

Atmel AVR8015: QT600 - AT32UC3L QMatrix
Training Guide

Features

� Knowledge level: Intermediate

� PC platform: Windows
®
 2000, Windows XP, Windows Vista

®
, Win7

� Hardware requirements:

- Atmel
®
 QT

TM
600 (entire kit)

- USB cables

� Software requirements:

- Atmel AVR
®
 QTouch

®
 Studio 4.3.1 or later

- Atmel QTouch Library 4.4 or later

- Atmel AVR Studio
®
 5 (latest version)

� Estimated time to complete all tasks in this guide: 1 day

1 Introduction

The purpose of this training is to get familiar with the Atmel AVR

QTouch Suite for

developing and debugging any Atmel Touch application. It includes four core

solutions: Atmel QTouch Studio, Atmel QT™600 Development Kit, Atmel QTouch

Library, and Atmel AVR Studio 5.

Atmel QTouch Studio - Touch Analyzer

QTouch Studio is the front-end software used to display and evaluate the data

reported by the QT600 development kit.

Atmel QTouch Library - Touch SW library for AVR

The QTouch Library is a software library for developing touch applications on

standard Atmel AVR microcontrollers. Customers can link the library into their

firmware in order to integrate touch-sensing capability into their projects.

Atmel AVR Studio 5 - Debugger and Programmer

AVR Studio 5 is a professional Integrated Development Environment (IDE) for

writing, simulating and debugging applications for AVR microcontrollers. It also

comprises the programming interface for all AVR tools. It has the following

features:

• Supports all 8- and 32-bit AVR

• Integrated C compiler

• New project wizard and Intelligent Editor

Atmel QT600 - Touch Hardware Kit and example Code

The QT600 is a complete touch development kit for buttons, sliders and wheels.

This advanced development platform allows designers to experiment with Atmel

touch technology, and provides the easiest way to analyze and validate touch

products. It supports both Atmel QTouch and Atmel QMatrix acquisition methods. It

comes with one USB-powered interface board, MCU boards representing the

Atmel tinyAVR
®
, Atmel megaAVR

®
, Atmel AVR XMEGA

®
 and 32-bit Atmel AVR

UC3 families of microcontrollers, and three touch sensor boards supporting up to

64-channels.

32-bit Atmel
Microcontrollers

Application Note

Rev. 32185A-AVR-01/12

http://www.atmel.com/products/touchsoftware/qtouchsuite.asp?family_id=702�
http://www.atmel.com/products/touchsoftware/qtouchsuite.asp?family_id=702�
http://www.atmel.com/products/touchsoftware/qtouchsuite.asp?family_id=702�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4445�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4658�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4627�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4627�
http://www.atmel.com/microsite/avr_studio_5/default.asp?source=redirect�

2 Atmel AVR8015
32185A-AVR-01/12

The Atmel QT600 MCU boards can be connected to the Atmel STK
®
600 for easy

access to unused I/O-pins. STK600, however, is not needed for the QT600 kit to

function properly. QT600 is fully supported by Atmel AVR QTouch Studio, Atmel

QTouch Library, and Atmel AVR Studio 5, and together these tools form the Atmel

QTouch Suite.

This hands-on training consists of a number of tasks.

1. Connect everything and assure that your hardware is working properly.
2. Set up a project from scratch, select and include the library, add the touch files

and ASF driver files.
3. Create a virtual kit in design mode and use the pin configuration wizard.
4. Configure the global options and set/enable the sensors.
5. Add debug files and code to use the debug interface in order to take advantage of

the live debugging features of QTouch Studio.
6. Use the Analysis mode and a review brief description of the various parameters.
7. Use the design validation wizard.
8. Log data and use it for further analysis and debugging purposes.

Basics of AVR Studio 5, or tools use are not covered.

2 Document overview

The hands-on training is split into several different assignments. Each assignment is

further divided into individual sections to simplify understanding.

Throughout this document you will find some special icons. These icons are used to

identify different sections of assignments and ease complexity.

 Information.

Delivers contextual information about a specific topic.

 Tip.

Highlights useful tips and techniques.

 To do.
Highlights objectives to be completed.

 Result.
Highlights the expected result of an assignment step.

 Warning.

Indicates important information.

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4445�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4627�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4627�
http://www.atmel.com/microsite/avr_studio_5/default.asp?source=redirect�
http://www.atmel.com/products/touchsoftware/qtouchsuite.asp?family_id=702�
http://www.atmel.com/products/touchsoftware/qtouchsuite.asp?family_id=702�
http://www.atmel.com/microsite/avr_studio_5/default.asp?source=redirect�

Atmel AVR8015

 3

32185A-AVR-01/12

3 Requirements

3.1 Software

Make sure you install the latest versions of:

• Atmel QTouch Studio 4.3.x (www.atmel.com/avrqtouchstudio)

• Atmel QTouch Library 4.4 (www.atmel.com/qtouchlib)

o QTouch Library User Guide

o QTouch Library Selection Guide

• Atmel AVR Studio 5 – Latest (www.atmel.com/avrstudio)

3.2 Hardware

In this hands-on training we are going to use:

• Atmel QT600 Interface Board

• Atmel QT600 – AT32UC3L-QM64

• Atmel QT600 – QMatrix 8x8 Touch Sensor board

• Debugger – Atmel AVR JTAGICE mkII with squid cable

NOTE AVR JTAGICE mkII with hardware revision 0 does NOT have aWire capabilities.
Hence AVR JTAGICE mkII other than hardware revision 0 should only be used. Any
of the following debuggers maybe also used Atmel JTAGICE 3, Atmel STK600 and
Atmel AVR ONE!.

3.3 Atmel QT600 system description

The QT600 system is based on three boards connected together.

