

Java Persistence with MyBatis 3

K. Siva Prasad Reddy

Chapter No. 3

"SQL Mappers Using XML"

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO.3 "SQL Mappers Using XML"

A synopsis of the book’s content

Information on where to buy this book

About the Author
K. Siva Prasad Reddy is a Senior Software Engineer living in Hyderabad, India and

has more than six years’ experience in developing enterprise applications with Java

and JavaEE technologies. Siva is a Sun Certified Java Programmer and has a lot of

experience in server-side technologies such as Java, JavaEE, Spring, Hibernate,

MyBatis, JSF (PrimeFaces), and WebServices (SOAP/REST).

Siva normally shares the knowledge he has acquired on his blog www.sivalabs.in.

If you want to find out more information about his work, you can follow him on Twitter

(@sivalabs) and GitHub (https://github.com/sivaprasadreddy).

I would like to thank my wife Neha, as she supported me in every step of the

process and without her, this wouldn’t have been possible. I thank my

parents and my sister for their moral support in helping me complete

this dream.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Java Persistence with MyBatis 3
For many software systems, saving and retrieving data from a database is a crucial part

of the process. In Java land there are many tools and frameworks for implementing the

data persistence layer and each of them follow a different approach. MyBatis, a simple

yet powerful Java persistence framework, took the approach of eliminating the boilerplate

code and leveraging the power of SQL and Java while still providing powerful features.

This MyBatis book will take you through the process of installing, configuring, and using

MyBatis. Concepts in every chapter are explained through simple and practical examples

with step-by-step instructions.

By the end of the book, you will not only gain theoretical knowledge but also gain

hands-on practical understanding and experience on how to use MyBatis in your

real projects.

This book can also be used as a reference or to relearn the concepts that have been

discussed in each chapter. It has illustrative examples, wherever necessary, to

make sure it is easy to follow.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

What This Book Covers
Chapter 1, Getting Started with MyBatis, introduces MyBatis persistence framework

and explains the advantages of using MyBatis instead of plain JDBC. We will also look

at how to create a project, install MyBatis framework dependencies with and without

the Maven build tool, configure, and use MyBatis.

Chapter 2, Bootstrapping MyBatis, covers how to bootstrap MyBatis using XML and

Java API-based configuration. We will also learn various MyBatis configuration

options such as type aliases, type handlers, global settings, and so on.

Chapter 3, SQL Mappers Using XML, goes in-depth into writing SQL mapped

statements using the Mapper XML files. We will learn how to configure simple

statements, statements with one-to-one, one-to-many relationships and mapping

results using ResultMaps. We will also learn how to build dynamic queries, paginated

results, and custom ResultSet handling.

Chapter 4, SQL Mappers Using Annotations, covers writing SQL mapped statements

using annotations. We will learn how to configure simple statements, statements with

one-to-one and one-to-many relationships. We will also look into building dynamic

queries using SqlProvider annotations.

Chapter 5, Integration with Spring, covers how to integrate MyBatis with Spring

framework. We will learn how to install Spring libraries, register MyBatis beans in

Spring ApplicationContext, inject SqlSession and Mapper beans, and use Spring's

annotation-based transaction handling mechanism with MyBatis.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML
Relational databases and SQL are time-tested and proven data storage mechanisms.
Unlike other ORM frameworks such as Hibernate, MyBatis encourages the use of
SQL instead of hiding it from developers, thereby utilizing the full power of SQL
provided by the database server. At the same time, MyBatis eliminates the pain of
writing boilerplate code and makes using SQL easy.

Embedding SQL queries directly inside the code is a bad practice and hard to maintain.
MyBatis confi gures SQL statements using Mapper XML fi les or annotations. In this
chapter, we will see how to confi gure mapped statements in Mapper XML fi les in
detail; we will cover the following topics:

� Mapper XMLs and Mapper interfaces

� Mapped statements

  Configuring INSERT, UPDATE, DELETE, and SELECT statements

� ResultMaps

  Simple ResultMaps

  One-to-one mapping using a nested Select query

  One-to-one mapping using nested results mapping

  One-to-many mapping using a nested Select query

  One-to-many mapping using nested results mapping

� Dynamic SQL

  The If condition

  The choose (when, otherwise) condition

  The trim (where, set) condition

  The foreach loop

� MyBatis recipes

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[48]

Mapper XMLs and Mapper interfaces
In the previous chapters, we have seen some basic examples of how to confi gure
mapped statements in Mapper XML fi les and how to invoke them using the
SqlSession object.

Let us now see how the findStudentById mapped statement can be confi gured in
StudentMapper.xml, which is in the com.mybatis3.mappers package, using the
following code:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE mapper

 PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"

 "http://mybatis.org/dtd/mybatis-3-mapper.dtd">

 <mapper namespace="com.mybatis3.mappers.StudentMapper">

 <select id="findStudentById" parameterType="int"
 resultType="Student">

 select stud_id as studId, name, email, dob from Students where
stud_id=#{studId}

 </select>

</mapper>

We can invoke the mapped statement as follows:

public Student findStudentById(Integer studId)

{

 SqlSession sqlSession = MyBatisUtil.getSqlSession();

 try

 {

 Student student =
sqlSession.selectOne("com.mybatis3.mappers.StudentMapper.
findStudentById", studId);

 return student;

 } finally {

 sqlSession.close();

 }

}

We can invoke mapped statements such as the previous one using string literals
(namespace and statement id), but this exercise is error prone. You need to make
sure to pass the valid input type parameter and assign the result to a valid return
type variable by checking it in the Mapper XML fi le.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[49]

MyBatis provides a better way of invoking mapped statements by using Mapper
interfaces. Once we have confi gured the mapped statements in the Mapper XML
fi le, we can create a Mapper interface with a fully qualifi ed name that is the same as
the namespace and add the method signatures with matching statement IDs, input
parameters, and return types.

For the preceding StudentMapper.xml fi le, we can create a Mapper interface
StudentMapper.java as follows:

package com.mybatis3.mappers;

public interface StudentMapper

{

 Student findStudentById(Integer id);

}

In the StudentMapper.xml fi le, the namespace should be the same as the fully
qualifi ed name of the StudentMapper interface that is com.mybatis3.mappers.
StudentMapper. Also, the statement id, parameterType, and returnType values in
StudentMapper.xml should be the same as the method name, argument type, and
return type in the StudentMapper interface respectively.

