
by neutral theory as unnecessary to describe the
patterns of species abundances (21). Additionally,

a recent statistical analysis has called into question
the necessity of local interactions to describe pat-

terns of diversity (22). Our results run counter to
these arguments, as we found support for regional

species richness patterns being driven by local
species-specific ecological interactions and a local

mechanism to explain variation in regional species
richness.

It is possible that the patterns found here were
generated by mechanisms unrelated to conspe-

cific density dependence that could create spatial
separation of adults and conspecific seedlings

[e.g., timber harvesting, succession, the mass ef-

fect (23)]. For example, recruitment differences
between early successional and late successional

species could imitate patterns of CNDD in forests.
To test whether CNDD varies with forest age, we

reanalyzed the data set by stratifying the data into
early (0 to 39 years), middle (40 to 79 years), and

later (80+ years) successional forests. The pat-
terns of CNDD were robust and consistent be-

tween age classes, indicating that our results are
not contingent on successional dynamics or in-

directly on timber harvesting, which has the effect
of setting back forest age (figs. S8 to S11).

Janzen (1) and Connell (2) originally hy-
pothesized that CNDD generated by host-specific

seed predators could help maintain the high
species richness in tropical forests. We found that

CNDD is a strong mechanism maintaining species
richness in eastern U.S. forests, but CNDD may

also explain the latitudinal gradient in species
richness if CNDD becomes stronger with decreas-

ing latitude. We tested this hypothesis in eastern
North America, where there is a latitudinal gra-

dient of tree species richness that peaks in the
southern Appalachian region (20). We found evi-

dence that CNDD could maintain this gradient in
tree species richness, as the average regional

strength of CNDD was significantly negatively
correlated with latitude, ranging from boreal to

subtropical forests (Fig. 4). Our results suggest that
the strength of CNDD would increase with de-

creasing latitude into species-rich tropical forests.
Our analyses of the FIA database provide

robust evidence that CNDD is pervasive in forest

communities and can significantly affect species
relative abundance and species richness within

and between forests. Further, our results show
that species-specific processes acting on seed-

lings translate into patterns in the abundance and
diversity of trees. Several potential interactions

could generate CNDD, including intraspecific
competition, autotoxicity, seed predators, and soil

pathogens. Much research has demonstrated that
the soil microbial community can drive CNDD in

multiple plant communities, including tropical
forests, temperate forests, grasslands, and sand

dunes (18, 24). In particular, two studies measur-
ing soil community feedbacks, presumably driven

by soil-borne pathogens, have identified a positive
relation between strength of CNDD in the green-

house and relative abundance in the field (8, 25).

Local interactions have previously been con-
sidered a local filter on species diversity, but our

findings indicate that local interactions feed back
to regional species richness and abundance. Fur-

ther, the prevalence of CNDD across many forest
types and diverse species indicates the pervasive

importance of these interactions. Our results
show that CNDD is a general mechanism struc-

turing forest communities across a wide gradient
of forest types and can maintain the latitudinal

gradient of tree species richness.
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Randomized Government Safety
Inspections Reduce Worker Injuries
with No Detectable Job Loss
David I. Levine,1 Michael W. Toffel,2* Matthew S. Johnson3

Controversy surrounds occupational health and safety regulators, with some observers claiming
that workplace regulations damage firms’ competitiveness and destroy jobs and others arguing
that they make workplaces safer at little cost to employers and employees. We analyzed a
natural field experiment to examine how workplace safety inspections affected injury rates and
other outcomes. We compared 409 randomly inspected establishments in California with 409
matched-control establishments that were eligible, but not chosen, for inspection. Compared
with controls, randomly inspected employers experienced a 9.4% decline in injury rates (95%
confidence interval = –0.177 to –0.021) and a 26% reduction in injury cost (95% confidence
interval = –0.513 to –0.083). We find no evidence that these improvements came at the expense
of employment, sales, credit ratings, or firm survival.