• QT600 Interface Board

• QT600 MCU Board

• Touch Sensor Board

Figure 3-1. QT600 system.

The MCU board and touch sensor boards together comprise the user touch system.

The QT600 interface board is used to stream live touch data from the Atmel AVR

http://www.atmel.com/avrqtouchstudio�
http://www.atmel.com/qtouchlib�
http://www.atmel.com/avrstudio�

4 Atmel AVR8015
32185A-AVR-01/12

MCU mounted on the MCU board. Atmel QTouch Studio is used as the PC front end

to visualize the touch data.

3.3.1 Block diagram

Figure 3-2. Block diagram.

3.3.2 Pin schematic

Figure 3-3. Pin schematic.

Atmel AVR8015

 5

32185A-AVR-01/12

4 Assignment

For the following tasks, please note:

• Start with all the cables disconnected (PC to Atmel QT600, QT600 to MCU

boards…)

• Ensure you have installed the latest versions of software listed in Chapter 1

• From the same webpage where you found this application note download and

expand the associated zip file (disk icon). Project folders for each task will be

relative to where you expanded the zip file {AVR8015}. File paths will be relative to

the expanded task folder where each project should be created

• The zip file consists of Completed task and Exercise folders. Completed task

folder is for user reference, and it consists of the step by step solution of the

training. If the user intends to work on only a particular task, then the project files

inside Exercise folder can be used

• User can also create his own project by following the steps described in the

assignment section

• All the library files and the necessary support files required for these tasks are

available inside Exercise folder

4.1 Task 1: Connect the tools and run a test application

4.1.1 Introduction

This task is designed to make sure all the tools are connected and working as

intended. No code writing is needed for this task. You can load the Hex file

uc3l_gnu_qm_qt600.hex present at the location:

..\..\Exercises\QMatrix\Tasks\Task1\

This can be programmed directly into the flash of the MCU. The Atmel QT600-

AT32UC3L-QM64 MCU board is configured for aWire programming. The QT600

interface board does not support aWire programming. It supports JTAG, ISP, TPI and

PDI modes only. Hence we need to use a programmer like the Atmel AVR JTAGICE

mkII (other than revision 0), Atmel JTAGICE 3, Atmel STK600, or Atmel AVR ONE!,

which supports aWire programming. In this hands-on training we are using AVR

JTAGICE mkII.

To use the AVR JTAGICE mkII for programming the QT600-AT32UC3L-QM64 MCU

board: Make the following connections between the squid cable and the aWire header

on the MCU board.

Table 4-1. JTAGICE mkII aWire connections.

JTAGICE mkII squid cable MCU board aWire header

GND (white) Pin 2

VTREF (purple) Pin 4

TDI (red) Pin 6

Connect the QT600 TOUCH DATA header to the MCU board TOUCH DATA header.

This is required to power the device (supply VTG), since the AVR JTAGICE mkII does

not power the device. Keep the QT600 interface board in the default data streaming

mode.

The Touch Data LED on the QT600 indicates mode:

6 Atmel AVR8015
32185A-AVR-01/12

• Touch Data LED green: Touch Debug mode (default mode after power-up)

• Touch Data LED off: Programmer mode

Launch the AVR Programming tool on Atmel AVR Studio 5 and program the device.

Use AVR Studio 5.0 or later.

 Programming output file using AVR Studio 5.

.Hex file or .Elf file can be loaded into the target board by following the below steps.

1. In studio5 IDE, select and click on Tools → AVR Programming option as shown in
Figure 4-1.

2. Switch the device to Programmer mode as described in Section 4.1.1.

Figure 4-1. Selecting AVR programmer.

3. Set the target hardware under tools drop down menu, proper device under device
icon and interface type under interface icon, and click on apply button as shown
in Figure 4-2.

Atmel AVR8015

 7

32185A-AVR-01/12

Figure 4-2. Selecting the device.

4. Click on Device ID Read option and also on Target Voltage Read option. Ensure
that the target voltage as per the device datasheet. Minimum voltage is 1.8V.
Also ensure that Device ID and target voltage are read by the IDE as shown in
Figure 4-3.

Figure 4-3. Setting device ID.

5. Select Memories option, click on Erase Device.
6. Set the appropriate path for the output file and click on program option as shown

in Figure 4-4.

8 Atmel AVR8015
32185A-AVR-01/12

Figure 4-4. Writing output file into the target device.

4.1.2 Connecting the hardware

1. Connect the USB cable to the Atmel QT600 interface board.
2. Make sure the VTG header is mounted on the QT600 interface board.
3. Connect the TOUCH DATA header of the QT600 interface board and Atmel

QT600-AT32UC3L-QM64 board.
4. Connect the JTAGICE mkII and the QT600-AT32UC3L-QM64 board through the

aWire interface as described in Section 4.1.1.

Figure 4-5. Squid connection.

5. Make sure that the QT600 interface board is in the default data streaming mode.
6. Ensure the target voltage is set as per the device datasheet. Minimum voltage is

1.8V.

7. Program the application code (uc3l_gnu_qm_qt600.hex). For detailed
instructions on how to do this, see the help section in Atmel AVR Studio 5.

8. Disconnect the USB plug from the Atmel QT600 interface board.

http://www.atmel.com/microsite/avr_studio_5/default.asp?source=redirect�

Atmel AVR8015

 9

32185A-AVR-01/12

9. Remove the squid cable between the programming headers.

Figure 4-6. Sensor board connections.

10. Connect the touch panel.
11. For Atmel AT32UC3L: Use the QMatrix 8x8 Panel.
12. Launch Atmel QTouch Studio.
13. Plug the USB cable in to the Atmel QT600 interface board. Atmel QTouch Studio

should now automatically connect to the kit. Touch data LED on USB interface
board now starts blinking. This shows that data is being sent by the sensor board.

