\qquad

Comparing Unlike Fractions- Step-by-Step Lesson

Compare the following fractions by using the symbol $>$, <, or =.

The fractions can be thought of as sets of blocks. Some blocks are colored, while others are clear. We visualize the blocks below.

$$
\frac{6}{8}
$$

There are a different number of blocks in each set. Also, a different number of the blocks are colored. What the problem is asking us is which block set is more complete or closer to 1 full set of blocks?

It is very tough to compare these block sets because there are a different number of blocks in the set. What if we were able to get the same number of blocks in each set? We can easily do that by finding a number that each denominator evenly goes into. In this case, 24 works.

8 goes into 24; 3 times.
This would mean that we multiply the numerator by 3 .

$$
\frac{6}{8} \quad \times 3 \quad=\frac{18}{24}
$$

Name \qquad Date \qquad

6 goes into 24; 4 times.
This would mean that we multiply the numerator by 4 .
$\frac{2}{6}$
x 4
$=\frac{8}{24}$

We can now restate this problem from:

$$
\frac{6}{8}---\frac{2}{6}
$$

to:

$$
\frac{18}{24}---\frac{8}{24}
$$

We just need to compare the numerators now. (18>8)

$$
\frac{18}{24}>\frac{8}{24}
$$

or

$$
\frac{6}{8}>\frac{2}{6}
$$