Using Mapper interfaces, you can invoke mapped statements in a type safe manner
as follows:

public Student findStudentById(Integer studId)

{

 SqlSession sqlSession = MyBatisUtil.getSqlSession();

 try {

 StudentMapper studentMapper =
sqlSession.getMapper(StudentMapper.class);

 return studentMapper.findStudentById(studId);

 } finally {

 sqlSession.close();

 }

}

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[50]

Even though Mapper interfaces are enabled to invoke mapped statements
in a type safe manner, it is our responsibility to write Mapper interfaces
with correct, matching method names, argument types, and return types.
If the Mapper interface methods do not match the mapped statements
in XML, you will get exceptions at runtime. Actually, specifying
parameterType is optional; MyBatis can determine parameterType by
using Reflection API. But from a readability perspective, it would be
better to specify the parameterType attribute. If the parameterType
 attribute has not been mentioned, the developer will have to switch
between Mapper XML and Java code to know what type of input
parameter is being passed to that statement.

Mapped statements
MyBatis provides various elements to confi gure different types of statements,
such as SELECT, INSERT, UPDATE, and DELETE. Let us see how to confi gure mapped
statements in detail.

The INSERT statement
An INSERT query can be confi gured in a Mapper XML fi le using the <insert>
element as follows:

<insert id="insertStudent" parameterType="Student">

 INSERT INTO STUDENTS(STUD_ID,NAME,EMAIL, PHONE)

 VALUES(#{studId},#{name},#{email},#{phone})

</insert>

Here, we are giving an ID insertStudent that can be uniquely identifi ed along
with the namespace com.mybatis3.mappers.StudentMapper.insertStudent.
The parameterType attribute value should be a fully qualifi ed class name or type
alias name.

We can invoke this statement as follows:

int count =
sqlSession.insert("com.mybatis3.mappers.StudentMapper.insertStuden
t", student);

The sqlSession.insert() method returns the number of rows affected by the
INSERT statement.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[51]

Instead of invoking the mapped statement using namespace and the statement
id, you can create a Mapper interface and invoke the method in a type safe manner
as follows:

package com.mybatis3.mappers;

public interface StudentMapper

{

 int insertStudent(Student student);

}

You can invoke the insertStudent mapped statement as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);

int count = mapper.insertStudent(student);

Autogenerated keys
In the preceding INSERT statement, we are inserting the value for the
STUD_ID column that is an auto_generated primary key column. We can use
the useGeneratedKeys and keyProperty attributes to let the database generate
the auto_increment column value and set that generated value into one of the
input object properties as follows:

<insert id="insertStudent" parameterType="Student"
useGeneratedKeys="true" keyProperty="studId">

 INSERT INTO STUDENTS(NAME, EMAIL, PHONE)

 VALUES(#{name},#{email},#{phone})

</insert>

Here the STUD_ID column value will be autogenerated by MySQL database,
and the generated value will be set to the studId property of the student object.

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);

mapper.insertStudent(student);

Now you can obtain the STUD_ID value of the inserted STUDENT record as follows:

int studentId = student.getStudId();

Some databases such as Oracle don't support AUTO_INCREMENT columns and use
SEQUENCE to generate the primary key values.

Assume we have a SEQUENCE called STUD_ID_SEQ to generate the STUD_ID primary
key values. Use the following code to generate the primary key:

<insert id="insertStudent" parameterType="Student">

 <selectKey keyProperty="studId" resultType="int" order="BEFORE">

 SELECT ELEARNING.STUD_ID_SEQ.NEXTVAL FROM DUAL

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[52]

 </selectKey>

 INSERT INTO STUDENTS(STUD_ID,NAME,EMAIL, PHONE)

 VALUES(#{studId},#{name},#{email},#{phone})

</insert>

Here we used the <selectKey> subelement to generate the primary key value
and stored it in the studId property of the Student object. The attribute
order="BEFORE" indicates that MyBatis will get the primary key value, that is, the
next value from the sequence and store it in the studId property before executing
the INSERT query.

We can also set the primary key value using a trigger where we will obtain the next
value from the sequence and set it as the primary key column value before executing
the INSERT query.

If you are using this approach, the INSERT mapped statement will be as follows:

<insert id="insertStudent" parameterType="Student">

 INSERT INTO STUDENTS(NAME,EMAIL, PHONE)

 VALUES(#{name},#{email},#{phone})

 <selectKey keyProperty="studId" resultType="int" order="AFTER">

 SELECT ELEARNING.STUD_ID_SEQ.CURRVAL FROM DUAL

 </selectKey>

</insert>

The UPDATE statement
An UPDATE statement can be confi gured in the Mapper XML fi le using the <update>
element as follows:

<update id="updateStudent" parameterType="Student">

 UPDATE STUDENTS SET NAME=#{name}, EMAIL=#{email}, PHONE=#{phone}

 WHERE STUD_ID=#{studId}

</update>

We can invoke this statement as follows:

int noOfRowsUpdated =
sqlSession.update("com.mybatis3.mappers.StudentMapper.updateStudent",
student);

The sqlSession.update() method returns the number of rows affected by this
UPDATE statement.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[53]

Instead of invoking the mapped statement using namespace and the statement id, you
can create a Mapper interface and invoke the method in a type safe way as follows:

package com.mybatis3.mappers;

public interface StudentMapper

{

 int updateStudent(Student student);

}

You can invoke the updateStudent statement using the Mapper interface as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);

int noOfRowsUpdated = mapper.updateStudent(student);

The DELETE statement
A DELETE statement can be confi gured in the Mapper XML fi le using the <delete>
element as follows:

<delete id="deleteStudent" parameterType="int">

 DELETE FROM STUDENTS WHERE STUD_ID=#{studId}

</delete>

We can invoke this statement as follows:

int studId =1;

int noOfRowsDeleted =
sqlSession.delete("com.mybatis3.mappers.StudentMapper.deleteStuden
t", studId);

The sqlSession.delete() method returns the number of rows affected by this
delete statement.

Instead of invoking the mapped statement using namespace and the
statement id, you can create a Mapper interface and invoke the method
in a type safe way as follows:

package com.mybatis3.mappers;

public interface StudentMapper

{

 int deleteStudent(int studId);

}

You can invoke the deleteStudent statement using the Mapper interface as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);

int noOfRowsDeleted = mapper.deleteStudent(studId);

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[54]

The SELECT statement
The true power of MyBatis will be known only by fi nding out how fl exible MyBatis
is for mapping SELECT query results to JavaBeans.