14. Select Analysis mode, and then press the Start Reading button.

You should now be able to view the touch data signals and the state of each sensor.

Refer the Figure 4-7.

Figure 4-7. Virtual kit view.

In Analysis mode, sensors displayed in a light grey color are inactive, and the kit
will not respond to touches to these sensors. Sensors displayed in a light brown
color are active sensors, and the kit will respond to touches to these sensors.

Whenever a touch to an active sensor is detected, a green filled circle can be
seen indicating where the user touches the sensor.

10 Atmel AVR8015
32185A-AVR-01/12

When a touch to the active sensor is no longer detected, the color of the sensor
will go back to light brown again.

Figure 4-8. Sensor states.

4.2 Task 2: Set up a new project, select and include library, add touch files and ASF driver
files

4.2.1 Introduction

In this task, we will create a new project. We will add the necessary libraries, touch

files and assembler files.

4.2.2 Setting up the code

 Create a new project.
1. Open Atmel AVR Studio and create a new project. If AVR Studio is already

running, then use File → New → Project.
2. Select project type AVR GCC, select C Executable project from installed

templates and set project name to Task 2. Uncheck create directory, set Location,
and then click Finish, as shown in Figure 4-9.

Atmel AVR8015

 11

32185A-AVR-01/12

Figure 4-9. New project.

 Set the MCU type.
1. Select Device family as AVR UC3, 32-bit, part number as AT32UC3L064 (or

AT32UC3L0256) and then click OK, as shown in Figure 4-10.

Figure 4-10. Selecting the device.

 Add the main.c file.
In the solution explorer window,

1. Select and right click on Task 2.c, and click on remove option, as shown in Figure
4-11. Remove Task 2.c file from the project.

12 Atmel AVR8015
32185A-AVR-01/12

Figure 4-11. Removing the Task 2.c file.

2. Right click on Project file (Task 2 in this case) and add the existing main.c source

file to the project, as shown in Figure 4-12. main.c location is :
 ..\..\Exercises\QMatrix\Tasks\Task 2

 User can ignore the above steps in Section 4.2.2, if he intends to use the

Task 2 project available inside Exercises folder.

Figure 4-12. Including the main.c.

 Test compile to ensure all tools are installed OK.

Atmel AVR8015

 13

32185A-AVR-01/12

1. Select Build → Rebuild solution, and ensure that all tools are installed. Check for
error messages related to tools installation.

2. Any error messages related to tools installation; uninstall and install tools
properly. Please ignore the error messages related to code and header files, as
the necessary code and the files are not included at this stage.

 Select the library file.
1. Open the Library_Selection_Guide.xls file in the Task2 folder and click on the

QMatrix Tab (we are using Atmel QMatrix). Similarly, for Atmel QTouch, click on
the tab for QTouch.

2. Select the technology as QMatrix, MCU family as Atmel AT32UC3, MCU type as
32-bit, MCU as Atmel AT32UC3L, the Tool chain as GCC, Ports available for
QMatrix as CAT CSA-CSB GPIO function Maximum number of channels as 136,
Maximum number of rotors or sliders as 34. As you can see, it shows the
appropriate library file to be included and example project to be used.

NOTE As we are building a new project, note down which library file is to be included.

 Here, the library file to be included is libuc3l-qtouch-gnu.a.

 Include the library file.
1. Select Project menu and click on properties.
2. Select Tool chain tab from the left most window and select release profile from

the configuration window as shown in Figure 4-13.

Figure 4-13. Including the library file.

3. Click on Libraries option under AVR/GNU C Linker, select add library option and

add the library file libuc3l-qtouch-gnu.a as shown in Figure 4-14.
4. Click on add library path to set the appropriate path for the library as shown in

Figure 4-14.

The library file can be found at

..\..\library_files\

14 Atmel AVR8015
32185A-AVR-01/12

Figure 4-14. Library file and path included.

Here the path included is not relative to the output file. Output file is located inside

release folder (\AVR 8015\Completed_Tasks\QMatrix\Tasks\Task2\Release). The

library path has to come out of one location with respect to release folder, so that the

library file path included properly. By adding one “../ “in the path leads to control come

out of one location. Figure 4-15 represents the same.

 Missing the above step causes build error. Build error shows that the
corresponding file is not found.

Figure 4-15. Included library file path with respect to release folder location.

5. Similarly include library path and library file in Debug profile also.

 Include touch header files.
1. To use the touch keys, first we need to add #include “touch_api_at32uc3l.h” to

our list of include files. This will make the Atmel QTouch Library API available.

2. Add it under the following comment in the main.c file

/* now include touch_api_at32uc3l.h with the localization defined above */.
3. Open Project properties and select tool chain tab.

Atmel AVR8015

 15

32185A-AVR-01/12

4. Click on directories option under AVR/GNU C compiler and enter the path where

the touch_api_at32uc3l file is found. This file is found in the include folder
under Exercises.

5. Similarly, click on Directories and add the path for touch_config_at32uc3l.h
file. This file is found in the common_files folder.

6. The touch_config_at32uc3l.h file is where all the technology options are
configured.

 Enter the relative path as shown in the Figure 4-16 (similar to how you

added the library).

• IDE can use either relative or absolute file path depends upon the location of the

file

• If the file to be included and project folder (Task 2 in this case) are in the same

drive, relative path (is a path relative to the output file of the application) or

absolute path can be used. Here output file is located in Task 2 →Release folder

• In the case of relative path, please ensure path of the file is included with respect

to project output file location (Task2 → Release folder) as shown in Figure 4-16

Figure 4-16. Included directories (relative path).

 Please ensure that the file path is added relative to output file location.
Missing this step causes build error. Build error shows that the
corresponding file is not found.

