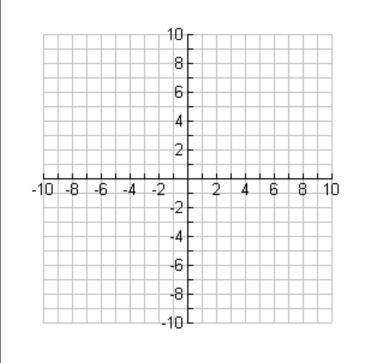

## Google vocabulary that you don't recognize

1. Graph the function  $y = x^2$  - Check with calculator: Enter in Y= and explore TABLE

| X  | $y = x^2 \dots$ |
|----|-----------------|
| -3 | $(-3)^2 =$      |
| -2 |                 |
| -1 |                 |
| 0  |                 |
| 1  |                 |
| 2  |                 |
| 3  |                 |
|    |                 |


- The graph of a quadratic function is called
- The Vertex of this graph is the point \_\_\_\_\_
- The minimum value of this function is \_\_\_\_
- Sketch the line of symmetry
- The parabola opens \_\_\_\_\_



2. Graph the function  $y = -x^2 + 2x + 1$  – Enter function in Y=; explore the TABLE (2<sup>nd</sup> GRAPH)

| X  | $y = -x^2 + 2x + 1 \dots$     |
|----|-------------------------------|
| -3 | $-(-3)^2 + 2(-3) + 1 = \dots$ |
| -2 |                               |
| -1 |                               |
| 0  |                               |
| 1  |                               |
| 2  |                               |
| 3  |                               |
| 4  |                               |

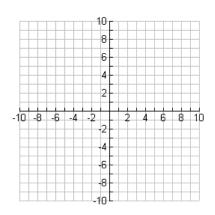
- The graph of a quadratic function is called
- The Vertex of this graph is the point \_\_\_\_\_
- The maximum value of this function is \_\_\_\_\_
- Sketch the line of symmetry
- The parabola opens \_\_\_\_\_



## Finding the coordinates of the vertex of a quadratic function $f(x) = ax^2 + bx + c$

- 3. Go to my website, get into the QUADRATIC FUNCTIONS page, click on the document <u>24-SK-Quadratic Functions Find Vertex</u>. Read through and complete the following.
  - a) How do you find the x-coordinate of the vertex?
  - b) How do you find the y-coordinate of the vertex?
  - c) Go through the first two examples in the power point and take notes below

EXAMPLE 1


a) Write the function

b) Find the vertex – show work

The vertex is the point V(.....)

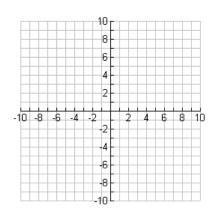
c) graph

|   | · / O · I |  |
|---|-----------|--|
| X | y         |  |
|   |           |  |
|   |           |  |
|   |           |  |
|   |           |  |
|   |           |  |
|   |           |  |
|   |           |  |



The minimum value of this function is

**EXAMPLE 2** 


d) Write the function

e) Find the vertex – show work

The vertex is the point  $V(\dots)$ 

f) graph

|   | -) Bp |
|---|-------|
| X | y     |
|   |       |
|   |       |
|   |       |
|   |       |
|   |       |
|   |       |
|   |       |



The minimum value of this function is

\_\_\_\_\_

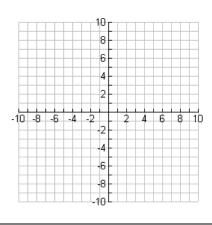
## Using the quadratic formula to solve quadratic equations of the form $ax^2 + bx + c = 0$

4. Go to my website, get into the QUADRATIC FUNCTIONS page, click on the document <a href="26-SK-Quadratic Formula">26-SK-Quadratic Formula</a> Read through and complete the following.

To solve the quadratic equation of the form  $ax^2 + bx + c = 0$ 

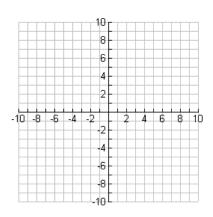
We use the quadratic formula (write it here)

EXAMPLE 1 – bottom of slide 3 and slide 4


- a) Solve the equation  $x^2 6x + 8 = 0$
- b) Give the values of a = b = c =
- c) Solve by using the quadratic formula show work

EXAMPLE 2 – Slides 5 and 6

- a) Solve the equation  $2x^2 10x + 3 = 0$
- b) Give the values of a = b = c =
- c) Solve by using the quadratic formula show work


d) Graph

| X | $y = x^2 - 6x + 8$ |
|---|--------------------|
| 0 |                    |
| 1 |                    |
| 2 |                    |
| 3 |                    |
| 4 |                    |
| 5 |                    |
| 6 |                    |



d) graph

| X  | $y = 2x^2 - 10x + 3$ |  |
|----|----------------------|--|
| -1 |                      |  |
| 0  |                      |  |
| 1  |                      |  |
| 2  |                      |  |
| 3  |                      |  |
| 4  |                      |  |
| 5  |                      |  |



5. Read the power point presentation **25-APP-Quadratic Functions** 

## Example

height?

A fireworks shell is launched into the air. The shell's height (in feet) h = f(t) at time t seconds is modeled well by the function  $f(t) = -16t^2 + 200t + 1$ . When should the shell explode so that it goes off at the maximum height? What is that



- a) Show here the work to answer the questions on this problem
  - i. When should the shell explode so that it goes off at the maximum height?
  - ii. What is that maximum height?

b) Now find h(4) and interpret in context.

c) Find the h-intercept and interpret in context.