
C H A P T E R

33Touring Utilities and
System Features

•

S K I L L S C H E C K

Before beginning this chapter, you should be able to:

• Access the system

• Run programs to obtain system and user information

• Properly communicate basic instructions to the shell

• Navigate to other directories in the filesystem

• Use standard programs to create, examine, and

manage files

O B J E C T I V E S

After completing this chapter, you will be able to:

• Use utilities to locate lines containing specific criteria,

count elements, and sort lines of a file

• Manage input and output from utilities

• Employ shell special characters to give instructions

• Manage user processes

• Modify the computing environment

• Create and execute a basic shell script

71 •

72 • I N T R O D U C T I O N T O U N I X A N D L I N U X

This chapter completes the tour of the major features of the system including

communicating with the shell to execute processes, navigating the filesystem

and employing permissions. Getting work done in UNIX/Linux generally

entails asking the shell to execute utilities in specific, often complex ways. To

accomplish real work, we need to give the shell exact and detailed instructions

about what it should do, as well as what instructions it should pass to the needed

utilities. We can issue commands to tailor or modify many aspects of UNIX and

Linux to meet our particular needs. A functioning system also includes system

files, directories of programs, and a system of permissions for security.

• 3.1 Employing Fundamental Utilities
In the previous chapter, you used several programs, or utilities, to locate system

information and output it to the display. You also used utilities to remove, rename,

and manipulate user files. Each utility is a tool that performs a set of very specific

tasks. This section examines several new utilities. Some utilities read input from

files, modify the data that they read, and send the output to your screen, to a file,

or to another utility. Others provide information about the contents of a directory

or information about other utilities.

•

Listing the Contents of the Directory
We use ls to output the filenames listed in the current directory. We can also instruct

ls to provide more information by passing options as arguments.

� 1. List the files in the current directory with each of the following:

ls

ls -F

The ls utility simply lists all filenames. With the -F option, ls places a forward

slash at the end of the name of each directory. If you have any files that are

executable, they will each have an asterisk (*) after the name.

2. List the files in the current directory, but tell ls to provide a long listing:

ls -l (minus el)

The output is a list of filenames and other information, one file to a line. The

important part on each line is the file’s access permissions and other data

about the file.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 73

If a filename begins with a period, ls is programmed to treat it as a hidden

“housekeeping” file, and does not include it when you ask for a listing of

the directory’s filenames.

3. We can instruct ls to list the dot files in its output by including the appropriate

option. Enter:

ls

ls -a

When we include the -a (all) option to ls, it includes in the output all files in

the current directory, including the dot or hidden files. The files such as .profile,

.login, .cshrc, and so on are files read by shells and other programs when

they are started. We use them to convey instructions to our programs.

4. We can combine options to ls. Enter:

ls -alF

The output is the result of all three options. It includes all files, with the long

listing of information about each, and directories are marked with a slash.

•

Counting the Elements of a File
In Chapter 2, we used wc to count the number of lines, words, and characters in a file.

� 1. Enter the following command to examine the contents of a file created in

Chapter 2:

wc users_on

The output from the wc (word count, not water closet) utility consists of

four fields:

2 12 102 users_on

The meaning of each field in the output of the wc utility is shown here:

P E R M I S S I O N L I N K S O W N E R G R O U P S I Z E D A T E T I M E N A M E

drwxr-x- - - 3 cassy staff 4096 Jan 3 14:27 Desk

-rw-rw-r- - 1 cassy staff 62 Jan 5 08:14 cream-puff

TABLE 3-1 Fields in the Output of ls -l
•

In addition to counting the elements in files, we can instruct wc to count

the words, lines, and characters in the output of previous utilities in

a command line.

2. Redirect output to wc by entering:

date | wc

who | wc

The who utility outputs one line of information for each current user. The

| is instruction to connect the output from who to the input of wc, which

counts the elements. The wc utility then tosses the information that comes

from who and just outputs its count totals.

3. We have used the -l option with wc. There are others. Try each of the options

to wc we list in Table 3-2.