• If both are in different drives, absolute path gets selected by IDE, as shown in

Figure 4-17

16 Atmel AVR8015
32185A-AVR-01/12

Figure 4-17. Included directories (absolute path).

7. Similarly include paths for both touch_api_at32uc3l.h and

touch_config_at32uc3l.h files in Debug profile also, as shown in Figure 4-18.

Figure 4-18. Included directories in debug profile.

 Adding drivers from ASF.
1. We need to add the necessary driver files to the project. This can be done by

adding the drivers from the AVR Software Framework using Atmel AVR Studio 5.
2. Go to Project properties → Toolchain, in the Configuration tab select All

configurations from the drop down list.
3. Right click on the project name and select the option “Select drivers from ASF”.

Refer to Figure 4-19.

Atmel AVR8015

 17

32185A-AVR-01/12

Figure 4-19. Selecting drivers from ASF.

4. ASF Driver Selection-No defined board warning occurs. Press OK to continue.
This opens the driver selection wizard. See Figure 4-20.

Figure 4-20. No board defined warning.

5. Add the following modules and press Next to continue.

o CPU – PM - Power Manager (Driver)

o GPIO - General Purpose Input/Output (Driver)

o Timing – Timer/Counter (Driver)

o USART-Univ. Sync/Async Serial Rec/Trans (Driver)

See Figure 4-21 for selecting the modules to be added.

18 Atmel AVR8015
32185A-AVR-01/12

Figure 4-21. ASF driver selection wizard.

6. Next a summary of operations for the selected options will be displayed. You can
see that the necessary include paths are being added. Press Finish to finish
adding the ASF driver files.

Figure 4-22. Summary of operations for selected options.

Atmel AVR8015

 19

32185A-AVR-01/12

7. You can see that the corresponding directories and the library file for these files
are added to the project. Figure 4-23 shows the necessary library added in the
project properties.

Figure 4-23. Included libraries.

 Set the Optimization Level.

Please ensure the optimization level is set to Optimize for size (-Os) both in Release

and Debug profile. This option is available under Project → Properties → Toolchain

→ AVR/GNU C Compiler → Optimization.

 Please ensure the optimization level is configured in the project.

 Now save and build the project, and if all the steps mentioned above have
been followed, you should be able to build successfully with no errors.

4.3 Task 3: Create a virtual kit in design mode and verifying the pin configuration

 Create a virtual kit.
1. Launch Atmel QTouch Studio. Select Design Mode.
2. Design mode shall provide editable virtual kit. It allows users to add buttons,

wheels, sliders, and kit background image and select kit technology (QTouch or
QMatrix).

3. Check the Auto-assign Channels option.

Figure 4-24. Design mode.

20 Atmel AVR8015
32185A-AVR-01/12

4. On the File Menu, click New Design. In the Create New Design window, specify
the project ID, project name, kit canvas properties like Height and Width
(millimeters) and background (kit) image, and kit technology, along with a valid
number of sensors for the new project.

5. For this hands-on training, select QMatrix as the kit technology. Under sensors,
select the number of buttons as 0, wheel as 1, and slider as 0.

6. For the background image, select the image provided in the Task 3 folder named
F002-QT600-PANEL-QT16-image.

7. Assign channel numbers 0-3 to the wheel.

Figure 4-25. New design.

 Note down the Project ID.

8. Click on each sensor and adjust the height and width accordingly in the kit/sensor
configuration window. Refer to Figure 4-26.

Figure 4-26. Design mode.

9. Save the design in the same Task 3 folder.

Atmel AVR8015

 21

32185A-AVR-01/12

10. Notice that the wheel has been assigned to channels 0-3.
11. Notice the toolbar on the top left corner of the virtual kit window which is shown in

Figure 4-26 is used for adding wheels, sliders and buttons. Click on those icons
to add the corresponding sensor.

12. Add the sliders, wheels and buttons in the sequential order as displayed on the
sensor board.

13. Click on the slider icon and a slider gets added to the virtual kit. Similarly, click on
the wheel icon to add a wheel to the virtual kit. Refer to Figure 4-27.

Figure 4-27. Adding a slider and wheel.

14. Ensure that the channel numbers are assigned in the following sequence:
Wheel 0: 0-3
Slider 0: 4-7
Button group 3 to 10: 8-15
Wheel 1: 16-19
Slider 1: 20-23
Button group 13 to 20: 24-31
Wheel 2: 32-35
Slider 2: 36-39
Button group 23 to 30: 40-47
Wheel 3: 48-51
Slider 3: 52-55
Button group 33 to 40: 56-63

 Ensure the sensors are added to the project in the above sequence so that
the channels will also be assigned to the sensors in the above sequence.

15. Now adjust the height and width of the wheels and sliders.
16. Save the Design (File → Save Design) and close it.

 Make a note of the project ID.

 Make sure that the sensors have been assigned channels as mentioned
above.

22 Atmel AVR8015
32185A-AVR-01/12

 The macros for the pin configurability are defined in the

touch_config_at32uc3l.h.

Now build the project, and if everything has been done as per the guidelines given,

you should be able to build successfully with no errors.

4.4 Task 4: Configure the global options and enable/set the sensors

4.4.1 Setting up the code

 Initialize the library.

After this initial configuration, we need to initialize the Atmel QTouch Library. This is

done by calling touch_qm_sensors_calibrate (); Add the code given below under

the label: /* Initialize touch sensing. */ to initialize Touch Library.

touch_ret = touch_qm_sensors_calibrate ();

 if (touch_ret != TOUCH_SUCCESS)

 {

 while (1u);

 }

 Adding more Touch Library configuration.

Next, we need to set up some runtime global QMatrix parameters. For this add the

following macros under the label: /* QMATRIX GLOBAL SENSOR CONFIGURATION

INFO. */ in the structure static touch_qm_config_t qm_config.