T
he U.S. Occupational Safety and Health
Administration (OSHA) is one of the

most controversial regulatory agencies in
the United States. Some evidence indicates that

OSHA penalties deter injuries (1), and OSHA

supporters argue that inspections save lives at
low cost to employers and employees and that

additional regulation would reduce tens of thou-
sands of occupational illnesses and hundreds of

worker fatalities (2, 3). At the same time, critics
fear that OSHA destroys jobs without mean-

ingfully improving workplace safety (4, 5) and
have urged the agency to shift its emphasis from

worksite inspections to voluntary safety programs
(6). Even if inspections do improve workplace

safety, they might not be socially efficient if
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MA 02163, USA. 3Department of Economics, Boston Univer-
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the cost of remediating hazards outweighs the
benefits. The economic theory of perfectly com-

petitive labor markets (with full information,
perfect mobility of labor, and so forth) implies

that remediating hazards will cause wages to
decline so much that employees on average do

not benefit from the increase in safety (7). If
product markets are also perfectly competitive

or if wages are sticky, then many inspected firms
will either go out of business or at least suffer

lower sales, lower employment, and worse cred-
it ratings (8).

The debate has persisted in part because prior
research has yielded widely varying results. For

example, some studies find that OSHA inspec-

tions have little or no correlation with subse-
quent workplace injury rates (9–11), whereas

others find that OSHA inspections correlate with
a decline in injury rates (1, 12–14). Similarly,

workplace-safety inspections correlate with low-
er productivity in some studies (15) but not in

others (16).
These widely varying results may be due in

part to the substantial challenges of measuring
the causal effect of OSHA inspections. One

challenge arises because most OSHA inspec-
tions target workplaces with recent accidents

or safety complaints, and these workplaces typi-
cally have a combination of ongoing safety

problems and a random event (“bad luck”) that
year. Thus, a cross-sectional analysis revealing a

positive correlation between inspections and sub-
sequent injuries does not imply that OSHA in-

spections cause injuries; it could just be due to
ongoing safety problems that spurred the inspec-

tion. At the same time, because the random ele-
ment that contributes to an accident or complaint

is temporary, injuries rates often revert to prior
levels (17), and so inspections often precede a

decline in injuries without necessarily causing the
improvement, potentially biasing a panel data

analysis of targeted inspections.
In addition, most previous studies of the ef-

fects of inspections analyze data from logs of
workplace injuries that OSHA requires com-

panies to maintain at each workplace. OSHA
mandates better recordkeeping when its inspec-

tions find incomplete logs, which can erroneous-

ly make it appear as if inspections cause higher
injury rates. For example, the injury rates reported

by very large manufacturing plants more than
doubled in the late 1980s after OSHA imposed

multimillion dollar fines on a few such plants
for poor recordkeeping (18).

Fortunately for evaluation purposes, Califor-
nia’s Division of Occupational Safety and Health

(Cal/OSHA) randomly selected workplaces in
high-injury industries for inspections in 1996 to

2006 (19). By focusing on these inspections, we
simulated a randomized controlled trial that can

provide unbiased estimates of the effects of OSHA
inspections. To do so, we matched on observ-

ables to construct a control group of very similar
facilities that were eligible for randomized in-

spections but not selected.

In addition, we analyzed injury data from the
workers’ compensation system. Unlike OSHA-

mandated logs, workers’ compensation data are
less likely to be affected by improved recordkeep-

ing after OSHA inspections. Finally, because
injuries are not the only outcome that might

be affected by OSHA inspections, we also ana-
lyzed employment, company survival, and com-

pensation to look for unintended harms from
inspections.

The starting point of our analysis was to un-
derstand how Cal/OSHA selected establishments

for randomized inspections. In each year of our
study period (1996–2006), Cal/OSHA identi-

fied a list of industries with high injury rates—

typically based on data from the U.S. Bureau of
Labor Statistics (19)—for that year’s random-

ized inspections. For each of these industries,
Cal/OSHA used Dun & Bradstreet and other

sources to compile a list of establishments with
10 or more employees, then randomly selected a

subset of each list. These subsets were then sent
to the appropriate northern or southern district

managers (each district covers roughly half the
state). Within each district, inspectors attempted

to inspect all of the randomly chosen establish-
ments, although managers could prioritize on the

basis of factors such as avoiding industries they
felt were not as dangerous and skipping work-

places that had had an OSHA inspection in the
prior 2 years. Our procedure for choosing a sam-

ple adjusts for these factors. Specifically, we found
controls in the same industry, and we dropped

all treatments and potential controls that had
had inspections in the prior 2 years.