In each of the previous commands, we instructed the shell to pass two

arguments to wc. The first argument included a dash such as -c and was interpreted

as an option to output specific results. The second argument is interpreted as

the name of a file to examine.

74 • I N T R O D U C T I O N T O U N I X A N D L I N U X

O P T I O N O U T P U T

wc -l users_on The count of lines only.

wc -w users_on The count of words only.

wc -c users_on The count of characters only.

TABLE 3-2 Options for the wc Command
•

Combining Utility Options in Arguments
The wc utility, like most other utilities, interprets more than one argument. Several

questions arise: Can we issue multiple options? If so, must they be entered as

separate arguments or can they be combined? What is the impact of the order

of arguments?

� For example, enter the following commands:

wc -c -l users_on

wc -lc users_on

wc -cl users_on

Both the line count and the character count options are passed as arguments

to wc, and the results are displayed. Evidently it makes no difference what order

the arguments are entered (-lc or -cl), nor whether the options are entered as

separate arguments or combined in one argument (-c, -l, or -cl).

•

Sorting Lines in a File
Many files contain data concerning users or individuals. We have briefly looked

at /etc/passwd (the password file), which contains one line of information (a record)

for each user. Every time a new user is added to the system, a new line is added

(usually to the bottom of the file). As a result, the password file is not in a sorted

order. In the following exercise, you will sort lines from the password file.

To make visual examination easier, start by creating a file consisting of the

first portion of the password file.

� 1. Use head to create a file containing the first 20 lines of the password file on

your system by entering:

head -20 /etc/passwd > mypasswd

2. Examine the file by entering:

cat mypasswd

3. Output a sorted version of the file by entering:

sort mypasswd

cat mypasswd

The sort utility reads the file mypasswd into memory and rearranges the lines

into a sorted order. Output is displayed on the screen. The mypasswd file itself

is not modified; rather, its data is read, sorted, and written to your screen.

We can save the sorted version in a new file.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 75

76 • I N T R O D U C T I O N T O U N I X A N D L I N U X

4. Tell the shell to connect the output of sort to a file:

sort mypasswd > s-mypasswd

more s-mypasswd

The sorted version is redirected from the screen to the new file.

Employing Multiple Files with Utilities
We can also use the sort utility to sort multiple files.

� 1. Review the contents of two of your files by entering the following commands:

cat mypasswd

cat users_on

2. Use sort to sort the lines from the two files you just examined by entering:

sort mypasswd users_on | more

The contents of both files are read and sorted together. The resulting output

is the lines from mypasswd and users_on, merged together and sorted.

Examine the output. The sort utility reads both files (mypasswd and users_on)

and sorts all the lines that it reads from both files. The files are not sorted

individually. Neither the original users_on nor mypasswd file is changed.

3. Enter:

wc mypasswd users_on

more mypasswd users_on

Unlike sort, the wc utility operates on the files individually. It outputs the

stats for each file and then produces a total.

Examining the Order Used by sort
Although the output from sort is sorted, it is not like a dictionary sort.

� 1. Examine the output after entering:

sort users_on lost-days | more

In the sort order, lines beginning with numbers are output first, then lines

beginning with uppercase letters, and last, lines that begin with lowercase

letters. This is the same order that characters are listed in the ASCII

(American Standard Code for Information Interchange) order.

2. On most systems, you can examine the ASCII order by entering this

command:

man ascii

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 77

When we press a key on the keyboard, we cannot send a character such as

k down the wire to the computer. We can only transmit numbers. The ASCII

table is an agreed-on set of numbers that represent all 128 characters we use.

The letter k is 107. The order that characters are listed in the ASCII table is

referred to as the ASCII order.

In ASCII order, most nonalphanumeric characters are first, then numbers,

followed by uppercase characters, more nonalphanumeric characters, and then

lowercase characters. Unless we instruct otherwise, the sort utility follows ASCII

order when sorting lines.

Reversing the Sorted Order
To sort a file in reverse ASCII order, we must specify an option to the utility on

the command line, instructing it to work in a particular way.