QM_DI,

QM_NEG_DRIFT_RATE,

QM_POS_DRIFT_RATE,

QM_MAX_ON_DURATION,

QM_DRIFT_HOLD_TIME,

QM_POS_RECAL_DELAY,

QM_RECAL_THRESHOLD,

These macros are defined in the file touch_config_at32uc3l.h. Touch Library will

shift the value specified to the corresponding register offset of the CAT Module.

 Adding the timer ISR.

Call init_timer(); to configure timer ISR to fire regularly. Add this under the label

/* Configure timer to fire ISR regularly. */

Find this function and add the following code to it:

volatile avr32_tc_t *tc = EXAMPLE_TC;

 /* options for waveform generation. */

 static const tc_waveform_opt_t WAVEFORM_OPT = {

 .channel = EXAMPLE_TC_CHANNEL, /* Channel selection. */

 .bswtrg = TC_EVT_EFFECT_NOOP, /* Software trigger effect on

TIOB. */

 .beevt = TC_EVT_EFFECT_NOOP, /* External event effect on

TIOB. */

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4627&source=redirect�

Atmel AVR8015

 23

32185A-AVR-01/12

 .bcpc = TC_EVT_EFFECT_NOOP, /* RC compare effect on TIOB.

*/

 .bcpb = TC_EVT_EFFECT_NOOP, /* RB compare effect on TIOB.

*/

 .aswtrg = TC_EVT_EFFECT_NOOP, /* Software trigger effect on

TIOA. */

 .aeevt = TC_EVT_EFFECT_NOOP, /* External event effect on

TIOA. */

 .acpc = TC_EVT_EFFECT_NOOP, /* RC compare effect on TIOA:

toggle. */

 .acpa = TC_EVT_EFFECT_NOOP, /* RA compare effect on TIOA:

toggle (other possibilities are none, set and clear). */

.wavsel = TC_WAVEFORM_SEL_UP_MODE_RC_TRIGGER, /* Waveform

selection: Up mode with automatic trigger(reset) on RC compare. */

 .enetrg = 0u, /* External event trigger enable. */

 .eevt = 0u, /* External event selection. */

 .eevtedg = TC_SEL_NO_EDGE, /* External event edge selection. */

 .cpcdis = 0u, /* Counter disable when RC compare.

*/

 .cpcstop = 0u, /* Counter clock stopped with RC

compare. */

 .burst = 0u, /* Burst signal selection. */

 .clki = 0u, /* Clock inversion. */

 .tcclks = TC_CLOCK_SOURCE_TC3 /* Internal source clock 3,

connected to fPBA / 8. */

 };

 static const tc_interrupt_t TC_INTERRUPT = {

 .etrgs = 0u,

 .ldrbs = 0u,

 .ldras = 0u,

 .cpcs = 1u,

 .cpbs = 0u,

 .cpas = 0u,

 .lovrs = 0u,

 .covfs = 0u

 };

 /* initialize the timer/counter. */

 tc_init_waveform (tc, &WAVEFORM_OPT);

 /* set the compare triggers. */

 tc_write_rc (tc, EXAMPLE_TC_CHANNEL, EXAMPLE_RC_VALUE);

 /* configure Timer interrupt. */

 tc_configure_interrupts (tc, EXAMPLE_TC_CHANNEL, &TC_INTERRUPT);

 /* start the timer/counter. */

24 Atmel AVR8015
32185A-AVR-01/12

 tc_start (tc, EXAMPLE_TC_CHANNEL);

Find the function ISR tc_irq(void); and add the following code to it:

/* update the current time */

 current_time_ms_touch++;

 /* every 25th ms */

 if ((current_time_ms_touch % measurement_period_ms) == 0u)

 {

 /* set flag: it's time to measure touch */

 time_to_measure_touch = 1u;

 }

 /* clear the interrupt flag. This is a side effect of reading the

TC SR. */

 tc_read_sr (EXAMPLE_TC, EXAMPLE_TC_CHANNEL);

 Now it’s time to configure our first sensor.
1. We use the following API call to configure a set of buttons. The below is for

configuring sensors channels 8 to 15 as buttons 2 to 9.

for (i = 8u; i < 16u; i++)

 {

 touch_ret =

touch_qm_sensor_config (SENSOR_TYPE_KEY, (channel_t) i,

(channel_t) i, AKS_GROUP_1, 20u,

HYST_6_25, RES_1_BIT, 0u, &sensor_id);

if (touch_ret != TOUCH_SUCCESS)

 {

 while (1u); /* Check API Error return code. */

 }

 }

Where ‘i’ is the channel number assigned to a particular button. Place this under the

label /* Configure 8 single channel keys as Sensor's 2-9. */.

This tells Atmel QMatrix that the sensor corresponding to the particular sensor id

should be treated as a key and is assigned the i
th

channel. We will look at the other

parameters a little later.

Similarly configure the other buttons under the corresponding labels.

2. To enable a slider using channels 4, 5, 6, and 7 the following code is used:
 touch_ret =

 touch_qm_sensor_config (SENSOR_TYPE_SLIDER, (channel_t) 4u,

 (channel_t) 7u, AKS_GROUP_1, 30u, HYST_6_25,

 RES_8_BIT, 0u, &sensor_id);

 if (touch_ret != TOUCH_SUCCESS)

 {

 while (1u); /* Check API Error return code. */

 }

Atmel AVR8015

 25

32185A-AVR-01/12

Place this piece of code under the label

/* Configure a 4 channel Slider as Sensor 1. */

Similarly configure the other sliders under the corresponding labels.

NOTE The RES_8_BIT argument is the slider resolution.

