FORM VI

 MATHEMATICS EXTENSION 1

 MATHEMATICS EXTENSION 1}

Wednesday 10th August 2011

General Instructions

- Reading time - 5 minutes
- Writing time - 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Structure of the paper

- Total marks - 84
- All seven questions may be attempted.
- All seven questions are of equal value.

Collection

- Write your candidate number clearly on each booklet.
- Hand in the seven questions in a single well-ordered pile.
- Hand in a booklet for each question, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place the question paper inside your answer booklet for Question One.

Checklist

- SGS booklets - 7 per boy

Examiner

- Candidature - 126 boys
(a) Simplify $\frac{(n+1)!}{n!}$.
(b) Find $\int \frac{1}{9+x^{2}} d x$.
(c) When the polynomial $P(x)=x^{3}+3 x^{2}+a x-10$ is divided by $x-2$, the remainder is 24 . Find a.
(d) Differentiate $y=\sin ^{-1}\left(x^{3}\right)$.
(e) Suppose that α, β and γ are the roots of the equation $x^{3}-3 x^{2}-4 x+12=0$.
(i) Write down the value of $\alpha \beta+\alpha \gamma+\beta \gamma$.
(ii) Hence find the value of $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$.
(f) (i) Without the use of calculus, sketch the polynomial $y=x(x+1)(x-4)$ showing all the intercepts with the axes.
(ii) Hence, or otherwise, solve the inequation $\frac{x(x+1)}{x-4} \geq 0$.

QUESTION TWO (12 marks) Use a separate writing booklet.
(a) Find the exact value of $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$.
(b) Find $\lim _{x \rightarrow \infty} \frac{3-x}{2 x+3}$.
(c) The point A is $(2,-4)$ and the point B is $(5,2)$. The point P divides the interval $A B$ externally in the ratio $4: 1$. Find the coordinates of P.
(d) Find the gradient of the tangent to the curve $y=\tan ^{-1}(\sin x)$ at $x=\pi$.
(e) A ball is projected vertically upwards from the ground. After t seconds, the height of the ball is given by $h=45 t-5 t^{2}$ metres.
(i) At what time does the ball returns to the ground?
(ii) When is the ball instantaneously at rest?
(iii) What is the greatest height attained by the ball?
(f) (i) Sketch the graph of the function $y=\left|x^{2}-4\right|$.
(ii) At what points is $f(x)=\left|x^{2}-4\right|$ not differentiable?

QUESTION THREE (12 marks) Use a separate writing booklet.
(a) State the domain and range of $f(x)=2 \cos ^{-1} \frac{x}{4}$.
(b)

In the diagram above, two circles of equal radius r units are drawn such that their centres O and P are r units apart. The two circles intersect at A and B.
(i) Show that the quadrilateral $A O B P$ is a rhombus.
(ii) Show that $\angle A O B=120^{\circ}$.
(iii) Find the area of the shaded region in terms of r.
(c) The function $f(x)=x \log x+x-1 \cdot 1$ has a zero near $x=1$. Take $x=1$ as a first approximation and use Newton's method once to obtain a closer approximation to this zero.
(d) Find the term independent of x in the expansion of $\left(4 x^{3}-\frac{1}{x}\right)^{12}$.
(a) Given that α is an acute angle and $\cos \alpha=\frac{3}{4}$, find the exact value of $\tan \frac{\alpha}{2}$.
(b) Using the substitution $u=4 x+1$, evaluate $\int_{0}^{1} \frac{4 x}{(4 x+1)^{2}} d x$.
(c)

The diagram above shows the region bounded by the curve $y=2 \sin x$, the x-axis and the line $x=\frac{\pi}{4}$. Find the exact volume of the solid generated when the shaded region is rotated about the x-axis.
(d) A particle is moving in a straight line according to the equation

$$
x=\sqrt{3} \cos 3 t-\sin 3 t
$$

where x metres is its displacement from the origin after t seconds.
(i) Show that the particle is moving in simple harmonic motion.
(ii) Find the time at which the particle first passes through the origin.

QUESTION FIVE (12 marks) Use a separate writing booklet.
(a) Prove by mathematical induction that for all positive integer values of n,

$$
\frac{1}{3} \times \frac{1}{1}+\frac{1}{5} \times \frac{1}{3}+\frac{1}{7} \times \frac{1}{5}+\cdots+\frac{1}{(2 n+1)} \times \frac{1}{(2 n-1)}=\frac{n}{2 n+1}
$$

(b)

In the diagram above $P Q$ and $P R$ are tangents to the circles $S Q T$ and $S T R$ respectively, and the points Q, T and R are collinear.
(i) Given that $\angle Q S T=\alpha$, state a reason why $\angle P Q T=\alpha$.
(ii) Prove that $P Q S R$ is a cyclic quadrilateral.
(c)

The diagram above shows a sketch of $y=f(x)$ where $f(x)=\sqrt{x+9}$.
(i) Copy the diagram. On the same set of axes, sketch the graph of the inverse function $y=f^{-1}(x)$, clearly marking the x and y-intercepts.
(ii) What is the domain of $f^{-1}(x)$?
(iii) Find an expression for $f^{-1}(x)$.
(iv) Given that the graphs of $y=f(x)$ and $y=f^{-1}(x)$ meet at the point P, find the x-coordinate of P.

QUESTION SIX (12 marks) Use a separate writing booklet.
(a) When an object falls from rest at $t=0$ through a resisting liquid, the rate of change of its velocity at time t is given by $\frac{d v}{d t}=-k(v-600)$, where k is a positive constant.
(i) Show that $v=600+P e^{-k t}$ is a solution to the differential equation for some constant P.
(ii) If the velocity of the object at $t=3 \mathrm{~s}$ is $25 \mathrm{~ms}^{-1}$, find P and k.
(iii) Find the velocity of the object at $t=10 \mathrm{~s}$. Give your answer correct to one decimal place.
(iv) What is the limiting value of v as $t \rightarrow \infty$?
(b) Let $(2 x+y)^{12}=\sum_{k=0}^{12} T_{k}$ where $T_{k}={ }^{12} \mathrm{C}_{k} \times(2 x)^{12-k} \times y^{k}$.
(i) Show that $\frac{T_{k+1}}{T_{k}}=\frac{y(12-k)}{2 x(k+1)}$.
(ii) Suppose that $x=4$ and $y=5$ in the expansion of $(2 x+y)^{12}$. Show that there are two consecutive terms that are equal, and greater in value than any of the other terms.
(c) (i) Find the general solutions of the equation

$$
2 \cos 3 x \sin 4 x+2 \cos 3 x-\sin 4 x-1=0 .
$$

(ii) Hence write down all the solutions in the domain $0 \leq x \leq \pi$.
(a) Using the identity $(1+x)^{2 n}=(1+x)^{n}(1+x)^{n}$, show that

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}
$$

(b)

A particle is projected from a point O at an angle of elevation α with level ground at an initial velocity $V \mathrm{~ms}^{-1}$, as in the diagram above.

The particle just clears two vertical poles of height h metres at horizontal distances of p and q metres from O. Take acceleration due to gravity as $10 \mathrm{~ms}^{-2}$ and ignore air resistance. You may assume the equations of motion:

$$
\begin{aligned}
x & =V t \cos \alpha \\
y & =V t \sin \alpha-5 t^{2}
\end{aligned}
$$

(i) Find an expression for V^{2} in terms of α, p and h.
(ii) Hence show that $\tan \alpha=\frac{h(p+q)}{p q}$.
(c)

A square pyramid has its apex vertically above the centre of the base. The square base has side length x and the volume of the pyramid is V. The area of each triangular face is $\frac{S}{4}$ for some constant S.
(i) Show that $S^{2}=x^{4}+\frac{36 V^{2}}{x^{2}}$.
(ii) Prove that if V is constant and x is variable, then S has its minimum value when

$$
x^{3}=(3 \sqrt{2}) V .
$$

(iii) When S is at its minimum, show that each triangular face is equilateral.

SGS Trial 2011 Form VI Mathematics Extension 1 Page 10

BLANK PAGE

SGS Trial 2011 Form VI Mathematics Extension 1 Page 11

BLANK PAGE

The following list of standard integrals may be used:

$$
\begin{aligned}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE : $\ln x=\log _{e} x, x>0$