� Type the following command:

sort users_on mypasswd | more

sort -r users_on mypasswd | more

Compare the two outputs. In the second command, you instruct the shell

to run the sort utility and to pass it three arguments: the -r option and two

arguments that sort interprets as filenames. The -r “reverse option” is one

of several options to the sort utility that instruct sort to change the way it

functions. We will examine others in Chapter 5.

•

Taking a Nap
Utilities perform a wide variety of functions. One of the most specialized simply

counts a prescribed number of seconds and exits.

� 1. Try the following command:

sleep 2

There appears to be no response to the command; then, after two seconds,

the shell displays a new prompt.

2. Employ different arguments:

sleep 8

sleep 4

The sleep utility interprets its argument as the number of seconds it should

wait before exiting. As soon as it exits, the shell displays a new prompt. This

utility is very useful for exploring how the system functions and for use in scripts.

•

Comparing Utilities’ Interpretation of Arguments
When we pass an argument to a utility, that utility’s code determines how the

argument is interpreted.

� 1. Enter:

cal 2004

The cal utility interprets the argument 2004 as instruction to output the

calendar for the year 2004.

2. Instruct the shell to redirect the output from cal to a file and confirm it

worked:

cal 2004 > 2004

ls

Among your files is a file named 2004.

3. Enter:

wc 2004

cat 2004

cal 2004

rm 2004

ls

The same argument is passed to four different utilities with four different

results. The wc utility interprets the argument 2004 as the name of a file to read

and to count the lines, words, and characters. To cat, 2004 is a file to read and

output. To cal, 2004 is a calendar year to calculate and display. To rm, 2004 is a file

to remove from the directory. The shell passes the argument. The utility

interprets it.

•

Visiting echo Point
One utility simply reads whatever arguments we give it and writes the arguments

to output.

� 1. We can give the same argument to echo:

echo 2004

The argument consisting of the characters 2004 is displayed on the screen.

78 • I N T R O D U C T I O N T O U N I X A N D L I N U X

To echo, the argument 2004 is simply a string of characters that it reads and

then writes to its output, which is connected to the screen unless we tell the

shell to redirect it somewhere else.

2. Try several arguments:

echo these are five different arguments

Five arguments are passed to echo, which interprets each as simply a character

string to read and output. Because echo reads arguments and writes them to

output, we will use the utility on the command line to see how arguments are

processed and in shell scripts to display text on the user’s screen.

•

Passing Arguments to Utilities
We enter command lines that consist of at least one utility and arguments.

The shell passes the arguments to the utility, which interprets them.

� 1. Enter:

echo who date ls cat

The shell interprets the command line as instruction to run echo and pass it

four arguments consisting of strings of characters, namely who, date, ls, and

cat. The command is of the form:

util arg arg arg arg

To the shell, the tokens who, date, ls, and cat are not utilities to be run, because

of their location on the command line. Rather, they are just arguments to pass

to echo, which interprets them as just character strings. echo is programmed to

read the arguments and write them to output.

2. Instruct the shell to redirect the output of echo to a file by entering:

echo A B C D > e1

more e1

This command line tells the shell to:

a. Start a child process.

b. Pass four arguments to the process.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 79

c. Redirect the output of the process to a new file, e1.

d. Have the process execute the echo utility code.

When echo is executed, it reads the four arguments and simply writes them

to output, which the shell had redirected to the new file e1.

•

Creating Combination Files
People often place related data in several different files, such as individual chapters

of a book. At times, the data that is in several files needs to be brought together.

� 1. Type the following commands to create new files:

date > c1

echo hello this is echo > c2

ls > c3

ls

ls -l c1 c2 c3

The ls utility interprets the c1, c2, and c3 arguments as names of files. A long

listing of the information about each file is displayed.