3. Similarly, for enabling the rotor using channels 0, 1, 2, and 3 using the following
code:
 touch_ret =

 touch_qm_sensor_config (SENSOR_TYPE_ROTOR, (channel_t) 0u,

(channel_t) 3u, AKS_GROUP_1, 25u, HYST_6_25,

RES_8_BIT, 0u, &sensor_id);

 if (touch_ret != TOUCH_SUCCESS)

 {

 while (1u); /* Check API Error return code. */

 }

Place this piece of code under the label

/* Configure a 4 channel Rotor as Sensor 0. */

Similarly configure the other rotors under the corresponding labels. The other

arguments are not too important right now.

4. Add the following piece of code after the init_system(); call, after the label
 /* Configure the touch library sensors. */

 touch_ret = config_64ch_touch_keys_rotors_sliders ();

 if (touch_ret != TOUCH_SUCCESS)

 {

 while (1u); /* Check API Error return code. */

 }

 Configuring burst length.

1. Call qm_burst_length, to configure the burst length array starting index. Add this

against the label /* QMatrix burst length array starting index.*/ in the structure

static touch_qm_config_t qm_config.

2. Find this array and define the burst lengths for the sensors as below.
 32u, /* x0, y0 */

 32u, /* x1, y0 */

 32u, /* x2, y0 */

 32u, /* x3, y0 */

 48u, /* x4, y0 */

 48u, /* x5, y0 */

 48u, /* x8, y0 */

 48u, /* x9, y0 */

3. Similarly enter the burst length values for all the sensors up to (x9, y7).

 Somewhere to store time.

We are now almost ready to start taking measurements. Touch measurement is taken

by calling touch_qm_sensors_start_acquisition (current_time_ms_touch,

&qm_dma, NORMAL_ACQ_MODE, touch_qm_measure_complete_callback), but as you

can see, it expects an argument. This argument is used to keep track of time to allow

compensating for over-time drifting in the measured values. If you are not concerned

with drifting, you can pass this argument as zero.

26 Atmel AVR8015
32185A-AVR-01/12

We are using current_time_ms_touch as a simple counter to keep track of time.

p_qm_dma is a pointer to the dma channels used for Touch measurement.

qm_acq_mode specifies whether raw acquisition mode or normal acquisition mode is

being used. measure_complete_callback function is called by the Touch Library

once the QMatrix Touch measurement is complete. It provides pointers related to the

measured touch data and touch status. measure_data is QMatrix sensor status and

measured data pointer. touch_ret_t shows QTouch Library Error status.

 Filter functions.

This function is called after the library has made capacitive measurements, but before

it has processed them. The user can use this hook to apply filter functions to the

measured signal values (possibly to fix sensor layout faults).

Add this macro, QM_FILTER_CALLBACK, in the structure static touch_qm_config_t

qm_config after the label /* Filter callback function pointer */.

 We are now ready to perform a touch measurement.

Inside the main loop, under the label /* Start a touch sensors measurement process.

*/, add the following piece of code:

touch_ret =

 touch_qm_sensors_start_acquisition (current_time_ms_touch,

 &qm_dma, NORMAL_ACQ_MODE,

 touch_qm_measure_complete_callback);

 if ((touch_ret != TOUCH_SUCCESS)

 && (touch_ret != TOUCH_ACQ_INCOMPLETE))

 {

 while (1u);

 /* Reaching this point can be due to -

1. The api has retured an error due to a invalid input parameter.

2. The api has been called during a invalid Touch Library state. */

 }

 Build the code.

It should build successfully with no errors or warnings.

4.4.2 Further explanation

Most of the function calls used in this task are quite simple and self explanatory. The

most complex line is the touch_qm_sensor_config() function, so let’s look closer at

this:

touch_ret_t touch_qm_sensor_config (sensor_type_t sensor_type,

channel_t from_channel,

channel_t to_channel,

aks_group_t aks_group,

threshold_t detect_threshold,

hysteresis_t detect_hysteresis,

resolution_t position_resolution,

uint8_t position_hysteresis,

sensor_id_t * p_sensor_id);

Atmel AVR8015

 27

32185A-AVR-01/12

The parameters are as follows:

• sensor_type can be of type key, rotor or slider

• from_channel the first channel in the sensor group

• to_channel the last channel in the sensor group

• aks_group which AKS
®
 group (if any) the sensor is in

• detect_threshold the sensor detection threshold

• detect_hysteresis the sensor detection hysteresis value

• position_resolution the resolution of the reported position value

• position_hysteresis the hysteresis of the reported position value

• p_sensor_id The sensor id value of the configured sensor is updated by

the Touch Library

NOTE The range of position_hysteresis value is from 0 to 7.

4.5 Task 5: Use of the Debug Interface

4.5.1 Introduction

The debug interface is used to communicate various touch sensor information to the

computer running Atmel QTouch Studio. The debug interface as seen from the Atmel

AT32UC3L is implemented completely in firmware. This is to be added only for

debugging purposes.

4.5.2 Setting up the code

 Add the source files.

• QDebug.c

• QDebugTransport.c

• SPI_Master.c

These source files with the corresponding header files are present in Task 5 folder.

1. QDebug.c, QDebugTransport.c, and SPI_Master.c, and its corresponding

headers can also be found in the qebug folder.
2. The debug interface is used to communicate various touch sensor information to

a computer running Atmel QTouch Studio.
3. In the solution explorer tab in Atmel AVR Studio, right click the project and select

Add Existing File, and then select the above mentioned source files and the
corresponding header files from Task 5 folder. Alternatively, you can drag and
drop the file onto the project. Similarly include the other source files.

4. The Atmel QT600 interface board and QTouch Studio can be used to read touch
data from any application based on the QTouch Library. Here we are using
USART SPI mode as the communication interface.

