
Politecnico di Milano
Dip. Elettronica e Informazione

Milano, Italy

Automatic Detection of Web
Application Security Flaws

S. ZaneroS. Zanero
Ph.D. Student, Politecnico di Milano T.U.

CTO & Co-Founder, Secure Network S.r.l.

a joint work with

L. CarettoniL. Carettoni

M. ZanchettaM. Zanchetta

Black Hat Europe Briefings – Amsterdam, Netherlands, 01/04/05Black Hat Europe Briefings – Amsterdam, Netherlands, 01/04/05

Outline

Ouverture: the need for web application
security

Three simple variations over the problem

The main theme: lack of input validation

Crescendo: a problem of automs and
grammars

Concerto for a flow of variables

A contrappunto of grammars

Conclusion & Future Works

The need for web application security

Web applications and web services touted as the
“next paradigm” in computing

Web applications opened (literally) a can of
worms

HTTP is a vulnerable, stateless protocol unsuitable for
persistent state applications

A web server is by its own nature a public repository, with
access control thrown in as an afterthought

A web app offers access to “crown jewel” data, over an
unauthenticated and stateless protocol, to the world

@stake estimates that 70% of the web apps they
reviewed showed relevant security defects

Relevant cost in rebuilding and redesigning

A web application is so exposed that any bug may
have an immediate reflex against customers

White box vs. Black box

How to check for security vulnerabilities ?

Black box approach: inject all possibly fault-inducing
inputs in the web app and look for hints that something
strange has happened

Lots of simple app vuln scanners, also commercial ones
(WebInspect, AppScan, ScanDo, SensePost tools...)

You don’t know what the scanners DON’T check for

You don't know how well they check for the things they do

Technically speaking: no reliable metric for test coverage

White box approach (code review)

Basically, NO TOOLS do this (it's not simple)

Conceptually, much more complete and thorough

I know what you are thinking: “static code
analysis is ANTTDNW !”

Let us consider three (simple!) examples...

In PHP, since it is the most widely understood language

Variation nr. 1: Directory Transversal

PhpMyAdmin: a PHP tool for MySQL web admin

Up to version 2.5.x, in file:
db_details_importdocsql.php
if (isset($do) && $do == 'import') {

 if (substr($docpath, strlen($docpath)-2, 1)!='/')

 { $docpath = $docpath . '/'; }

 if (is_dir($docpath)) {

 ...

 $handle = opendir($docpath);

 while ($file = @readdir($handle))

 {....showDir, Import, etc...}

What happens if I call:
http://localhost/mysql/db_details_importdocsql.php

?submit_show=true&do=import&docpath=../../../

A simple Directory Transversal Vulnerability

Variation nr. 2: SQL Injection

Squirrel Mail (www.squirrelmail.org) is a webmail
application developed in PHP

Squirrel uses MySQL for storing the address book

In version 1.15.2.1 in page squirrelmail/

squirrelmail/functions/abook_database.php

$query = sprintf("SELECT * FROM %s WHERE

owner='%s' AND nickname='%s'", $this-

>table, $this->owner, $alias);

$res = $this->dbh->query($query);

What if $alias contains ' UNION ALL SELECT *

FROM address WHERE '1'='1 ?

Variation nr. 2: SQL Injection (cont')

SELECT * FROM address WHERE owner='me' AND

nickname='' UNION ALL SELECT * FROM

address WHERE '1'='1'

So, unless an user has an empty nickname, the
second SELECT will return all the DB tuples

Using SQL aliasing statement AS allows to bypass
visualization problems

Problem: no check performed on $alias

Resolution (ver. 1.15.2.2): use quoteString,

from the PEAR MDB library, to escape the single
quote

So the fix was “easy”, but evidently getting it
right is not always possible

Variation nr. 3: Cross-Site Scripting

Another example from SquirrelMail, file
event_delete.php

$day=$_GET['day'];

$month=$_GET['month'];

$year=$_GET['year'];

echo"<a href=\"day.php?year=$year&"

echo"month=$month&day=$day\">";

We are implicitly trusting that parameters “day”,
“month” and “year” actually contain the date...

What if the page was called like this ?
event_delete.php?year=><script>myCode();</script>

HTML now contains:
<script>myCode();</script>

is_numeric($_GET['month']) would have been

enough to avoid this...

A common theme: lack of input validation

Our simple examples show how most web
application vulnerabilities come from lack of user
input validation

What do you do if you need to code review, say,
1000 files written by way-too-smart-people who
do not comment their code

What we want is an assisted code evaluation tool
that enables us to focus on poorly controlled
input, suggesting where we need to strenghten
input filtering

What we purposefully avoid to address, for now:

Poor authentication mechanisms

Session handling and the like

Timing vulnerabilities (TOCTOU and the like)

Signatures: functions, languages, grammars

Our model of vulnerabilities:

We have a set of unsafe functions (e.g. execution of

database statements, display of dynamic data to the user client)

We can identify the structure of safe operands for those
function as regular expressions

We can build a ruleset expressing these assertions

Language, here and in the following, means a
formal language generated by a grammar

What we need therefore is an engine which can

Parse web application code

Reconstruct the language of each variable at each point
during the execution flow through static analysis

Checkpoints (blacklist/whitelists/stripping/substitutions...)
translate to language modifications

Compare this language to the regular expressions
provided in the ruleset

It's not that simple, you know...

From code to an abstract representation

The first two phases of translation are highly
language-dependent and resemble closely the
parsing – semantic analysis of a classical compiler

The output is what we call an “environment”,
loosely similar to the symbol table in a compiler

Parsing is simple, let us examine the semantic
analysis phase more closely...