2. Give cat the same three arguments:

cat c1 c2 c3

This command line instructs the shell to run the cat utility and to pass it

three arguments. The cat utility interprets each argument as the name of

80 • I N T R O D U C T I O N T O U N I X A N D L I N U X

a file to open, read, and write to output. The cat utility reads each line from

the first file and writes it to output (which is the screen by default). After

cat reads and writes all the lines from the first file, it opens the next file,

reads all the lines in it, and writes them to output. This process continues

until cat reaches the end of the last file listed as an argument. The resulting

output is the three files “spliced together” or concatenated, hence the name

for the utility.

We can also tell the shell to redirect the output of cat to a file.

3. Enter the following:

cat c3 c2 c1 > total

4. Examine the total file by entering:

more total

The file named total consists of the contents of the file c3 followed by the

contents of the file c2 followed by the lines from c1. All lines read by cat are

written to the new file total.

When you look at the output, total, there is no way to tell where one file ends

and another begins.

This command line instructs the shell to start a new process, pass the process

three arguments (c3, c2, and c1), and then redirect the process’s output to a new

file total. Lastly, the shell instructs the process to run the cat utility. Once started,

cat interprets all of its arguments as names of files to locate, open, read, and write

to output, which is connected to the file total.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 81

•

Locating Specific Lines in a File
We often need to locate the lines in a file that contain a word or string of

characters.

� 1. Reexamine the file total:

cat total

2. Select lines from the file that contain a target string:

grep is total

Every line containing the character string is in the file total is selected

and output.

3. Instruct grep to locate all lines in the file /etc/passwd that contain the

string root by entering:

grep root /etc/passwd

This command line asks the shell to run the grep utility and pass it two

arguments. Many utilities, including sort and rm, interpret all arguments

as files to be acted on. They sort or remove them all. Not grep. To the grep

utility, the first argument is the target string, and all other arguments are files

to be opened and searched. In this case, grep looks through the file /etc/passwd

for lines that contain the target string root and selects those lines that match.

It outputs only the matched lines. The original file is not affected.

4. Look in several files for lines that contain the string is:

82 • I N T R O D U C T I O N T O U N I X A N D L I N U X

grep is c1 c2 c3 total

grep interprets the string is as the target search string and all other arguments

as files to open and search. The filename and matching lines are output.

• 3.2 Starting Additional Linux Terminal Sessions
In the UNIX and Linux environment, we can have multiple active sessions at the

same time. For example, in UNIX we can log on from several terminals connected

to the same system. These different sessions all belong to the same user, but are

independent of one another. In Linux, one monitor and keyboard can be used for

multiple login sessions.

Once you are logged on to your UNIX or Linux machine, in graphical or

terminal mode, you can access other virtual terminals.

� 1. Press:

CTRL-ALT-F2

(While holding down the CTRL key and the ALT key, press the F2 key.)

A new logon screen appears.

2. Log on again at this prompt.

You are given a new shell prompt.

3. Type the following:

who

and press ENTER.

The who program lists current users, and you are listed twice. The second

column of output lists the terminal port that each user is employing. You are

logged on through the initial terminal and again through a virtual terminal,

the one that you accessed with F2.

4. Press:

CTRL-ALT-F3

A new logon prompt appears again.

5. Log on again.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 83

Exiting a Virtual Terminal
To leave a second terminal we need to terminate the shell.

� 1. Enter:

exit

2. The exit command ends the login session in this virtual terminal; it does not

log you off of others.

In Linux environments, we can press CTRL-ALT-F2, CTRL-ALT-F3, CTRL-ALT-F4,

through CTRL-ALT-F7 (and sometimes CTRL-ALT-F8) to create seven (sometimes

eight) independent sessions on the same computer using the same monitor.

When you log on, if it is a terminal window, it is probably terminal F1. If you

log on and are placed in the graphical environment, it is using virtual terminal

F7 or F8.

Locating the Graphical Virtual Terminal
You can toggle back and forth between active sessions by using the CTRL-ALT-F#

command, where # is 1 through 7 or 8.

� 1. Press:

CTRL-ALT-F7

If you started a graphical desktop, this is where it is usually located,

although it may be at F8.