We obtained data on these inspections from
U.S.OSHA’s IntegratedManagement Information

System (IMIS).We obtained annual establishment-
level data on payroll and on the number and val-

ue of workers’ compensation claims from the
Uniform Statistical Reporting Plan database of

the Workers’ Compensation Insurance Rating
Board (WCIRB). For all California establishments

tracked byDun&Bradstreet, we obtained annual
establishment-level data on company names, ad-

dresses, whether the establishment was a stand-
alone firm (not a branch or subsidiary), Standard

Industrial Classification (SIC) andNorthAmerican

Industry Classification System (NAICS) industry
codes, sales, and employment from the National

Establishment Time-Series (NETS) database.
We began constructing our analysis sample

by identifying in OSHA’s IMIS database the
1752 establishments at which Cal/OSHA had at-

tempted a random inspection at least once dur-
ing our sample period. Because injury data from

workers’ compensation systems are available
primarily at the company level, we restricted our

analysis to single-establishment firms. Because
Cal/OSHA performed random inspections only

at establishments with at least 10 employees, we
included only establishments with at least 10

employees in the random inspection year or
either of the two preceding years. The pipeline of

how we linked these treatments and a set of

potential controls to the several data sets and then
restricted potential controls to resemble treat-

ments by requiring them to be in the same in-
dustry and the same region of California, to be

classified as a single-establishment firm, to have
10 or more employees, and so forth is shown in

table S1. When more than one potential control
matched the industry and region of a particular

treatment, we selected the one with the most
similar number of employees.

This matching process resulted in a matched
sample of 409 pairs of single-establishment firms,

whose industry distribution is reported in table
S2. At 7% of the treatment establishments in our

sample, Cal/OSHA did not carry out the inspec-

tion, typically because the inspector could not
find the establishment, the establishment had gone

out of business, or the inspector determined that
the establishment was not eligible for a random

inspection after all (for example, if the inspector
found out the establishment had fewer than 10

employees). As we could not filter the control
sample on these criteria, we included as treat-

ments all establishments in which Cal/OSHA
had attempted an inspection. Thus, our estimates

measure the causal effect of an attempted in-
spection and might slightly underestimate the

causal effect of the inspections that actually oc-
curred. However, as the vast majority of the at-

tempts were successful, we usually simplify our
language by dropping the qualifier “attempted”

and referring to our estimates as the causal effect
of inspections.

To reduce the effect of very large outliers,
we top-coded our measures of injury count (the

annual number of workers’ compensation claims)
and injury cost (the annual value of workers’

compensation claims) at their 99th percentiles.
We analyzed the logs of our continuous out-

come measures: injury cost, sales, employment,
and payroll. To reduce the effect of very small

outliers, we added roughly the first percentile of
nonzero values to our measures ($79 to Injury

cost, 10 to Employment, and $100,000 to Pay-
roll and to Sales) before taking logs; our results

were not sensitive to these adjustments (20).
Summary statistics are reported in table S3.

The preinspection characteristics of treat-

ments and controls were very similar on most
measures (e.g., employment, payroll, and sales)

(table S4). Whereas the treatments averaged 3.7
injuries per year in the 4-year period preceding

the randomized inspection and the controls av-
eraged 3.1 over the same period (t test P value =

0.06), their pretrends (14% decline for treat-
ments, 12% decline for controls) were statisti-

cally indistinguishable (t test P value = 0.85).
For two reasons, we think that the disparity

represents sampling variation rather than con-
scious selection by Cal/OSHA (21). First, we

closely replicated Cal/OSHA’s random selection
procedures to create the pool of establishments

at risk of a randomized inspection each year.
Second, Cal/OSHA had no information on in-

jury rates for the vast majority of establishments
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it randomly inspected. In addition, kernel den-
sity plots of several key variables the year be-

fore the match year (figs. S1 to S3) revealed
nearly identical distributions between the treat-

ments and controls, including the variables for
which the statistical tests found significant

differences.
Even if due solely to sampling error, this

imbalance on preinspection injury rates made
it important to adjust for preinspection charac-

teristics in our analysis. Thus, we measured the
causal effect of inspections via a difference-in-

differences analysis. Specifically, we estimated
the following model for each outcome Yit at

establishment i in year t:

Yit = ai + b ∙ Has been randomly inspectedit +

Sk gk ∙ Xikt + St dt ∙ yeart + eit

where ai was a complete set of establishment-

specific intercepts (or, in some specifications,
conditional fixed effects). Has been randomly

inspectedit was coded “1” the year an establish-
ment was randomly inspected and each year

thereafter and was otherwise coded “0.” Of pri-
mary interest is b, which represented the es-

timated effect of a random inspection; that is, the
average change in outcome levels pre- versus

postinspection. Xikt referred to controls (sub-
scripted k), such as average occupational risk-

iness and log employment, that were included

in some specifications. All models included a
full set of year dummies ( yeart). The supplemen-

tary materials describe multiple robustness checks
for each analysis.