Let us see how a simple select query can be confi gured, using the following code:

<select id="findStudentById" parameterType="int"
resultType="Student">

 SELECT STUD_ID, NAME, EMAIL, PHONE

 FROM STUDENTS

 WHERE STUD_ID=#{studId}

</select>

We can invoke this statement as follows:

int studId =1;

Student student = sqlSession.selectOne("com.mybatis3.mappers.
StudentMapper.findStudentById", studId);

The sqlSession.selectOne() method returns the object of the type confi gured for
the resultType attribute. If the query returns multiple rows for the sqlSession.
selectOne() method, TooManyResultsException will be thrown.

Instead of invoking the mapped statement using namespace and the statement id, you
can create a Mapper interface and invoke the method in a type safe manner as follows:

package com.mybatis3.mappers;

public interface StudentMapper

{

 Student findStudentById(Integer studId);

}

You can invoke the findStudentById statement using the Mapper interface
as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);

Student student = mapper.findStudentById(studId);

If you check the property values of the Student object, you will observe that the
studId property value is not populated with the stud_id column value. This is
because MyBatis automatically populates the JavaBeans properties with the column
values that have a matching column name. That is why, the properties name, email,
and phone get populated but the studId property does not get populated.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[55]

To resolve this, we can give alias names for the columns to match with the Java
Beans property names as follows:

<select id="findStudentById" parameterType="int"
resultType="Student">

 SELECT STUD_ID AS studId, NAME,EMAIL, PHONE

 FROM STUDENTS

 WHERE STUD_ID=#{studId}

</select>

Now the Student bean will get populated with all the stud_id, name, email,
and phone columns properly.

Now let us see how to execute a SELECT query that returns multiple rows as shown
in the following code:

<select id="findAllStudents" resultType="Student">

 SELECT STUD_ID AS studId, NAME,EMAIL, PHONE

 FROM STUDENTS

</select>

List<Student> students =
sqlSession.selectList("com.mybatis3.mappers.StudentMapper.findAllS
tudents");

The Mapper interface StudentMapper can also be used as follows:

package com.mybatis3.mappers;

public interface StudentMapper

{

 List<Student> findAllStudents();

}

Using the previous code, you can invoke the findAllStudents statement with the
Mapper interface as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);

List<Student> students = mapper.findAllStudents();

If you observe the preceding SELECT query mappings, we are giving the alias name
for stud_id in all the mapped statements.

Instead of repeating the alias names everywhere, we can use ResultMaps, which we
are going to discuss in a moment.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[56]

Instead of java.util.List, you can also use other types of collections, such as
Set, Map, and SortedSet. Based on the type of the collection, MyBatis will use an
appropriate collection implementation as follows:

� For the List, Collection, or Iterable types, java.util.ArrayList
will be returned

� For the Map type, java.util.HashMap will be returned

� For the Set type, java.util.HashSet will be returned

� For the SortedSet type, java.util.TreeSet will be returned

ResultMaps
ResultMaps are used to map the SQL SELECT statement's results to JavaBeans
properties. We can defi ne ResultMaps and reference this resultMap query from
several SELECT statements. The MyBatis ResultMaps feature is so powerful that you
can use it for mapping simple SELECT statements to complex SELECT statements with
one-to-one and one-to-many associations.

Simple ResultMaps
A simple resultMap query that maps query results to the Student JavaBeans
is as follows:

<resultMap id="StudentResult" type="com.mybatis3.domain.Student">

 <id property="studId" column="stud_id"/>

 <result property="name" column="name"/>

 <result property="email" column="email"/>

 <result property="phone" column="phone"/>

</resultMap>

<select id="findAllStudents" resultMap="StudentResult" >

 SELECT * FROM STUDENTS

</select>

<select id="findStudentById" parameterType="int"
resultMap="StudentResult">

 SELECT * FROM STUDENTS WHERE STUD_ID=#{studId}

</select>

The id attribute of resultMap StudentResult should be unique within the
namespace, and the type should be a fully qualifi ed name or alias name of the
return type.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[57]

The <result> sub-elements are used to map a resultset column to
a JavaBeans property.

The <id> element is similar to <result> but is used to map the identifi er property
that is used for comparing objects.

In the <select> statement, we have used the resultMap attribute instead of
resultType to refer the StudentResult mapping. When a resultMap attribute
is confi gured for a <select> statement, MyBatis uses the column for property
mappings in order to populate the JavaBeans properties.

We can use either resultType or resultMap for a
SELECT mapped statement, but not both.

Let us see another example of a <select> mapped statement showing how to
populate query results into HashMap as follows:

<select id="findStudentById" parameterType="int" resultType="map">

 SELECT * FROM STUDENTS WHERE STUD_ID=#{studId}

</select>

In the preceding <select> statement, we confi gured resultType to be map, that is,
the alias name for java.util.HashMap. In this case, the column names will be the
key and the column value will be the value.

HashMap<String,Object> studentMap = sqlSession.selectOne("com.
mybatis3.mappers.StudentMapper.findStudentById", studId);

System.out.println("stud_id :"+studentMap.get("stud_id"));

System.out.println("name :"+studentMap.get("name"));

System.out.println("email :"+studentMap.get("email"));

System.out.println("phone :"+studentMap.get("phone"));

Let us see another example using resultType="map" that returns multiple rows.

<select id="findAllStudents" resultType="map">

 SELECT STUD_ID, NAME, EMAIL, PHONE FROM STUDENTS

</select>

As resultType="map" and the statement return multiple rows, the fi nal return type
would be List<HashMap<String,Object>> as shown in the following code:

List<HashMap<String,Object>> studentMapList =
sqlSession.selectList("com.mybatis3.mappers.StudentMapper.findAllS
tudents");

for(HashMap<String,Object> studentMap : studentMapList)

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[58]

{

 System.out.println("studId :"+studentMap.get("stud_id"));

 System.out.println("name :"+studentMap.get("name"));

 System.out.println("email :"+studentMap.get("email"));

 System.out.println("phone :"+studentMap.get("phone"));

}

Extending ResultMaps
We can extend one <resultMap> query from another <resultMap> query, thereby
inheriting the column to do property mappings from the one that is being extended.

<resultMap type="Student" id="StudentResult">

 <id property="studId" column="stud_id"/>

 <result property="name" column="name"/>

 <result property="email" column="email"/>

 <result property="phone" column="phone"/>

</resultMap>

<resultMap type="Student" id="StudentWithAddressResult"
extends="StudentResult">

 <result property="address.addrId" column="addr_id"/>

 <result property="address.street" column="street"/>

 <result property="address.city" column="city"/>

 <result property="address.state" column="state"/>

 <result property="address.zip" column="zip"/>

 <result property="address.country" column="country"/>

</resultMap>

The resultMap query with the ID StudentWithAddressResult extends the
resultMap with the ID StudentResult.