2. If you logged on into a terminal, return to it, probably by pressing:

CTRL-ALT-F1

The multiple login sessions available through the F keys allow us to log

in a second time to test multi-user features, to have both graphical and

character-based sessions running, and, as you will see, to kill processes

that have frozen the terminal.

• 3.3 Managing Input and Output
Every process that is started has three defined communication locations or

“doors.” One is its input, one a place to write output, and a third to write any

error messages. Usually, the output of utilities is by default directed to your

terminal. You have redirected output to files and to other utilities. We can also

tell the shell where to connect input.

84 • I N T R O D U C T I O N T O U N I X A N D L I N U X

•

Specifying a File as Input
There are two ways to get a utility to open a file and read it. You have been using

one way, passing a filename as an argument to a utility. The utility simply goes

out, locates the file, and reads it.

� 1. For example, enter the following command:

sort mypasswd

Here the shell is instructed to run the sort utility and pass it one argument,

mypasswd. To the sort utility, the argument mypasswd is interpreted as a file

to open and read. sort reads the lines from mypasswd, sorts the contents,

and outputs the data to its output, which by default is connected to the

workstation screen.

Because sort has an argument, it interprets the argument as a file and does

not read from its input “door.” Only when there is no filename argument

does sort read from its input.

2. Enter:

who | sort

In this case, sort does not have an argument, so it reads from its input which

the shell connected to the output of who.

We can also instruct the shell to connect a file to a utility’s input.

3. Enter the following:

sort < mypasswd

The results are the same as with the sort mypasswd command. A sorted

version of the file mypasswd is displayed on the screen. The < in this

command is instruction to the shell to open the file mypasswd and connect

the file to the input of sort. Because no argument is given to sort, the sort

utility does not open a file. The shell opens the file itself and connects the

file to the input to sort.

4. We can also connect files to the input of other utilities. For example, type:

cat < mypasswd

In this case, we are instructing the shell to connect the file mypasswd to

the input of cat. Because no output destination is specified, the output is

connected to the monitor by default. Thus, cat reads the contents of the

file mypasswd and writes it to output, connected to the workstation screen.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 85

The input redirection symbol is an important feature because, as you will

soon see, several utilities are not programmed to open files. We must instruct

the shell to open a file and connect it to the utility’s input.

The redirection operators we have discussed thus far are described in Table 3-3.

Redirecting a File to spell’s Input
Many UNIX systems contain a spell check program that examines files for

misspelled words. On some systems, the spell program only reads from input.

It cannot open files. We must instruct the shell to open the file and connect it

to the input of the process running spell.

� 1. Examine users_on for misspelled words with the following command:

spell < users_on

2. If you are told the command is not found, enter:

ispell -l < users_on

All strings in the file that spell does not find in the online dictionary file are

viewed as misspelled words and are displayed on the screen. In this case, the

shell opens the file users_on and connects it to the input of spell. Because you

did not redirect the output, it is displayed on the screen.

•

Determining Where Utilities Read Input
Throughout these exercises, you have often specified filenames as arguments.

� Enter the following representative command:

sort total

The character string total is given to sort as an argument. The sort program

interprets total as a file to open, read, and sort. The output is a sorted version of

the lines in the file total.

86 • I N T R O D U C T I O N T O U N I X A N D L I N U X

C O M M A N D I N T E R P R E T A T I O N

utility > filename Shell connects the output of the utility to filename.

utility >> filename Shell connects the output of the utility to the end of the file

(appends).

utility < filename Shell connects filename to the input of the utility.

utility1 | utility2 Shell connects the output of utility1 to the input of utility2.

TABLE 3-3 Redirection Operators
•

Employing the Default Input Source
The previous exercise raises a question: If no filename argument is provided, the

utility reads from its input “door.” If we do not tell the shell to connect a file or

the output from another utility to the input, what does the utility find when it

reads from its input?

� 1. Enter the following command. No filename is given as an argument to read,

and no utility’s output is redirected to the process.

sort

The cursor moves to a new line. No shell prompt is displayed.

