass of M.
- e) Identify the metal M.

Worked example 5:

4 g of an insoluble metal M (that is known to form M^{2+} ions) oxide was added to 100 cm³ of 2.00 mol/dm³ HCl. After all the oxide has reacted, the resulting solution required 40.00 cm³ of 2.50 mol/dm³ NaOH solution for neutralisation. Calculate the molar mass of the metal oxide and hence, identify the element.