Now you can use StudentResult resultMap if you want to map only the Student
data as shown in the following code:

<select id="findStudentById" parameterType="int"
resultMap="StudentResult">

 SELECT * FROM STUDENTS WHERE STUD_ID=#{studId}

</select>

If you want to map the query results with Student along with the Address data, you
can use resultMap with the ID StudentWithAddressResult as follows:

<select id="selectStudentWithAddress" parameterType="int"
resultMap="StudentWithAddressResult">

 SELECT STUD_ID, NAME, EMAIL, PHONE, A.ADDR_ID, STREET, CITY,

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[59]

 STATE, ZIP, COUNTRY

 FROM STUDENTS S LEFT OUTER JOIN ADDRESSES A ON
 S.ADDR_ID=A.ADDR_ID

 WHERE STUD_ID=#{studId}

</select>

One-to-one mapping
In our sample domain model, each student has an associated address. The STUDENTS
table has an ADDR_ID column that is a foreign key to the ADDRESSES table.

The STUDENTS table's sample data is as follows:

STUD_ID NAME E-MAIL PHONE ADDR_ID

1 John john@gmail.
com

123-456-7890 1

2 Paul paul@gmail.
com

111-222-3333 2

The ADDRESSES table's sample data is as follows:

ADDR_ID STREET CITY STATE ZIP COUNTRY

1 Naperville CHICAGO IL 60515 USA

2 Elgin CHICAGO IL 60515 USA

Let us see how to fetch Student details along with Address details.

The Student and Address JavaBeans are created as follows:

public class Address

{

 private Integer addrId;

 private String street;

 private String city;

 private String state;

 private String zip;

 private String country;

 // setters & getters

}

public class Student

{

 private Integer studId;

 private String name;

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[60]

 private String email;

 private PhoneNumber phone;

 private Address address;

 //setters & getters

}

<resultMap type="Student" id="StudentWithAddressResult">

 <id property="studId" column="stud_id"/>

 <result property="name" column="name"/>

 <result property="email" column="email"/>

 <result property="phone" column="phone"/>

 <result property="address.addrId" column="addr_id"/>

 <result property="address.street" column="street"/>

 <result property="address.city" column="city"/>

 <result property="address.state" column="state"/>

 <result property="address.zip" column="zip"/>

 <result property="address.country" column="country"/>

</resultMap>

<select id="selectStudentWithAddress" parameterType="int"

 resultMap="StudentWithAddressResult">

 SELECT STUD_ID, NAME, EMAIL, A.ADDR_ID, STREET, CITY, STATE,
 ZIP, COUNTRY

 FROM STUDENTS S LEFT OUTER JOIN ADDRESSES A ON
 S.ADDR_ID=A.ADDR_ID

 WHERE STUD_ID=#{studId}

</select>

We can set the properties of a nested object using the dot notation. In the preceding
resultMap, Student's address property values are set by address column values
using dot notation. Likewise, we can refer the properties of nested objects to any
depth. We can access the nested object properties as follows:

public interface StudentMapper

{

 Student selectStudentWithAddress(int studId);

}

int studId = 1;

StudentMapper studentMapper =
sqlSession.getMapper(StudentMapper.class);

Student student = studentMapper.selectStudentWithAddress(studId);

System.out.println("Student :"+student);

System.out.println("Address :"+student.getAddress());

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[61]

The preceding example shows one way of mapping a one-to-one association.
However with this approach, if the address results need to be mapped to the
Address object values in other Select mapped statements, we'll need to repeat the
mappings for each statement.

MyBatis provides better approaches for mapping one-to-one associations using the
Nested ResultMap and Nested Select statements, which is what we are going to
discuss next.

One-to-one mapping using nested ResultMap
We can get Student along with the Address details using a nested ResultMap
as follows:

<resultMap type="Address" id="AddressResult">

 <id property="addrId" column="addr_id"/>

 <result property="street" column="street"/>

 <result property="city" column="city"/>

 <result property="state" column="state"/>

 <result property="zip" column="zip"/>

 <result property="country" column="country"/>

</resultMap>

<resultMap type="Student" id="StudentWithAddressResult">

 <id property="studId" column="stud_id"/>

 <result property="name" column="name"/>

 <result property="email" column="email"/>

 <association property="address" resultMap="AddressResult"/>

</resultMap>

<select id="findStudentWithAddress" parameterType="int"
resultMap="StudentWithAddressResult">

 SELECT STUD_ID, NAME, EMAIL, A.ADDR_ID, STREET, CITY, STATE,
ZIP, COUNTRY

 FROM STUDENTS S LEFT OUTER JOIN ADDRESSES A ON
S.ADDR_ID=A.ADDR_ID

 WHERE STUD_ID=#{studId}

</select>

The <association> element can be used to load the has-one type of associations.
In the preceding example, we used the <association> element, referencing another
<resultMap> that is declared in the same XML fi le.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[62]

We can also use <association> with an inline resultMap query as follows:

<resultMap type="Student" id="StudentWithAddressResult">

 <id property="studId" column="stud_id"/>

 <result property="name" column="name"/>

 <result property="email" column="email"/>

 <association property="address" javaType="Address">

 <id property="addrId" column="addr_id"/>

 <result property="street" column="street"/>

 <result property="city" column="city"/>

 <result property="state" column="state"/>

 <result property="zip" column="zip"/>

 <result property="country" column="country"/>

 </association>

</resultMap>

Using the nested ResultMap approach, the association data will be loaded using
a single query (along with joins if required).

One-to-one mapping using nested Select
We can get Student along with the Address details using a nested Select query
as follows:

<resultMap type="Address" id="AddressResult">

 <id property="addrId" column="addr_id"/>

 <result property="street" column="street"/>

 <result property="city" column="city"/>

 <result property="state" column="state"/>

 <result property="zip" column="zip"/>

 <result property="country" column="country"/>

</resultMap>

<select id="findAddressById" parameterType="int"
resultMap="AddressResult">

 SELECT * FROM ADDRESSES WHERE ADDR_ID=#{id}

</select>

<resultMap type="Student" id="StudentWithAddressResult">

 <id property="studId" column="stud_id"/>

 <result property="name" column="name"/>

 <result property="email" column="email"/>

 <association property="address" column="addr_id"
select="findAddressById"/>

</resultMap>

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[63]

<select id="findStudentWithAddress" parameterType="int"
resultMap="StudentWithAddressResult">

 SELECT * FROM STUDENTS WHERE STUD_ID=#{Id}

</select>

In this approach, the <association> element's select attribute is set to the
statement id findAddressById. Here, two separate SQL statements will be executed
against the database, the fi rst one called findStudentById to load student details
and the second one called findAddressById to load its address details.