2. Enter the following lines:

hello

DDD

2

Hello

110

good-bye

3. Press ENTER to move the cursor to a new line, and then press ENTER again.

4. On a line by itself, press:

CTRL-D (Hold down the CTRL key and press the D key one time.)

A sorted version of the lines you just entered is displayed on the screen

When a new process is first started, the default input is the terminal keyboard.

Output and error messages are initially connected to the terminal screen.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 87

Because no filename arguments are specified in the preceding command,

the sort utility reads from its input, which is connected to the default input

source, your keyboard. You enter lines of text and then the end-of-file

command, CTRL-D. This key combination indicates to the utility that there is

no more input and that the utility can do its thing and then quit. The utility

sort reads the lines you enter, sorts them, and writes to its output. Because

the output of sort is not redirected, it is written to your screen.

5. Start another utility without specifying input or output destination:

cat

6. Enter several lines.

As you type a line, it is displayed on the screen. When you press ENTER, the

line is passed to cat, which reads the line and writes it to output, the screen.

The line appears as a duplicate below the line that you entered.

7. After entering several lines, go to a new line and press:

CTRL-D

After cat terminates, the shell displays a new prompt.

8. We can specify output redirection with the default input source. Enter the

following:

sort > sort-test

9. Enter several lines of text.

10. When you are finished, press ENTER to put the cursor on a line by itself.

Then press:

CTRL-D

11. Examine the contents of the new file:

more sort-test

You instructed the shell to connect the output of sort to the new file sort-test,

but you did not specify any input for sort. By default, input is connected to the

keyboard if it is not redirected to another source. The sort utility read what

you entered as input and wrote its output. Because you instructed the shell to

connect the output of sort to the new file sort-test when sort wrote its output, it

went to the new file.

Creating Text Files with cat
You will usually create text files using an editor such as the visual editor, vi, which

is discussed in Chapter 4. However, you can quickly create small text files without

first mastering an editor, by using one of several other utilities.

88 • I N T R O D U C T I O N T O U N I X A N D L I N U X

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 89

� 1. Type the following:

cat > first_file

and press ENTER.

The cursor returns to the beginning of the next line. The shell does not display a

new prompt. This command line instructs the shell to start the cat utility and to

connect its output to the new file first_file. There is no request to redirect the

input, so input is still connected to the default—your keyboard. You are no

longer in communication with the shell; what you now type is read by the cat

utility, which simply writes to output whatever it reads from input.

2. Type the following lines:

This is a line of text in the first_file.

3. Press ENTER and then type:

This is another.

The cat utility reads your input and writes it to its output, which the shell

connected to a new file named first_file.

4. To inform the cat utility that you have finished adding text, press ENTER to

advance to a new line and then press:

CTRL-D

This CTRL-D (end-of-file, or EOF, character) tells cat there is no additional

input. The cat utility terminates, and the shell displays another prompt.

5. From the shell, obtain a listing of your files using:

ls

The file named first_file is listed.

6. Examine the contents of first_file by typing:

more first_file

The first_file file consists only of the text you typed. No additional data

about the file, such as the file’s name or your name, is added to the file by

the system. The file contains just the text you typed. The file’s name is kept

in the directory. The information about a file is in a system storage unit

associated with your file.

7. Create another text file with another cat command:

cat > second_file

8. Add some text, and return to the shell by pressing CTRL-D.

9. Obtain a listing of the files in your current directory with:

ls

90 • I N T R O D U C T I O N T O U N I X A N D L I N U X

10. Examine the contents of second_file with:

more second_file

The file consists of the lines you entered as input to cat.

By default, the keyboard is connected to the input of cat. Whatever you type

is read by cat from your keyboard and written to output, which is connected to

the file. The cat utility is not very complicated; it simply reads input and writes

output, making no modifications. The command cat > filename instructs the shell

to connect the output from cat to the file filename and to execute the cat utility.

•

Managing Input and Output with Redirection
The role and effect of file input and output redirection symbols are summarized

in Table 3-4.

� 1. Create a new file named file2 with the following:

head -12 /etc/passwd > file2

2. Try each of the commands in Table 3-4 and confirm the data in the table.

• Self Test 1
Answer the following, and then check your answers using the information within

the chapter.

