| Name: | | | (|) | I | Oate: | | |---|---|---|---|---------------------|-----------------------------|--------------|------------------------------------| | 9. Volume | tric analy | /sis (Acid-b | ase titrati | <u>on)</u> | | | | | A standard sol
by dissolving a | known mass | of | in | | to make u | p a known | amount of | | solution in a | | - | The standar | d solution | can be use | d to dete | rmine the | | concentration of | | | | | | | | | concentration of | of an unknov | wn solution. Th | is is done by a | dding | Π | Į. | | | the standard solution from a into a that contains a known volume (usually | | | | | Retort | | ette containing
ndard solution | | 20.0 cm ³ or 25. | .0 cm³, meas | sured with a | |) of | † | # | | | the unknown s titration. The co | The titra | ation is stopped | when the ind | icator
f the | Conical | / \ | ution of unknown
centration and | | be determined | | | | · | flask | indi | cator | | Conical flasBurette/pipBurette reaThe standa | ipette should ke should be bette should ding: to 2 d. rd solution soft the conica | out: I be rinsed out rinsed out with be read at eye p., Pipette read hould be addec I flask can be fl | deionised wa
level.
ling: to 1 d.p
I while swirlin | ter.
g the conic | al flask. | uld this not | affect the | | Commonly used Phenolphth Why is phe | nalein – | only used whe | in acid,
n the base is i | n the bure | _ in base
tte and not in | the conical | flask? | | Methyl ora
colour char | | | in acid, | | in base, | | at | | Screened | | ange –
blour change. | | _ in aci | id, | | in base, | # <u>Titration procedures to think about:</u> - The first titration is usually a rough titration. - The titration is repeated, adding the standard solution dropwise towards the end of the titration. - The titration should be repeated until at least 2 consistent (+/- 0.10 cm³) results are obtained. - Readings should be recorded in a table. ## Worked example 1: **P** is an aqueous solution of sodium hydroxide (NaOH) of concentration 0.250 mol/dm³. **Q** is an aqueous solution of hydrochloric acid (HCI). Calculate the concentration of HC/ based on your titration results. | Titration number | 1 | 2 | | | | | | | | |--|---|---|--|--|--|--|--|--|--| | Final burette reading / cm ³ | | | | | | | | | | | Initial burette reading / cm ³ | | | | | | | | | | | Volume of NaOH used / cm ³ | | | | | | | | | | | Best titration results ($$) | | | | | | | | | | | Summary | | | | | | | | | | | cm ³ of NaOH required cm ³ of HC <i>I</i> for complete reaction. | | | | | | | | | | | Colour change of indicator from to | | | | | | | | | | | Step 1: Write a balanced equation. | | | | | | | | | | | Step 2: Calculate the number of moles of NaOH used. | | | | | | | | | | | Step 3: Use the mole ratio to determine the number of moles of HC/ present | | | | | | | | | | | Step 4: Calculate the concentration of HCI. | | | | | | | | | | ### Worked example 2: 16.80 cm³ of sulfuric acid was required to exactly neutralize 25.0 cm³ of a 0.102 mol/dm³ NaOH solution. Calculate the concentration of the sulfuric acid. Step 1: Write a balanced equation Step 2: Calculate the number of moles of NaOH used Step 3: Use the mole ratio to determine the number of moles of H₂SO₄ present Step 4: Calculate the concentration of the sulfuric acid ## Worked example 3: A household ammonia solution was analysed to determine its ammonia content. $25.0~\text{cm}^3$ of the ammonia required $21.90~\text{cm}^3$ of $0.110~\text{mol/dm}^3$ sulfuric acid to achieve the end-point of titration. Calculate the concentration, in mol/dm^3 , of the household ammonia solution. ### Worked example 4: 16.6 g of a metal carbonate, M_2CO_3 , was made up to 1000 cm³ of aqueous solution. 25.0 cm³ of this solution required 30.00 cm³ of 0.200 mol/dm³ HC/ for complete neutralisation. - a) Calculate the number of moles of HCI used in this reaction - b) Write the equation for the reaction between M₂CO₃and HCl. - c) Calculate the number of moles of M_2CO_3 present in 25.0 cm 3 of solution, and hence, 1 dm 3 of solution. - d) Calculate the relative molecular mass of M₂CO₃ and the relative atomic mass of M. - e) Identify the metal M. ### Worked example 5: 4 g of an insoluble metal M (that is known to form M^{2+} ions) oxide was added to 100 cm³ of 2.00 mol/dm³ HCl. After all the oxide has reacted, the resulting solution required 40.00 cm³ of 2.50 mol/dm³ NaOH solution for neutralisation. Calculate the molar mass of the metal oxide and hence, identify the element.