We first analyzed the effects of inspections
on injury rates and injury cost and then turned to

the possible unintended consequences on firm
survival, credit ratings, sales, employment, and

payroll. To predict the number of injuries at a
workplace, we estimated a negative binomial

regression model with establishment-level con-
ditional fixed effects. The point estimate in col-

umn 1 of Table 1 indicates that randomized
inspections reduce annual injuries by 9.4% [b =

–0.099, P = 0.013, incident rate ratio = 0.906,

95% CI = –0.177 to –0.021].
The effects of inspections might attenuate

after a few years or might take a few years to
emerge. To test for such changes in the effects

of inspections over time, we replaced the sin-
gle posttreatment dummy for inspected estab-

lishments with a dummy coded “1” only in the
randomized inspection year and a series of

dummies for each of the subsequent 4 years.
Inspections statistically significantly reduced

injuries in the random inspection year and 3 and
4 years later, marginally reduced them 1 year

later, but had no significant effects 2 years later
(column 2). In short, the reduction in injuries

after inspections endured. We found nearly iden-
tical annual estimates when we excluded matched

groups of which either member (the treatment

or control) was inspected 3 or 4 years before
the match year (table S5).

To extend our analysis beyond average ef-
fects, we also estimated distinct effects of these

inspections on the number of minor financial
claims (resulting in less than $2000 in workers’

compensation) and the number of major finan-
cial claims (at least $2000). The results of these

two regressions were nearly identical: b = –0.107
for smaller claims and b = –0.136 for larger

claims, with P < 0.05 in both instances (table
S6). These results imply that inspections reduce

the rates of both minor and major injuries.
Turning to the cost of injuries, an ordinary least

squares (OLS) regressionmodelwith establishment-

level fixed effects indicates that randomly in-
spected establishments exhibited a 26% decline

in injury cost (column 3, b = –0.298, 95% CI =
–0.513 to –0.083, exp(b) = 0.74,P< 0.01).When

we permitted the effect of inspections to differ by
years since inspection, the negative point estimates

suggested that inspections consistently reduced
injury cost, and we could not reject the equality

of all these coefficients (P = 0.09, column 4).
The pattern of coefficients resembled the pattern

for injury rates, with the year-specific treatment
effects statistically significant and larger in mag-

nitude in the year of random inspection and years
3 and 4 after the inspection. Results were nearly

identical when we excluded matched groups of
which either the treatment or control was inspected

3 or 4 years before the match year (table S5).

Table 1. Regressions yield evidence that randomized OSHA inspections
reduced workplace injury rate and injury cost (T standard errors). Standard
errors clustered by establishment in OLS models (columns 3 and 4). The
models in columns 1 and 2 include establishment-level conditional fixed
effects. The models in columns 3 and 4 include establishment-level fixed
effects. To reduce the effect of very small outliers, we added roughly the first

percentile of nonzero values ($79) to Injury cost before taking the log. To
reduce the effect of large outliers, Injury count, and Log Injury cost were top-
coded at their 99th percentiles. Sample size in columns 1 and 2 is <409
treatments and <409 controls because the negative binomial specification
with conditional fixed effects drops establishments that have no variation in
their number of injuries.

Dependent variable
Specification

(1) (2) (3) (4)

Injury count

Conditional fixed-effects

negative binomial regression

Log Injury cost

Fixed-effects OLS

Has been randomly inspected (this year or before) –0.099 T 0.040* –0.298 T 0.110**

Year of random inspection –0.152 T 0.053** –0.379 T 0.123**

One year after random inspection –0.023 T 0.055 –0.217 T 0.145

Two years after random inspection –0.033 T 0.063 –0.085 T 0.172

Three years after random inspection –0.135 T 0.077+ –0.558 T 0.194**

Four years after random inspection –0.266 T 0.091** –0.455 T 0.223*

Year dummies Included Included Included Included

Observations (establishment-years) 5593 5593 5872 5872

Number of establishments 765 765 818 818

Number of treatment establishments 389 389 409 409

Number of control establishments 376 376 409 409

Wald tests

Dependent variable sample mean 3.43 3.43 7.41 7.41

Each treatment coefficient is equal to zero X
2 = 15.79 F = 3.17

P = 0.008 P = 0.008

Sum of treatment coefficients equals zero c
2 = 7.72 F = 7.13

P = 0.006 P = 0.008

All treatment coefficients equal to each other c
2 = 10.14 F = 2.02

P = 0.044 P = 0.091

**P < 0.01, *P < 0.05, +P < 0.10.
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To assess the impact of inspections on work-
place survival, we defined an establishment to

have “died” if it had disappeared from both the
NETS and the WCIRB databases. We were un-

able to observe if any treatment or control estab-
lishments died after the sample period ended in

