1 • pH and pOH

Fill in the missing information:

$[H^+]$	pН	рОН
1 x 10 ⁻⁵		
	3	
		2
2.5 x 10 ⁻³		
	6	
		1

South Pasadena • Chemistry

Name	Period

4 • Classifying Chemicals

2 • [H +] and [O H -]

Fill in the missing information:

$[\mathbf{H}^{+}]$	$[OH^-]$
1 x 10 ⁻⁴	
	1 x 10 ⁻⁸
1 x 10 ⁻¹⁰	
	1 x 10 ⁻²
2 x 10 ⁻⁶	
	3.3 x 10 ⁻⁷
4.8 x 10 ⁻³	
	1.6 x 10 ⁻¹

3 • ACIDS, BASES, and SALTS

State whether each chemical is an acid, a base, or a salt.

If it is an acid or a base, state whether it is strong or weak:

- 1. H₂SO₄
- 2. Mg(OH)₂
- 3. KBr
- 4. HI
- 5. HC₂H₃O₂
- 6. NH₄OH
- 7. HNO₃
- 8. Li₂CO₃
- 9. NaOH
- 10. HF

South Pasadena • Chemistry

Name Period

4 • Classifying Chemicals

4 • M O L A R I T Y

Calculate the concentration of each of these mixtures:

KOH = 56.1 g/mole

NaOH = 40.0 g/mol

- 1. 4 moles KOH in enough water to make 2 L of solution.
- 2. 0.1 mole NaOH in enough water to make 0.05 L of solution.
- 3. 0.25 mole KOH in enough water to make 500 mL of solution.
- 4. 60 grams of NaOH in enough water to make 800 mL of solution.

South Pasadena • Chemistry Name	Period		
4 • Classifying Chemicals			
Answer the following problems about diluting solution $V \cdot \underline{M} =$		PROBLEMS	
1. A 50 mL sample of 6 M HCl is diluted to a volum	e of 250 mL. What is the new	concentration?	
2. What volume of 18.0 \underline{M} H ₂ SO ₄ is needed to make	100 mL of a 1.5 <u>M</u> H ₂ SO ₄ sol	ution?	
3. Calculate the concentration of a solution made by diluting 30 mL of 12 M HCl to a volume of 900 mL.			
South Pasadena • Chemistry 4 • Classifying Chemicals	Name	Period	
6 • PROPE Use the following key:	RTIES OF ACIE	OS & BASES	

	a) Acid	
	b) Base	
	c) Both Acid and Base	
1. tastes bitter	6. increases [H ⁺]	11. turns cabbage blue/green
2. electrolyte	7. tastes sour	12. proton donor
3. increases [OH ⁻]	8. neutralizes HCl	13. decreases [H ⁺]
4. turns cabbage pink	9. feels slippery	14. corrosive
5. neutralizes NaOH	10. decreases [OH ⁻]	15. proton acceptor

7 • A C I D - B A S E N E U T R A L I Z A T I O N

Write balanced equations showing how the following acids and bases neutralize each other:

- 1. HCl + NaOH \rightarrow _____ + ____
- 2. $H_2SO_4 + KOH \rightarrow$ _____ + ____
- 3. $HC1 + Mg(OH)_2 \rightarrow$ _____ + _____
- 4. $HC_2H_3O_2 + NaOH \rightarrow$ _____ + ____
- 5. $HNO_3 + NH_4OH \rightarrow$ _____ + ____

South Pasadena • Chemistry

Name Period

4 • Classifying Chemicals

8 • DISSOCIATION EQUATIONS

Consider the following dissociation equation:

$$H_2SO_4 \rightarrow 2 H^+ + SO_4^{2-}$$

Write the ions into which the following compounds dissociate:

- 1. $HC1 \rightarrow$
- 2. NaOH \rightarrow
- 3. $Ca(OH)_2 \rightarrow$
- 4. $HC_2H_3O_2 \rightarrow$

9 • COMMON CHEMICALS

Match these substances with their chemical formulas:

a)	HC1
b)	$CaCO_3$
c)	$Mg(OH)_2$
d)	H_2O_2
e)	$HC_2H_3O_2$
f)	H_2O
g)	NH ₄ OH
h)	$C_{12}H_{22}O_{11}$
i)	$Ca(OH)_2$
j)	H_2SO_4
k)	NaOH
1)	NaCl
	b) c) d) e) f) g) h) i)