5. Open the Project properties Window, select tool chain tab and click on Directories
option below AVR/GNU C compiler, and specify the right paths for all three files
(enter the relative path). Make sure those directories paths are included both in
Release and Debug profile.

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4627&source=redirect�

28 Atmel AVR8015
32185A-AVR-01/12

 Add the Include files.

Include the following header file in the main.c file below the label:

/* Includes for Touch Debug interface */

#include "QDebug.h"

 Adding code.

1. In the QDebugSettings.h file, add the project ID (same project id given to the

virtual kit image in Task3) similar to the below format, under the label
/* Define Custom project as the project id of the virtual kit */ #define
CUSTOM_PROJECT Project ID (ID given to the virtual kit).

2. Assign the project ID under the label
/* Set up project info */.
#define PROJECT_ID CUSTOM_PROJECT.

3. Define the communications protocol. In this hands-on training, we are using the
SPI protocol.
#define QDEBUG_SPI, under the label /* Edit project Info */.

4. In main.c, add the code INTC_register_interrupt (&touch_acq_done_irq,

AVR32_CAT_IRQ, AVR32_INTC_INT3); under the comment /*Register the Touch
Library CAT interrupt handler to the interrupt controller… */ before #endif

5. In main.c, call the function QDebug_Init(); under the label /*Initialize the debug
interface */.

6. In main.c, add this piece of code under the label /* Send out the Touch debug
information data each time when Touch measurement process is completed. */

QDebug_SendData (p_qm_measure_data->acq_status);

7. In main.c, call the function QDebug_ProcessCommands(); under the label

/* Process any commands received from QTouch Studio. */.

 Build the code.
1. It should build successfully with no errors or warnings.
2. Now connect the kit as shown in Task 1.
3. Program the code.
4. Unplug the squid programming cable that is connected between Atmel QT600

MCU board and the Atmel AVR JTAGICE mkII. Insert the 10-pin cable for
streaming touch data.

5. Launch Atmel QTouch Studio and switch to Analysis mode.
6. Check if your kit gets connected.
7. Switch to Analysis mode and click on Start Reading button.
8. Test whether you are able to detect touch and see it on QTouch Studio or not. In

the Data view you can see the values of reference, signal, and delta and the state
of each sensor.

4.6 Task 6: Analysis mode

4.6.1 Introduction

 Analysis mode has a scalable image of the connected kit. It will show touch

events such as button presses, wheel use, and slider use. The toolbar buttons in

the virtual kit view window shall be used to perform zoom-in, zoom-out, auto fit

and auto code generation operations.

 The Analysis mode can be selected by using the radio buttons in the Control

view. QTouch Studio reads out the channel to sensor mapping for an AVR

Atmel AVR8015

 29

32185A-AVR-01/12

QTouch Kit when it is connected to the PC. Using this information, the image of

the kit will be updated.

 As explained during Task 1, sensors displayed in a light grey color are inactive,

and sensors displayed in a light brown color are active sensors. Whenever a

touch to an active sensor is detected a filled circle indicating where the user

touches the sensor is drawn. The filled circle increases when the delta

increases, and changes color when the threshold is reached.

 When a touch to the active sensor is no longer detected, the color of the sensor

will go back to light brown again. The user shall be able to edit sensor

configuration options (non-design options) and kit configuration options (non-

design options) in Analysis mode.

4.6.2 Configuring the kit/sensors

 Adjacent Key Suppression
®
 (AKS).

1. Open Kit/Sensor Configuration window, select Button0 and configure the AKS
Group as AKS_GROUP_1.

2. Similarly, configure all the sensors as AKS_GROUP_1.
3. Now, if you touch more than 1 button at the same time, only one is detected.

 In designs where the sensors are close together or set for high sensitivity,

multiple sensors might report detect simultaneously if touch is near them. To

allow applications to determine the intended single touch, the touch library

provides the user the ability to configure a certain number of sensors in an AKS

group.

 When a group of sensors are in the same AKS group, only the first, strongest

sensor will report detection. The sensor reporting detection will continue to

report detection even if another sensor’s delta becomes stronger. The sensor

stays in detect until its delta falls below its detection threshold, and then, if any

more sensors in the AKS group are still in detect, the strongest will report

detection.

 And so at any given time, only one sensor from each AKS group will be reported

to be in detect.

Figure 4-28. Modifying kit/sensor configuration.

30 Atmel AVR8015
32185A-AVR-01/12

 Modify all global and sensor parameters runtime as shown in Figure 4-31.

 Detect threshold.
1. Open the Kit/Sensor Configuration window, select any sensor and change the

values of the detect threshold. Click on Write to kit.
2. Observe how sensitivity of that sensor changes with different values.
3. The lower the value, the more sensitive is the sensor.

 A sensor’s detect threshold defines how much its signal must drop below its

reference level to qualify as a potential touch detect. It has a range of between 3

and 255.

 For more details on all the configuration parameters, please refer to the

Atmel QTouch Library User Guide.

 Maximum ON duration.
1. Click on the View Menu and click on Graph View. The QTouch Graph view

window opens.
2. Select data set for channel 7 and observe what happens on touch.

Figure 4-29. Maximum ON duration = 0.

3. If a touch happens for a prolonged duration when the Maximum ON duration is
zero, the sensor remains in detect.

4. Open the Kit/Sensor configuration window.
5. Change the Maximum ON duration to 30 and the sensor automatically

recalibrates after six seconds.

Figure 4-30. Maximum ON duration = 30.

 If an object unintentionally contacts a sensor and results in touch detection for a

prolonged interval, it is usually desirable to recalibrate the sensor in order to

restore its function, perhaps after a time delay of some seconds. The Maximum

ON duration timer monitors such detections.