2006. Fortunately, censoring does not lead to bias
because our matching of controls to treatments

was in the year of the randomized inspection;
thus, data on each matched pair of treatments

and controls were right-censored after the iden-
tical number of years. In our sample, 4.4% of

the treatment establishments did not survive
until 2006, a rate slightly but not economical-

ly or statistically significantly lower than the
5.6% death rate among the control establish-

ments (P = 0.423).
Although treatment status was randomized,

there were differences between the treatment
and control groups’ preinspection sales, em-

ployment, and payroll. We ran several speci-
fications of survival analyses that condition on

these characteristics using a logit, a condition-
al logit with a fixed effect for each matched

pair, and a Cox proportional hazard model with

each matched pair its own strata. For all models,
survival rates of randomly inspected establish-

ments were not statistically significantly different
from those of the controls (see table S7). These

results yielded no support to critics of OSHAwho
claim that inspections harm companies’ survival

prospects.
Because company death is relatively rare,

we also analyzed whether random inspections
affected establishments’ creditworthiness, using

Dun & Bradstreet’s Composite Credit Appraisal
and PAYDEX scores. We used ordered logit re-

gression models to predict Composite Credit
Appraisal, an ordinal dependent variable that

ranged from 1 to 4. We used OLS regression with
establishment-level fixed effects to predict

minimum PAYDEX scores, which ranged from
1 to 100. The point estimates were positive—

hinting that inspections, if anything, increased
creditworthiness—but very close to zero and no-

where near statistically significant (table S8).

To assess whether random inspections af-
fect firm growth, we estimated fixed-effect OLS

models to predict log employment, log payroll,
and log sales (Table 2). Randomly inspected es-

tablishments did not differ significantly from
controls in employment, total earnings, or sales,

although each point estimate was positive. The
point estimates show that treatment increases em-

ployment and payroll by small amounts (2.7%
for employment and 0.5% for payroll, neither

statistically significant) with fairly narrow 95%
CIs (–0.5% to +5.8% for employment and –2.0%

to +3.0% for payroll). Thus, we rule out large de-
clines in employment and payroll. The coeffi-

cient on sales was also tiny and positive (0.2%),
but the confidence interval was much wider

(–8.4% to + 8.8%).
In sum, workplaces that Cal/OSHA random-

ly inspected (or attempted to randomly inspect)
subsequently experienced substantially lower in-

jury rates and workers’ compensation costs com-
pared with a matched set of workplaces that were

eligible for, but did not receive, a random inspec-
tion. The lower injury rates were not transient.

With many assumptions (see supplementary

materials), our point estimates imply that the re-
duction in injuries in the 5 years after a work-

place inspection reduced medical costs and lost
earnings by roughly $355,000 (in 2011 dollars)

(22–24). This estimated 5-year total is ~14% of
the average annual payroll of this sample of em-

ployers. Thus, although admittedly imprecise, the
estimated benefits of a randomized safety inspec-

tion appear to be substantial. These results do not
support the hypothesis that OSHA regulations

and inspections on average have little value in
improving health and safety.

Although this estimated value of improved
health is fairly large, it is crucial to know how

much employers pay for these improvements in
safety, as well as how much employees pay in

terms of lower wages or employment. As noted
above (and formalized in an illustrative model

in the supplementary materials), economists’
benchmark model suggests that the increased

costs of safety measures that reduce injury rates

can also reduce wages, employment, and rates
of firm survival. Although we cannot rule out

any of these unintended consequences, we found
no evidence that inspections lead to worse out-

comes for employees or employers. The point
estimates on changes in employment, payroll,

sales, and credit ratings were all positive, al-
though all coefficients were small, and none ap-

proached statistical significance.
The estimates in Table 2 imply that we can

be 95% certain that the mean establishment
either grows payroll or experiences a decline of