1. What is the effect of each of the following commands?

A. sort file1 file2

__

B. wc file1 file2

__

C. grep file1 file2

__

D. who | sort > abc

__

E. cat file1 file2 file3

__

2. What command results in a reverse sorting of all lines in the /etc/passwd file

that contain a zero somewhere on the line?

__

3. What would be in the file file1 as a result of each of the following?

A. echo file1 >> file1

B. cat > file1

__

4. How can you access virtual terminal 3?

__

5. What command reads its arguments and writes them to output?

__

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 91

C O M M A N D I N P U T O U T P U T E F F E C T

sort Keyboard Display

screen

The sort utility receives no

arguments, so it opens no file.

Instead, sort reads from input,

which is by default connected

to the keyboard.

sort > file1 Keyboard file1 Keyboard input is sorted, and

output is connected to file1.

sort >> file1 Keyboard file1 Keyboard input is sorted and

its output is appended to the

end of file1.

sort < file2 file2 Display

screen

file2 is opened by the shell and

connected to the input of sort.
The output is not redirected,

but displayed on the screen.

sort file1 file1 Display

screen

file1 is passed as an argument

to sort, which opens the file and

reads its contents. Output

connected to the screen.

sort < file1 > file3 file1 file3 The shell connects file1 to the

input and file3 to the output of

sort. When sort runs, it reads

from input, sorts the lines, and

writes to output. The lines from

the file file1 are sorted and the

output placed in file3.

TABLE 3-4 Passing Arguments and Opening Files
•

• 3.4 Employing Special Characters
in Command Lines

When we are communicating with the shell, our only tool is the keyboard. The

characters available on the keyboard and words or tokens created by combining

those characters constitute the entire language we can use to communicate with

the shell. Many characters have special meaning to the shell, such as the redirect

symbol, >. The shell interprets the > as instruction to connect the output of the

previous utility to a file named right after the redirect. Likewise, the | is instruction

to connect the output of one utility to the input of another utility.

This section introduces other special characters interpreted by the shell.

•

Replacing a Wildcard Character with Filenames
One special character to the shell is a wildcard character we can use when

specifying filenames.

� 1. If you list several filenames after the wc utility on the command line, the

wc utility examines all of the files. Enter this command:

wc total lost-days

The number of elements in each file is counted and output, along with the

total for all files.

2. To have wc examine all files whose names begin with the letter u, enter:

wc u*

The shell interprets the u* as instruction to replace the string u* on the

command line with the names of all files in the current directory that start

with the letter u and have zero or more additional characters following the

u in their names. The shell then runs the wc utility, passing it all the arguments

that it generated—the names of all files in the directory that were matched.

92 • I N T R O D U C T I O N T O U N I X A N D L I N U X

C O M M A N D I N P U T O U T P U T E F F E C T

sort file1 > file4 file1 file4 The shell passes file1 as an

argument to sort and connects

the output of sort to the file file4.

The sort utility opens file1 and

sorts the lines; the output goes

to file4.

TABLE 3-4 Passing Arguments and Opening Files (continued)
•

3. Confirm that it is the shell that is expanding (replacing the string with)

the * into filenames by entering:

echo u*

The shell replaces the string u* with the filenames in the current directory

that begin with the letter u. Those names are passed as arguments, this time

to echo, which writes the arguments to output.

4. You can also have the shell list all of the files in your current directory as

arguments to a command by typing:

echo *

The shell replaces the asterisk with the names of all the files in your

directory and then executes echo, passing all the filenames it generated

as arguments. The echo utility reads its arguments (the filenames) and

writes them to output, which in this case is your screen.

5. Do a word count of all the elements of all the files in your directory by

entering:

wc *

The shell replaces the * with the names of all files in the current directory

and passes all the names as arguments to wc. The wc utility examines all

files listed as arguments and displays output like this:

8 39 190 junk

9 29 175 mypasswd

8 39 190 phon

1 5 22 today

12 59 310 total

14 80 220 users_on

52 251 1107 total

The output from wc is a list of information pertaining to all input files,

followed by a total of these counts.