The addr_id column value will be passed as input to the
selectAddressById statement.

We can invoke the findStudentWithAddress mapped statement as follows:

StudentMapper mapper = sqlSession.getMapper(StudentMapper.class);

Student student = mapper.selectStudentWithAddress(studId);

System.out.println(student);

System.out.println(student.getAddress());

One-to-many mapping
In our sample domain model, a tutor can teach one or more courses. This means that
there is a one-to-many relationship between the tutor and course.

We can map one-to-many types of results to a collection of objects using the
<collection> element.

The TUTORS table's sample data is as follows:

TUTOR_ID NAME EMAIL PHONE ADDR_ID

1 John john@gmail.
com

123-456-7890 1

2 Ying ying@gmail.
com

111-222-3333 2

The COURSES table's sample data is as follows:

COURSE_ID NAME DESCRIPTION START_DATE END_DATE TUTOR_
ID

1 JavaSE Java SE 2013-01-10 2013-02-10 1

2 JavaEE JavaEE6 2013-01-10 2013-03-10 2

3 MyBatis MyBatis 2013-01-10 2013-02-20 2

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[64]

In the preceding table data, the tutor John teaches one course whereas the tutor Ying
teaches two courses.

The JavaBeans for Course and Tutor are as follows:

public class Course

{

 private Integer courseId;

 private String name;

 private String description;

 private Date startDate;

 private Date endDate;

 private Integer tutorId;

 //setters & getters

}

public class Tutor

{

 private Integer tutorId;

 private String name;

 private String email;

 private Address address;

 private List<Course> courses;

 /setters & getters

}

Now let us see how we can get the tutor's details along with the list of courses
he/she teaches.

The <collection> element can be used to map multiple course rows to a list
of course objects. Similar to one-to-one mapping, we can map one-to-many
relationships using a nested ResultMap and nested Select approaches.

One-to-many mapping with nested ResultMap
We can get the tutor along with the courses' details using a nested ResultMap
as follows:

<resultMap type="Course" id="CourseResult">

 <id column="course_id" property="courseId"/>

 <result column="name" property="name"/>

 <result column="description" property="description"/>

 <result column="start_date" property="startDate"/>

 <result column="end_date" property="endDate"/>

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[65]

</resultMap>

<resultMap type="Tutor" id="TutorResult">

 <id column="tutor_id" property="tutorId"/>

 <result column="tutor_name" property="name"/>

 <result column="email" property="email"/>

 <collection property="courses" resultMap="CourseResult"/>

</resultMap>

<select id="findTutorById" parameterType="int"
resultMap="TutorResult">

 SELECT T.TUTOR_ID, T.NAME AS TUTOR_NAME, EMAIL, C.COURSE_ID,
 C.NAME, DESCRIPTION, START_DATE, END_DATE

 FROM TUTORS T LEFT OUTER JOIN ADDRESSES A ON T.ADDR_ID=A.ADDR_ID

 LEFT OUTER JOIN COURSES C ON T.TUTOR_ID=C.TUTOR_ID

 WHERE T.TUTOR_ID=#{tutorId}

</select>

Here we are fetching the tutor along with the courses' details using a single Select
query with JOINS. The <collection> element's resultMap is set to the resultMap
ID CourseResult that contains the mapping for the Course object's properties.

One-to-many mapping with nested select
We can get the tutor along with the courses' details using a nested select query
as follows:

<resultMap type="Course" id="CourseResult">

 <id column="course_id" property="courseId"/>

 <result column="name" property="name"/>

 <result column="description" property="description"/>

 <result column="start_date" property="startDate"/>

 <result column="end_date" property="endDate"/>

</resultMap>

<resultMap type="Tutor" id="TutorResult">

 <id column="tutor_id" property="tutorId"/>

 <result column="tutor_name" property="name"/>

 <result column="email" property="email"/>

 <association property="address" resultMap="AddressResult"/>

 <collection property="courses" column="tutor_id"
select="findCoursesByTutor"/>

 </resultMap>

<select id="findTutorById" parameterType="int"

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[66]

resultMap="TutorResult">

 SELECT T.TUTOR_ID, T.NAME AS TUTOR_NAME, EMAIL

 FROM TUTORS T WHERE T.TUTOR_ID=#{tutorId}

 </select>

<select id="findCoursesByTutor" parameterType="int"
resultMap="CourseResult">

 SELECT * FROM COURSES WHERE TUTOR_ID=#{tutorId}

</select>

In this approach, the <association> element's select attribute is set to the
statement ID findCoursesByTutor that triggers a separate SQL query to load
the courses' details. The tutor_id column value will be passed as input to the
findCoursesByTutor statement.

public interface TutorMapper

{

 Tutor findTutorById(int tutorId);

}

TutorMapper mapper = sqlSession.getMapper(TutorMapper.class);

Tutor tutor = mapper.findTutorById(tutorId);

System.out.println(tutor);

List<Course> courses = tutor.getCourses();

for (Course course : courses)

{

 System.out.println(course);

}

A nested select approach may result in N+1 select problems. First, the
main query will be executed (1), and for every row returned by the fi rst
query, another select query will be executed (N queries for N rows). For
large datasets, this could result in poor performance.

Dynamic SQL
Sometimes, static SQL queries may not be suffi cient for application requirements.
We may have to build queries dynamically, based on some criteria.

For example, in web applications there could be search screens that provide one
or more input options and perform searches based on the chosen criteria. While
implementing this kind of search functionality, we may need to build a dynamic
query based on the selected options. If the user provides any value for input criteria,
we'll need to add that fi eld in the WHERE clause of the query.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[67]

MyBatis provides fi rst-class support for building dynamic SQL queries using
elements such as <if>, <choose>, <where>, <foreach>, and <trim>.

The If condition
The <if> element can be used to conditionally embed SQL snippets. If the test
condition is evaluated to true, then only the SQL snippet will be appended to
the query.

Assume we have a Search Courses Screen that has a Tutor dropdown, the CourseName
text fi eld, and the StartDate and End Date input fi elds as the search criteria.

Assume that Tutor is a mandatory fi eld and that the rest of the fi elds are optional.