Example of AST translation

public class MYClass {

 String content;

 public MYClass(){

 content="myContent";

 }

}

CompilationUnit [null]

 Class [MYClass]

 Field [null]

 Type [null]

 Name [String]

 VariableDeclaratorId [content]

 ConstructorDeclaration [null]

ConstructorDeclarator [MYClass]

 Statement [null]

 StatementExpression [null]

 PrimaryExpressionPrefix [null]

 Name [content]

 AssignmentOperator [=]

 PrimaryExpressionPrefix [null]

 Literal ["myContent"]

A two-pass analysis of the code

Intermediate representation tree

The AST and the Environment are then used in
order to build an IRT

Integrates the knowledge on variables into the tree

Allows to generate the AST simply and then separate the
analysis, reducing complexity of each module

The IRT is a (mostly) language-independant construct

Node types in an IRT:

Base node: atomic information (var, value, etc.)

Variable declaration node

Assignment/operation node (2 children + next)

Method node (a method we couldn't expand)

FCE node: flow control element (1 child + next)

Evaluation node: this node marks the need for language
evaluation (occurrence of a an unsafe method)

Most nodes have just a next: it is almost a chain

Building the IRT

AST+Environment -> IRT

Construction begins from a doGet or doPost

Bottom-up construction, beginning with the last rows of
the D-method table (restricted to the method scope)

Starting from an occurrence of a potentially unsafe
method a pool of “suspect variables” is built, starting with
the parameters of the unsafe methods and recursively
adding in variables that interact with these

Method calls and instructions that do not operate on
suspect variables are safely discarded; the same happens
for FCEs

Method calls are flattened with variable actualization and
global name translation

An FCE generates a branch in the IRT

Above a variable declaration, said variable does not exist:
removed from the pool

IRT example (simplified!)

[...]

Statement stat;

[...]

String taintedVar =

request.getParameter("name");

String newVar;

newVar="SELECT * FROM table

WHERE name='"+taintedVar+"'";

stat.executeQuery(newVar);

[...]

Generating languages from the IRT

For each suspect variable

Initialize a regexp as .* and generate a corresponding
finite state autom

Each operation on a variable corresponds to an operation
on the FSA (there is a theorem proving correctness...)

There are, of course, approximations due to FCEs

An FCE corresponds to a IRT branch: we generate a
language for each branch, and do a union (OR)

If an FCE creates a loop, we approximate it as either
“never” or “infinity”

FCEs used for creating filters: e.g. if (var1.matches

(“[a-zA-Z0-9]*”)){...} the clause itself tells me that

inside the {} L(var1')=[a-zA-Z0-9]*

Simple example of language transformations

Input: [a-z][[a-z]|[A-Z][[A-Z]|[0-9]]]

Examples: aa, ab, yh, gTT, hYJ, oT6

To Lowercase (a simple transformation)

Output:[a-z][[a-z]|[a-z][[a-z]|[0-9]]]

(can be simplified, and also the FSA)

Simple example of language transformations

Input: [a-z][[a-z]|[A-Z][[A-Z]|[0-9]]]

replace('a','A') and replace('Z', char), where

char cannot be statically determined

The second transformation makes the edeg go

in '.' because of indetermination

Language Builder diagram

Approximations, limitations, and errors

We want errors to be predictable
We prefer false positives to false negatives: approximate

languages by “rounding up” (-> false positives)

We will then implement a testing procedure to “validate”

positives and reduce the number of false positives

Approximations and limitations

“Lost in translation”:

Dynamic arrays (cannot reconstruct access)

During language generation:
replace() with a parameter character: approx.
substring(int) or substring(int,int) cannot be properly
represented unless “int” is hardcoded, we must
approximate them by excess
We have seen approx for loops; just go figure recursion...

How many times did you use recursion in a
webapp?

Finding and verifying the vulnerabilities

Finding vulnerabilities means “comparing the
languages” between the safe language defined in
the ruleset and the actual language

An algorithm verifies that:
[NOT(L(db) INT L(act)] == ø

If != ø, we can immediately obtain a
counterexample, i.e. a candidate “exploit string”

Clearly, this candidate does not “exploit”
anything, but we can use it to verify that this is
not a false positive

Stay tuned for the next step: “automatically
exploiting” the critter

Performance of the tool

... we really don't know, but surely right now it's
slower than it could be due to implementation
issues

Remember: this is done statically at development
time and surely it is lighter and faster than your
average compiler

But really, I'm not here to sell this to anybody
(oh, well...)

Our prototype tool

Implements the whole architecture as seen

Tested only on small-scale projects

The interface is usable and nice, but surely not
ready for prime time (see below...)

As of now, we implement only the JSP language-
dependent module, PHP is the next addition

Various lesser limitations, to be resolved in the
near future

E.g. currently, we handle “String”, not Stringbuffer or char[]

variables, but just because we're too lazy...

We prepared a small demo on a toy application
for BH, but being Java it's WORRN: “Write Once,
Runs Reliably Nowhere” ...

As soon as it's reliable, we'll put the demo on BH
website for you to play with

The tool interface (backup for the demo)

file:///mnt/chiavetta/images/screen1.jpg

Conclusions & Future Work

Web applications are poorly programmed, highly
vulnerable, and highly exposed

Black-box analysis of web apps is relatively easy
but limited; white-box analysis of source code is
promising but difficult

Input validation problems are the most common
vulnerability in web apps

We have created a tool which implements a
language-theoretic approach for static source
code analysis, capable of assessing web
applications security against a set of rules

Our tool is still under heavy development for
refining many simplifications

?Any question?Any question?

Thank you!Thank you!

We would greatly appreciate your feedback !

Stefano Zanero
s.zanero@securenetwork.it

www.elet.polimi.it/upload/zanero/eng