less than $221,000 over the 5 years after the in-
spection (25). The lower-bound estimate of lost

payroll is in different units than lost earnings and

medical costs, and there is substantial uncertainty
about our estimated benefits (with a point esti-

mate of $355,000). With that said, these calcula-
tions imply that employees almost surely gain

from Cal/OSHA inspections.
This result is not consistent with the perfect-

ly competitive model’s prediction that Cal/OSHA’s
mandated increases in safety would reduce em-

ployment and/or earnings sufficiently that, on
average, employees would be worse off. These

results therefore suggest that it is important to
test which assumptions of the perfectly compe-

titive model are sufficiently violated to drive this
result (e.g., that employees have very good in-

formation on hazards or that labor is perfectly
mobile).

Our study has several limitations, includ-
ing its focus on a subset of companies (single-

establishment firms in high-hazard industries
and with at least 10 employees) in one region

(California), a single type of inspection (ran-
domized, not those driven by complaints or by

serious accidents), and a single workplace-safety
regulator (Cal/OSHA). Our method also ignores

any effects of the threat of inspections on as-
yet-uninspected workplaces. It is important to

replicate this study in other settings and by using
additional study designs to examine the gen-

eralizability of our results. It is also important to
supplement statistical studies such as this one

with qualitative research that helps us understand
the process by which workplace regulations af-

fect (and sometimes improve) outcomes.
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Cost-Benefit Tradeoffs in Engineered
lac Operons
Matt Eames1 and Tanja Kortemme1,2*

Cells must balance the cost and benefit of protein expression to optimize organismal fitness. The lac

operon of the bacterium Escherichia coli has been a model for quantifying the physiological impact
of costly protein production and for elucidating the resulting regulatory mechanisms. We report
quantitative fitness measurements in 27 redesigned operons that suggested that protein production is
not the primary origin of fitness costs. Instead, we discovered that the lac permease activity, which
relates linearly to cost, is the major physiological burden to the cell. These findings explain control
points in the lac operon that minimize the cost of lac permease activity, not protein expression.
Characterizing similar relationships in other systems will be important to map the impact of
cost/benefit tradeoffs on cell physiology and regulation.

E
xpressing proteins uses cellular resources
and thus incurs fitness costs (1, 2). To ba-

lance these costs and generate a net fitness
advantage, cells must couple protein expression

to beneficial processes. These cost/benefit trade-
offs (3) shape mechanisms that regulate protein

expression, such as those in the lac operon (4).

The fitness costs of protein expression have also
been hypothesized to govern the speed at which

proteins evolve (5, 6) and to influence the opera-
tion of regulatory circuits (7, 8). To interpret these

effects and derive predictive models of the phys-
iological consequences of protein expression, the

underlying sources of both cost and benefit must
be identified and quantified. Such models are cen-

tral to understanding gene regulation, metabolic
engineering, and molecular evolution.

Because costs are balanced or even complete-

ly masked by coupled benefits under physiolog-
ical conditions, cost and benefit can be difficult to

separate. We used the lac operon (4, 9) (Fig. 1A)
to separately quantify the cost and benefit of pro-

tein expression (3); we define cost as the relative

reduction in growth rate due to operon expression
and benefit as the relative increase in growth rate

in the presence of lactose, the substrate of the op-
eron. To dissect the interplay between proposed

cost sources and protein benefit, we quantified the
effects of genetic changes that modulate three

cost/benefit tradeoffs (5): protein production effi-
ciency (10) (by changing translational optimization

and thereby expression level), functional efficiency
(by modulating catalysis), and folding efficiency

(6) (by altering the propensity to misfold).
To determine the growth response, we induced

expression of the lac operon using the nonmetab-
olized inducer isopropyl-b-D-thiogalactopyranoside

(IPTG) and varied the concentration of lactose.
At low lactose concentrations, the change in growth

rate relative to that of uninduced cells is assumed
to primarily reflect the cost of protein expression,

whereas at higher lactose concentrations, growth
reflects both the cost and benefit of lactose me-

tabolism. We performed our experiments at full
induction to decouple regulatory effects from

the cost and benefit of expression and also to
avoid complications arising from bistability at

low inducer concentrations (1). We knocked out
the entire lac operon and replaced it with engi-

neered versions at the attTn7 locus (11). As a

control, we confirmed that a knockin (KIlac)
of the wild-type lac operon successfully recap-

tured native cost/benefit lactose response curves
(fig. S1).
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