When the user clicks on the search button, we need to display a list of courses that
meet the following criteria:

� Courses by the selected Tutor

� Courses whose name contain the entered course name; if nothing has been
provided, fetch all the courses

� Courses whose start date and end date are in between the provided
StartDate and EndDate input fi elds

We can create the mapped statement for searching the courses as follows:

<resultMap type="Course" id="CourseResult">

 <id column="course_id" property="courseId"/>

 <result column="name" property="name"/>

 <result column="description" property="description"/>

 <result column="start_date" property="startDate"/>

 <result column="end_date" property="endDate"/>

</resultMap>

<select id="searchCourses" parameterType="hashmap"
resultMap="CourseResult">

<![CDATA[

 SELECT * FROM COURSES

 WHERE TUTOR_ID= #{tutorId}

 <if test="courseName != null">

 AND NAME LIKE #{courseName}

 </if>

 <if test="startDate != null">

 AND START_DATE >= #{startDate}

 </if>

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[68]

 <if test="endDate != null">

 AND END_DATE <= #{endDate}

 </if>

]]>

</select>

public interface CourseMapper

{

 List<Course> searchCourses(Map<String, Object> map);

}

public void searchCourses()

{

 Map<String, Object> map = new HashMap<String, Object>();

 map.put("tutorId", 1);

 map.put("courseName", "%java%");

 map.put("startDate", new Date());

 CourseMapper mapper = sqlSession.getMapper(CourseMapper.class);

 List<Course> courses = mapper.searchCourses(map);

 for (Course course : courses) {

 System.out.println(course);

}

This will generate the query SELECT * FROM COURSES WHERE TUTOR_ID= ? AND
NAME like ? AND START_DATE >= ?. This will come in handy while preparing a
dynamic SQL query based on the given criteria.

MyBatis uses OGNL (Object Graph Navigation
Language) expressions for building dynamic queries.

The choose, when, and otherwise conditions
Sometimes, search functionality could be based on the search type. First, the user
needs to choose whether he wants to search by Tutor or Course Name or Start
Dates and End Dates, and then based on the selected search type, the input fi eld
will appear. In such scenarios, we should apply only one of the conditions.

MyBatis provides the <choose> element to support this kind of dynamic
SQL preparation.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[69]

Now let us write a SQL mapped statement to get the courses by applying the search
criteria. If no search criteria is selected, the courses starting from today onwards
should be fetched as follows:

<select id="searchCourses" parameterType="hashmap"
resultMap="CourseResult">

 SELECT * FROM COURSES

 <choose>

 <when test="searchBy == 'Tutor'">

 WHERE TUTOR_ID= #{tutorId}

 </when>

 <when test="searchBy == 'CourseName'">

 WHERE name like #{courseName}

 </when>

 <otherwise>

 WHERE TUTOR start_date >= now()

 </otherwise>

 </choose>

</select>

MyBatis evaluates the <choose> test conditions and uses the clause with the fi rst
condition that evaluates to TRUE. If none of the conditions are true, the <otherwise>
clause will be used.

The where condition
At times, all the search criteria might be optional. In cases where at least one of
the search conditions needs to be applied, then only the WHERE clause should be
appended. Also, we need to append AND or OR to the conditions only if there are
multiple conditions. MyBatis provides the <where> element to support building
these kinds of dynamic SQL statements.

In our example Search Courses screen, we assume that all the search criteria is
optional. So, the WHERE clause should be there only if any of the search criteria has
been provided.

<select id="searchCourses" parameterType="hashmap"
resultMap="CourseResult">

 SELECT * FROM COURSES

 <where>

 <if test=" tutorId != null ">

 TUTOR_ID= #{tutorId}

 </if>

 <if test="courseName != null">

 AND name like #{courseName}

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[70]

 </if>

 <if test="startDate != null">

 AND start_date >= #{startDate}

 </if>

 <if test="endDate != null">

 AND end_date <= #{endDate}

 </if>

 </where>

</select>

The <where> element inserts WHERE only if any content is returned by the inner
conditional tags. Also, it removes the AND or OR prefi xes if the WHERE clause begins
with AND or OR.

In the preceding example, if none of the <if> conditions are True, <where> won't
insert the WHERE clause. If at least one of the <if> conditions is True, <where> will
insert the WHERE clause followed by the content returned by the <if> tags.

If the tutor_id parameter is null and the courseName parameter is not null,
<where> will take care of stripping out the AND prefi x and adding NAME like
#{courseName}.

The trim condition
The <trim> element works similar to <where> but provides additional fl exibility on
what prefi x/suffi x needs to be prefi xed/suffi xed and what prefi x/suffi x needs to be
stripped off.

<select id="searchCourses" parameterType="hashmap"
resultMap="CourseResult">

 SELECT * FROM COURSES

 <trim prefix="WHERE" prefixOverrides="AND | OR">

 <if test=" tutorId != null ">

 TUTOR_ID= #{tutorId}

 </if>

 <if test="courseName != null">

 AND name like #{courseName}

 </if>

 </trim>

</select>

Here <trim> will insert WHERE if any of the <if> conditions are true and remove
the AND or OR prefi xes just after WHERE.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[71]

The foreach loop
Another powerful dynamic SQL builder tag is <foreach>. It is a very common
requirement for iterating through an array or list and for building AND/OR conditions
or an IN clause.

Suppose we want to fi nd out all the courses taught by the tutors whose tutor_id
IDs are 1, 3, and 6. We can pass a list of tutor_id IDs to the mapped statement and
build a dynamic query by iterating through the list using <foreach>.

<select id="searchCoursesByTutors" parameterType="map"
resultMap="CourseResult">

 SELECT * FROM COURSES

 <if test="tutorIds != null">

 <where>

 <foreach item="tutorId" collection="tutorIds">

 OR tutor_id=#{tutorId}

 </foreach>

 </where>

 </if>

</select>

public interface CourseMapper

{

 List<Course> searchCoursesByTutors(Map<String, Object> map);

}

public void searchCoursesByTutors()

{

 Map<String, Object> map = new HashMap<String, Object>();

 List<Integer> tutorIds = new ArrayList<Integer>();

 tutorIds.add(1);

 tutorIds.add(3);

 tutorIds.add(6);

 map.put("tutorIds", tutorIds);

 CourseMapper mapper =
 sqlSession.getMapper(CourseMapper.class);

 List<Course> courses = mapper.searchCoursesByTutors(map);

 for (Course course : courses)

 {

 System.out.println(course);

 }

}

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[72]

Let us see how to use <foreach> to generate the IN clause:

<select id="searchCoursesByTutors" parameterType="map"
resultMap="CourseResult">

 SELECT * FROM COURSES

 <if test="tutorIds != null">

 <where>

 tutor_id IN

 <foreach item="tutorId" collection="tutorIds"

 open="(" separator="," close=")">

 #{tutorId}

 </foreach>

 </where>

 </if>

</select>

The set condition
The <set> element is similar to the <where> element and will insert SET if
any content is returned by the inner conditions.

<update id="updateStudent" parameterType="Student">

 update students

 <set>

 <if test="name != null">name=#{name},</if>

 <if test="email != null">email=#{email},</if>

 <if test="phone != null">phone=#{phone},</if>

 </set>

 where stud_id=#{id}

</update>

Here, <set> inserts the SET keyword if any of the <if> conditions return text
and also strips out the tailing commas at the end.

In the preceding example, if phone != null, <set> will take care of removing
the comma after phone=#{phone}.

MyBatis recipes
In addition to simplifying the database programming, MyBatis provides various
features that are very useful for implementing some common tasks, such as loading
the table rows page by page, storing and retrieving CLOB/BLOB type data, and handling
enumerated type values, among others. Let us have a look at a few of these features.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[73]

Handling enumeration types
MyBatis supports persisting enum type properties out of the box. Assume that the
STUDENTS table has a column gender of the type varchar to store either MALE or
 FEMALE as the value. And, the Student object has a gender property that is of the
type enum as shown in the following code:

public enum Gender

{

 FEMALE,

 MALE

}

By default, MyBatis uses EnumTypeHandler to handle enum type Java properties and
stores the name of the enum value. You don't need any extra confi guration to do this.
You can use enum type properties just like primitive type properties as shown in the
following code:

public class Student

{

 private Integer id;

 private String name;

 private String email;

 private PhoneNumber phone;

 private Address address;

 private Gender gender;

 //setters and getters

}

<insert id="insertStudent" parameterType="Student"
useGeneratedKeys="true" keyProperty="id">

 insert into students(name,email,addr_id, phone,gender)

 values(#{name},#{email},#{address.addrId},#{phone},#{gender})

</insert>

When you execute the insertStudent statement, MyBatis takes the name of the
Gender enum (FEMALE/MALE) and stores it in the GENDER column.

If you want to store the ordinal position of the enum instead of the enum name,
you will need to explicitly confi gure it.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[74]

So if you want to store 0 for FEMALE and 1 for MALE in the gender column, you'll need
to register EnumOrdinalTypeHandler in the mybatis-config.xml fi le.

<typeHandler
handler="org.apache.ibatis.type.EnumOrdinalTypeHandler"
javaType="com.mybatis3.domain.Gender"/>

Be careful to use ordinal values to store in the DB. Ordinal values
are assigned to enum values based on their order of declaration. If
you change the declaration order in Gender enum, the data in the
database and ordinal values will be mismatched.

Handling the CLOB/BLOB types
MyBatis provides built-in support for mapping CLOB/BLOB type columns.

Assume we have the following table to store the Students and Tutors photographs
and their biodata:

CREATE TABLE USER_PICS

(

 ID INT(11) NOT NULL AUTO_INCREMENT,

 NAME VARCHAR(50) DEFAULT NULL,

 PIC BLOB,

 BIO LONGTEXT,

 PRIMARY KEY (ID)

) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=LATIN1;

Here, the photograph can be an image of type PNG, JPG, and so on, and the biodata
can be a lengthy history about the student/tutor.

By default, MyBatis maps CLOB type columns to the java.lang.String type
and BLOB type columns to the byte[] type.

public class UserPic

{

 private int id;

 private String name;

 private byte[] pic;

 private String bio;

 //setters & getters

}

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[75]

Create the UserPicMapper.xml fi le and confi gure the mapped statements as follows:

<insert id="insertUserPic" parameterType="UserPic">

 INSERT INTO USER_PICS(NAME, PIC,BIO)

 VALUES(#{name},#{pic},#{bio})

</insert>

<select id="getUserPic" parameterType="int" resultType="UserPic">

 SELECT * FROM USER_PICS WHERE ID=#{id}

</select>

The following method insertUserPic() shows how to insert data into CLOB/BLOB
type columns:

public void insertUserPic()

{

 byte[] pic = null;

 try {

 File file = new File("C:\\Images\\UserImg.jpg");

 InputStream is = new FileInputStream(file);

 pic = new byte[is.available()];

 is.read(pic);

 is.close();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

 String name = "UserName";

 String bio = "put some lenghty bio here";

 UserPic userPic = new UserPic(0, name, pic , bio);

 SqlSession sqlSession = MyBatisUtil.openSession();

 try {

 UserPicMapper mapper =
 sqlSession.getMapper(UserPicMapper.class);

 mapper.insertUserPic(userPic);

 sqlSession.commit();

 }

 finally {

 sqlSession.close();

 }

}

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[76]

The following method getUserPic() shows how to read CLOB type data into String
and BLOB type data into byte[] properties:

public void getUserPic()

{

 UserPic userPic = null;

 SqlSession sqlSession = MyBatisUtil.openSession();

 try {

 UserPicMapper mapper =
sqlSession.getMapper(UserPicMapper.class);

 userPic = mapper.getUserPic(1);

 }

 finally {

 sqlSession.close();

 }

 byte[] pic = userPic.getPic();

 try {

 OutputStream os = new FileOutputStream(new
File("C:\\Images\\UserImage_FromDB.jpg"));

 os.write(pic);

 os.close();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 }

}

Passing multiple input parameters
MyBatis's mapped statements have the parameterType attribute to specify the
type of input parameter. If we want to pass multiple input parameters to a mapped
statement, we can put all the input parameters in a HashMap and pass it to that
mapped statement.

MyBatis provides another way of passing multiple input parameters to a mapped
statement. Suppose we want to fi nd students with the given name and email.

Public interface StudentMapper

{

 List<Student> findAllStudentsByNameEmail(String name, String
email);

}

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[77]

MyBatis supports passing multiple input parameters to a mapped statement
and referencing them using the #{param} syntax.

<select id="findAllStudentsByNameEmail" resultMap="StudentResult"
>

 select stud_id, name,email, phone from Students

 where name=#{param1} and email=#{param2}

 </select>

Here #{param1} refers to the fi rst parameter name and #{param2} refers to the
second parameter email.

StudentMapper studentMapper = sqlSession.getMapper(StudentMapper.
class);

studentMapper.findAllStudentsByNameEmail(name, email);

Multiple results as a map
If we have a mapped statement that returns multiple rows and we want the results in
a HashMap with some property value as the key and the resulting object as the value,
 we can use sqlSession.selectMap() as follows:

<select id=" findAllStudents" resultMap="StudentResult">

 select * from Students

</select>

Map<Integer, Student> studentMap =
sqlSession.selectMap("com.mybatis3.mappers.StudentMapper.
findAllStudents", "studId");

Here studentMap will contain studId values as keys and Student objects as values.