Atmel AVR8015

 31

32185A-AVR-01/12

4.7 Task 7: Design validation

4.7.1 Introduction

The design validation wizard is a tool used to validate the design by measuring and

logging values received from the kit.

4.7.2 Using the design validation wizard

1. Connect the kit and start a touch debug session.
2. Launch Atmel QTouch Studio and start the design validation wizard from the

Tools menu.

Figure 4-31. Selecting design validation wizard.

3. The design validation wizard opens.

Figure 4-32. Design validation wizard.

4. On the first page, it will ask you to click Measure button without touching any of
the sensors. Follow the instructions.

5. Click Next and follow subsequent instructions.

32 Atmel AVR8015
32185A-AVR-01/12

6. At the end, you will get a summary with details about each sensor and
recommended settings.

7. You can either write these recommended settings to the kit or project file.
8. Save the design and project file and reopen them again to see if the changes

have been made.

4.8 Task 8: Log and analyze data

 Logging the data.
1. If the Auto-start Reading option is checked, then Atmel QTouch Studio will

automatically start reading touch data when a kit is connected.
2. If unchecked, you must click the Start Reading button to make QTouch Studio

start reading touch data. Checking the Log data to file checkbox will make
QTouch Studio log data read from the kit.

3. As soon as reading has stopped, either because the user has clicked on the Stop
Reading button or the kit has been disconnected from the PC, a dialog will popup
to let the user specify a location and file name to save the logged data.

4. Note that clicking the Cancel button will simply discard all data logged and close
the dialog.

 Analysis and debugging.
1. Open a new Excel spreadsheet and import data from the logged data.
2. Select tab and semicolon as delimiters and save the file.

Figure 4-33. Importing data.

3. You can also create charts, which help in analyzing the logged data and
observing variations. In the Excel spreadsheet named Formatted_Log_Chart, you
can observe the delta variations for sensor 7 in the form of a chart as depicted.

 Ensure the size of the logged data is less than 65535 as the Excel

spreadsheet can accommodate up to 65535 data values on each column.

Atmel AVR8015

 33

32185A-AVR-01/12

5 Summary

The main goal with this hands-on training was to learn how to use Atmel QT600 set

up and use the Atmel QTouch suite (with Atmel AVR Studio 5) and the QT600 kit.

• Set up the hardware

• Create a project from scratch and include libraries and other header files

• Create a virtual kit, use the pin configuration wizard and configure technology

options

• Configure global options and enable sensors

• Add buttons, sliders and wheels

• Use Analysis mode

• Use Design validation wizard

• Log and analyze data

In addition, you have learned how to use the Atmel QTouch Studio GUI, to write C

code, debug your code and program the device.

NOTE All the include files and other source files in this hands-on training have been taken
from Atmel QTouch Library version 4.4. If a new library version is released, please
use the latest files from it.

34 Atmel AVR8015
32185A-AVR-01/12

6 Atmel technical support center

Atmel has several support channels available:

• Web portal: http://support.atmel.no/ All Atmel microcontrollers

• Email: touch@atmel.com All Atmel touch products

• Email: avr@atmel.com All Atmel AVR products

• Email: avr32@atmel.com All 32-bit Atmel AVR products

Please register on the web portal to gain access to the following services:

• A rich FAQ database

• Easy submission of technical support requests

• A history of all your past support requests

• Atmel microcontrollers’ newsletters

• Information about available trainings and training material

http://support.atmel.no/�
mailto:touch@atmel.com�
mailto:avr@atmel.com�
mailto:avr32@atmel.com�

Atmel AVR8015

 35

32185A-AVR-01/12

7 Table of contents

Features... 1

1 Introduction .. 1

2 Document overview ... 2

3 Requirements ... 3

3.1 Software .. 3

3.2 Hardware ... 3

3.3 Atmel QT600 system description .. 3

3.3.1 Block diagram.. 4

3.3.2 Pin schematic .. 4

4 Assignment .. 5

4.1 Task 1: Connect the tools and run a test application .. 5

4.1.1 Introduction.. 5

4.1.2 Connecting the hardware .. 8

4.2 Task 2: Set up a new project, select and include library, add touch files and

ASF driver files .. 10

4.2.1 Introduction.. 10

4.2.2 Setting up the code ... 10

4.3 Task 3: Create a virtual kit in design mode and verifying the pin configuration 19

4.4 Task 4: Configure the global options and enable/set the sensors 22

4.4.1 Setting up the code ... 22

4.4.2 Further explanation ... 26

4.5 Task 5: Use of the Debug Interface... 27

4.5.1 Introduction.. 27

4.5.2 Setting up the code ... 27

4.6 Task 6: Analysis mode .. 28

4.6.1 Introduction.. 28

4.6.2 Configuring the kit/sensors .. 29

4.7 Task 7: Design validation .. 31

4.7.1 Introduction.. 31

4.7.2 Using the design validation wizard .. 31

4.8 Task 8: Log and analyze data ... 32

5 Summary... 33

6 Atmel technical support center .. 34

7 Table of contents ... 35

32185A-AVR-01/12

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
16F, Shin Osaki Kangyo Bldg.
1-6-4 Osaki Shinagawa-ku
Tokyo 104-0032
JAPAN
Tel: (+81) 3-6417-0300
Fax: (+81) 3-6417-0370

 © 2012 Atmel Corporation. All rights reserved.

Atmel
®
, Atmel logo and combinations thereof, AVR

®
, AVR Studio

®
, Adjacent Key Suppression

®
, AKS

®
, megaAVR

®
, QTouch

®
, STK

®
,

tinyAVR
®
, XMEGA

®
, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows

®
 and others

are registered trademarks or trademarks of Microsoft Corporation in U.S. and or other countries. Other terms and product names may
be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

http://www2.atmel.com/�

