Date
Campus
\qquad

All answers are to be in simplest form. A scientific calculator may be used. No notes, no books, no homework may be used. This is a practice test consisting of basic concepts presented. It reflects what could be on the actual test. Students are encouraged to review all of the material presented.
$x=-\frac{1}{2 a}$ Find y by substituting the x value back in. Note that $f(x)$ is replaced by y.
Find the vertex of the parabola.

1) $f(x)=\frac{1}{3} x^{2}-\frac{4}{3} x-\frac{20}{3} \frac{\frac{3}{3}}{2\left(\frac{1}{3}\right)}=\frac{\frac{4}{3}}{\frac{2}{3}}$

Answer: $(2,-8)$

$$
\begin{aligned}
& y=\frac{1}{3}\left(\frac{2}{1}\right)^{2}-\frac{4}{3}\left(\frac{2}{1}\right)-\frac{20}{3} \\
& y=\frac{1}{3}\left(\frac{4}{4}\right)-\frac{8}{3}-\frac{20}{3} \\
& y=\frac{4}{3}-\frac{8}{3}-\frac{20}{3}=-\frac{24}{3}=-8
\end{aligned}
$$

2) $f(x)=3 x^{2}+7 \quad f(x)=3 x^{2}+0 x+7$

$$
\text { Answer: } \begin{aligned}
(0,7) & x=\frac{-0}{2(3)}=\frac{0}{6}=0 \\
y & =3(0)^{2}+0(0)+7 \\
y & =7
\end{aligned}
$$

Vertex:(0,7)
Substitute a zero term for missing b or c terms. The a term cannot be missing or it is no longer a quadratic.

Use the graph of \mathbf{f} to evaluate each expression.
3) $f(3), f(5) \quad$ Given the x value, what is the y value?

$$
f(3)=-2 \quad f(5)=-2
$$

Answer: -2,-2

For the given $f(x)$, find the following and graph the function.

$$
f(x)=-5 x^{2}+0 x+0
$$

4) $f(x)=-5 x^{2} x=\frac{-0}{2(-5)}=0 \quad y=-5(0)^{2}$
a) Identify the vertex _(0,0)
b) What is the axis of symmetry? $X=O$ Express as an equation.
c) Does the graph open up or down? down

Opens down when the a term is negative.
Vertex is the high point.
d) Will the vertex results in a minimum or maximum value? $m A x i m u m$
e) Indentify the minimum or maximum y-value. y value of the vertex
f) Evaluate $f(-2)-20 \quad f(-2)=-5(-7)^{3} \Rightarrow f(-2)=-5(4)$
g) Evaluate $f(3)-45 \quad \rho(3)=-5(3)^{2} \Rightarrow \rho(3)=2(-2)=-20$
g) Evaluate $f(3)-45 \quad f(3)=-5(3)^{2} \Rightarrow f(3)=-5(9)$
h) Graph the function.

Answer:

For the given equation, find the following then graph and solve the equation.
5) $\quad-x^{2}+8 x+0=0 \quad y=-(4)^{2}+8(4)$
5) $f(x)=8 x-x^{2}=\frac{-8}{2(-1)} \Rightarrow x=\frac{-8}{-7} \Rightarrow x=4$
a) Identify the vertex $\quad(4,16) \quad, \quad y=16$
b) What is the axis of symmetry? $x=4$
c) $\begin{array}{r}\text { a term is negative so opens down } \\ \text { Does the graph open up or down? down }\end{array}$
f) Graph the equation.
g) What is(are) the solution(s) to the equation? $X=0,8$

If the solution is not real, say so.
$\begin{array}{lll}0=8 x-x^{2} & \text { Factor, use the quadratic } \\ 0=-x^{2}+8 x & \text { equation or complete the } & \\ 0=-x(x-8) & -x=0 & x-8=0 \\ 0=8 & \text { square to solve. } & \text { Set each factor the contains a } \\ 0=0 & x=8 & x=0\end{array}$

Answer: $(4,16)$

Solve quadratic equation by factoring.

$$
\begin{array}{cc}
6) & x^{2}+2 x-80=0 \\
(x+10)(x-8)=0 & x+10=0 \\
x=-10 \quad x=8 & x-10 \\
x=-10 \\
& x-8=0 \\
& +8 \\
& x=8
\end{array}
$$

Answer: -10, 8
Use the square root property to solve the equation.
7) $\sqrt{(x+7)^{2}}=\sqrt{3}$

Because you are taking the square root on each side, make sure to use plus/minus.

$$
\begin{gathered}
x+7= \pm \sqrt{3} \\
-7=-7 \pm \sqrt{3} \\
x=-7 \pm \sqrt{2}
\end{gathered}
$$

Answer: $-7 \pm \sqrt{3}$
8) $\sqrt{(7 x+8)^{2}} \sqrt{2} \sqrt{2}$

Answer: $\frac{-8 \pm \sqrt{2}}{7}$

$$
\begin{aligned}
7 x+8 & = \pm \sqrt{2} \\
-8 & -8 \\
\frac{7 x}{7} & =\frac{-8 \pm \sqrt{2}}{7} \\
x & =\frac{-8 \pm \sqrt{2}}{7}
\end{aligned}
$$

Find the term that should be added to the expression to form a perfect square trinomial. Write the resulting perfect square trinomial in factored form.

$$
\left.9{ }_{9} x^{2}+5 x=1 \frac{b}{2}\right)^{2} \text { Add to both sides }
$$

Answer: $\frac{25}{4} ;\left(x+\frac{5}{2}\right)^{2}$
$\left(\frac{5}{2}\right)^{2}=\frac{25}{4}$

Factored Form $\left(x+\frac{5}{2}\right)^{2}$

Solve the equation by completing the square.

While this could be factored other way $\sqrt{(x+1)^{2}} \quad=\sqrt[\pm]{36}$
the question asks for completing the square.

$$
\begin{gathered}
x+1= \pm 6 \\
-1=-1 \pm 6 \\
x=-1 \pm \quad x=-1-6 \\
x=-1+6 \quad x=-7 \\
x=5 \quad
\end{gathered}
$$

11)

$$
\begin{aligned}
& \begin{array}{ll}
\frac{5 x^{2}}{3}+\frac{10 x}{5}=-2 \\
-5 \pm \sqrt[5]{15} & \left(\frac{b}{2}\right)^{2} \\
\left.\frac{b}{2}\right)^{2}
\end{array} \begin{array}{l}
\text { Divide by the a coefficient to } \\
\text { create a leading coefficient of } 1 .
\end{array} \\
& \text { Answer: } \frac{-5 \pm \sqrt{15}}{5} \\
& x^{2}+2 x+\frac{\left(\frac{2}{2}\right)^{2}}{}=\frac{-2}{5}+\left(\frac{2}{2}\right)^{2} \\
& \begin{array}{ll}
x^{2}+2 x+1 & =\frac{-2}{5}+1\left(\frac{5}{5}\right) \\
\sqrt{(x+1)^{2}} & =\sqrt[3]{\frac{3}{5}}
\end{array} \\
& x+1= \pm \frac{\sqrt{3}}{\sqrt{5}} \cdot \sqrt{5} \quad \text { Rationalize the denominator } \\
& x+1=\frac{ \pm \sqrt{15}}{5} \\
& \text { or } x=-1 \pm \frac{\sqrt{15}}{5} \\
& x=\frac{-5 \pm \sqrt{15}}{5}
\end{aligned}
$$

Factor out the GCF to make it easier.

$$
\begin{aligned}
& \text { 12) } \begin{array}{l}
2 x^{2}-4 x-6=0 \\
2\left(x^{2}-2 x-3\right)=0
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
x^{2}-2 x-3=0 \\
+3 \\
\left(\frac{b}{2}\right)^{2}+3 \\
\left.x^{2}-2 x+\frac{\left(\frac{-2}{2}\right)^{2}}{}=3+\frac{(-2}{2}\right)^{2}
\end{gathered}
$$

GCF does not play a role in a solution.

While this could be factored other ways, the question asks for completing the square.

$$
x^{2}-2 x+\frac{x}{\sqrt{(x-1)}}=3+1
$$

$$
x-1= \pm 2
$$

$$
x=1-2
$$

$$
x=1+2
$$

$$
x=3
$$

$$
\begin{gathered}
\text { Answer: } 3,-1 \\
\text { 13) } x^{2}+x+1=0 \\
\left(\frac{b}{2}\right)^{2}-1=1 \quad\left(\frac{b}{2}\right)^{2} \\
x^{2}+x+\frac{\left(\frac{1}{2}\right)^{2}}{2}=-1+\frac{\left(\frac{1}{2}\right)^{2}}{x^{2}+x+\frac{1}{4}}=-1+\frac{1}{4} \\
\sqrt{\left(x+\frac{1}{2}\right)^{2}} \stackrel{ \pm}{-\frac{3}{4}}
\end{gathered}
$$

$$
\begin{aligned}
& 1+1+2 \\
& x=1 \pm 2
\end{aligned}
$$

$$
x=-1
$$

$$
\begin{aligned}
& x+\frac{1}{2}= \pm \sqrt{-3} \\
& x+\frac{1}{2}= \pm \frac{i \sqrt{3}}{2} \\
& -\frac{1}{2} \\
& x=-\frac{-1}{2} \pm \frac{1 \sqrt{3}}{2}
\end{aligned}
$$

Answer: $\frac{-1 \pm i \sqrt{3}}{2}=\frac{-1}{2} \pm \frac{\dot{j} \sqrt{3}}{2} \quad a+b i$ form
Solve the formula for the specified variable.

$$
\begin{aligned}
& \frac{14)}{\pi h d}=\frac{\pi r^{2} h d \text { for } r}{\pi h d} \quad \pm \sqrt{\frac{M}{\pi h d}}=r \\
& \pm \sqrt{\frac{r}{\pi h}}=\sqrt{r^{2}}
\end{aligned}
$$

Answer: $\mathrm{r}= \pm \sqrt{\frac{\mathrm{M}}{\text { rh }}}$
Use the discriminant to determine the number of real solutions.

$$
\text { Look@ b } b^{2}-4 a c
$$

15) $x^{2}-4 x-2=0$

Answer: Two real solutions

$$
\begin{aligned}
& a=1 \quad b=-4 \quad c=-2 \\
& (-4)^{2}-4(1)(-2) \\
& 16+8 \\
& 24
\end{aligned}
$$

Number of Real Solutions \qquad

$$
\begin{aligned}
& b^{2}-4 a c>02 \text { real } \\
& b^{2}-4 a c=0 \text { Ireal } \\
& b^{2}-4 a c<02 \text { root } \\
& \text { real }
\end{aligned}
$$

16) $x^{2}-4 x+6=0 \quad a=1 \quad b=-4 c=6$
Number of Real Solutions \qquad

Answer: No real solutions

$$
\begin{gathered}
(-4)^{2}-4(1)(6) \\
16-24=-8
\end{gathered}
$$

Solve the equation using the quadratic formula. Write complex solutions in standard form.

$$
a=1 \quad b=1 \quad c=4
$$

17) $x^{2}+x+4=0$

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\begin{gathered}
\frac{-1 \pm \sqrt{(1)^{2}-4(1)(4)}}{2(1)}=\frac{-1 \pm \sqrt{1-16}}{2}=\frac{-1 \pm \sqrt{-15}}{2}=\frac{-1 \pm \lambda \sqrt{15}}{2} \\
\frac{-1}{2} \pm \frac{i \sqrt{15}}{2} \quad \text { Correct form for a+bi }
\end{gathered}
$$

$$
\begin{array}{ll}
\begin{array}{l}
\text { Answer: }-\frac{1}{2} \pm i \frac{\sqrt{15}}{2} \\
a=7 \quad b=5 \quad c=4 \\
18 x^{2}+5 x+4=0
\end{array} & \frac{-5 \pm \sqrt{(5)^{2}-4(7)(4)}}{2(14)}=\frac{-5 \pm \sqrt{25-112}}{28} \\
& \frac{-5 \pm \sqrt{-87}}{28}=-\frac{5 \pm i \sqrt{87}}{14}=\frac{-5}{14} \pm \frac{\sqrt{87}}{14}
\end{array}
$$

$$
\text { Answer: }-\frac{5}{14} \pm \mathrm{i} \frac{\sqrt{87}}{14}
$$

Use the given substitution to solve the equation.

$$
\begin{aligned}
& \quad 19) \quad x^{4}-11 x^{2}+10=0, \underline{u=x^{2}} \quad\left(x^{2}\right)^{2}=x^{4} \\
& u^{2}-\| u+10=0 \\
& (u-10)(u-1)=0 \\
& U^{=}=10 u=1 \\
& \sqrt{x^{2}}=\sqrt{10} \sqrt{x^{2}}=\sqrt{1} \quad I \sqrt{1}= \pm 1 \\
& x= \pm \sqrt{10} \quad x= \pm 1
\end{aligned}
$$

$$
\text { Answer: } \pm 1, \pm \sqrt{10}
$$

Solve the equation.
$u=\sqrt{x}$
20) $\mathrm{x}-11 \sqrt{\mathrm{x}}+30=0$ Answer: 25, 36
$u^{2}-11 u+30=0$
$(u-5)(u-6)=0$

$$
\begin{gathered}
u=5 u=6 \\
(\sqrt{x})^{2}=(5)^{2}(\sqrt{x})^{2}=(6)^{2}
\end{gathered}
$$

$$
x=25 \quad x=36
$$