Paginated ResultSets using RowBounds
Sometimes, we may need to work with huge volumes of data, such as with tables with
millions of records. Loading all these records may not be possible due to memory
constraints, or we may need only a fragment of data. Typically in web applications,
pagination is used to display large volumes of data in a page-by-page style.

MyBatis can load table data page by page using RowBounds. The RowBounds object
can be constructed using the offset and limit parameters. The parameter offset
refers to the starting position and limit refers to the number of records.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[78]

Suppose if you want to load and display 25 student records per page, you can use
the following query:

<select id="findAllStudents" resultMap="StudentResult">

 select * from Students

</select>

Then, you can load the fi rst page (fi rst 25 records) as follows:

int offset =0 , limit =25;

RowBounds rowBounds = new RowBounds(offset, limit);

List<Student> = studentMapper.getStudents(rowBounds);

To display the second page, use offset=25 and limit=25; for the third page,
use offset=50 and limit=25.

Custom ResultSet processing using

ResultSetHandler
MyBatis provides great support with plenty of options for mapping the query results
to JavaBeans. But sometimes, we may come across scenarios where we need to
process the SQL query results by ourselves for special purposes. MyBatis provides
ResultHandler plugin that enables the processing of the ResultSet in whatever way
we like.

Suppose that we want to get the student details in a HashMap where stud_id is used
as a key and name is used as a value.

As of mybatis-3.2.2, MyBatis doesn't have support for getting
the result as HashMap, with one property value as the key and
another property value as the value, using the resultMap element.

sqlSession.selectMap() returns a map with the given
property value as the key and the result object as the value. We can't
confi gure it to use one property as the key and another property as
the value.

For sqlSession.select() method s, we can pass an implementation of
ResultHandler that will be invoked for each record in the ResultSet.

public interface ResultHandler

{

 void handleResult(ResultContext context);

}

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[79]

Now let us see how we can use ResultHandler to process the ResultSet and return
customized results.

public Map<Integer, String> getStudentIdNameMap()

{

 final Map<Integer, String> map = new HashMap<Integer, String>();

 SqlSession sqlSession = MyBatisUtil.openSession();

 try {

sqlSession.select("com.mybatis3.mappers.StudentMapper.findAllStude
 nts",

 new ResultHandler() {

 @Override

 public void handleResult(ResultContext context) {

 Student student = (Student) context.getResultObject();

 map.put(student.getStudId(), student.getName());

 }

 }

);

} finally {

 sqlSession.close();

}

return map;

}

In the preceding code, we are providing an inline implementation of
ResultHandler. Inside the handleResult() method, we are getting the current
result object using context.getResultObject() that is a Student object because
we confi gured resultMap="StudentResult" for the findAllStudents mapped
statement. As the handleResult() method will be called for every row returned by
the query, we are extracting the studId and name values from the Student object
and populating the map.

Cache
Caching data that is loaded from the database is a common requirement for many
applications to improve their performance. MyBatis provides in-built support for
caching the query results loaded by mapped SELECT statements. By default, the
fi rst-level cache is enabled; this means that if you'll invoke the same SELECT
statement within the same SqlSession interface, results will be fetched from
the cache instead of the database.

We can add global second-level caches by adding the <cache/> element in SQL
Mapper XML fi les.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

SQL Mappers Using XML

[80]

When you'll add the <cache/> element the following will occur:

� All results from the <select> statements in the mapped statement fi le will
be cached

� All the <insert>, <update>, and <delete> statements in the mapped
statement fi le will fl ush the cache

� The cache will use a Least Recently Used (LRU) algorithm for eviction

� The cache will not fl ush on any sort of time-based schedule
(no Flush Interval)

� The cache will store 1024 references to lists or objects (whatever the query
method returns)

� The cache will be treated as a read/write cache; this means that the objects
retrieved will not be shared and can safely be modifi ed by the caller without
it interfering with other potential modifi cations by other callers or threads

You can also customize this behavior by overriding the default attribute values
as follows:

<cache eviction="FIFO" flushInterval="60000" size="512"
readOnly="true"/>

A description for each of the attributes is as follows:

� eviction: This is the cache eviction policy to be used. The default value is
LRU. The possible values are LRU (least recently used), FIFO(fi rst in fi rst out),
SOFT(soft reference), WEAK(weak reference).

� flushInterval: This is the cache fl ush interval in milliseconds. The default
is not set. So, no fl ush interval is used and the cache is only fl ushed by calls to
the statements.

� size: This represents the maximum number of elements that can be held in
the cache. The default is 1024, and you can set it to any positive integer.

� readOnly: A read-only cache will return the same instance of the cached
object to all the callers. A read-write cache will return a copy (via
serialization) of the cached object. The default is false and the possible
values are true and false.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Chapter 3

[81]

A cache confi guration and cache instance are bound to the namespace of the SQL
Mapper fi le, so all the statements in the same namespace table as the cache are bound
by it.

The default cache confi guration for a mapped statement is:

<select ... flushCache="false" useCache="true"/>

<insert ... flushCache="true"/>

<update ... flushCache="true"/>

<delete ... flushCache="true"/>

You can override this default behavior for any specifi c mapped statements;
for example, by not using a cache for a select statement by setting the
useCache="false" attribute.

In addition to in-built Cache support, MyBatis provides support for integration
with popular third-party Cache libraries, such as Ehcache, OSCache, and Hazelcast.
You can fi nd more information on integrating third-party Cache libraries on the
offi cial MyBatis website https://code.google.com/p/mybatis/wiki/Caches.

Summary
In this chapter, we learned how to write SQL mapped statements using the
Mapper XML fi les. We discussed how to confi gure simple statements, statements
with one-to-one and one-to-many relationships, and how to map the results using
ResultMap. We also looked into building dynamic queries, paginated results, and
custom ResultSet handling. In the next chapter, we will discuss how to write mapped
statements using annotations.

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/java-persistence-with-mybatis-3/book

Where to buy this book
You can buy Java Persistence with MyBatis 3 from the Packt Publishing website:

http://www.packtpub.com/java-persistence-with-mybatis-3/book.

Free shipping to the US, UK, Europe and selected Asian countries. For more information, please

read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and

most internet book retailers.

www.PacktPub.com

For More Information:
www.packtpub.com/java-persistence-with-mybatis-3/book

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
http://www.packtpub.com/java-persistence-with-mybatis-3/book