N O T E : If you created a file named total, it is listed in alphabetical

order among the other files. The total at the end of the wc output is the

sum of the statistics for all files examined by the utility.

•

You can also have the shell pass all filenames as arguments to the grep

utility. The grep utility searches for the target string in all the files in your

directory.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 93

94 • I N T R O D U C T I O N T O U N I X A N D L I N U X

6. Type the following:

grep is *

This command line tells the shell to replace the asterisk with all the filenames

listed in your current directory. The first argument passed to grep is a string of

characters that grep interprets as the target. The remaining arguments grep

interprets as the names of files. The grep utility then searches each line in all

files listed as arguments for the target string of characters and outputs the lines

that contain a match.

•

Accessing Shell Variables
We use variables in life all the time. We fill out forms such as:

Last name: ______________

First name: ______________

All of us, except Cher, have values in our memories for the last name and first

name variables.

We can use specific characters to indicate which tokens in a sentence are

variables. For example, consider:

I am $fname $lname. I live in $city. I was born in $birthplace.

When I read the previous line, I read:

I am John Muster. I live in Berkeley. I was born in Canton, Ohio.

To me, the value of the fname variable is John.

Everyone reads the line differently because everyone has different values for

the variables that are identified with dollar signs. In this case, we interpret the $

to mean, “Find the value of the variable that has the following name and

replace both the dollar sign and variable name with the variable’s value.”

� 1. Ask the shell to evaluate a variable and pass its value to echo by entering:

echo $USER

2. If there is no USER variable, try:

echo $LOGNAME

The $ character has the same special meaning to the shell. It tells the shell

to “locate the variable whose name follows, and replace this string with the

variable’s value.” In the command you just entered, USER is the variable

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 95

that the shell evaluates, because it is preceded with a $. After replacing the

variable and $ with its value, your actual login name, the shell passes your

name as an argument to echo. Then echo reads the argument and writes it

to your screen. The important distinction here is that the shell passes your

login name, not $USER, to echo. The shell interprets the variable and passes

its value, not its name.

Having the shell evaluate $USER and replacing the variable with its value

can be very useful.

3. Enter:

who | grep $USER

The shell replaces the $USER with your login ID and then passes that value

to grep as its first argument. To grep, the first argument is its search string.

The line from the output of who that contains your login ID is selected by

grep and output to your screen.

4. Have the shell evaluate some other variables by entering:

echo my shell is $SHELL and my home is $HOME

The output on the screen is all the arguments, with variables replaced by

their values.

In this case, the shell evaluates two variables. The resulting values are

passed to echo as arguments. The echo utility reads all its arguments and

writes them to output. By default, the output is connected to your monitor.

The value of the first variable, SHELL, is the shell that is started up for you

at login; the other variable, HOME, is where your home directory is located

on the system. Your shell obtained these variables and their values when

you logged on. Your colleagues have their own variable values. The shell

and all other programs you run are given these variables and these values.

We can employ both a variable and the filename expansion on the same

command line.

5. Enter:

grep $USER *

The shell replaces the variable USER with its value, the login name, which

becomes argument one. The shell replaces the * with the names of all files

in the current directory, which become arguments two, three, and so forth.

grep interprets the your name as the search string and looks through all files

for lines containing your login name.

6. The variable can be used to count the number of times you are logged on:

who | grep $USER | wc -l

Listing Environment Variables
The shell program that interprets your commands is started as a process when

you log on. The values of several variables are given to your particular shell so

that your computing environment is appropriate. We can obtain a listing of those

environmental variables.

� From the shell, type the following:

env | more

or

printenv | more

The output is a listing of some of the variables that are currently set for your

shell. Among the many lines displayed, you should find something like the

following.

For C shell users:

USER forbes

SHELL /bin/csh

HOME /users1/programmers/forbes

PATH /usr/ucb:/bin:/usr/bin:/usr/local:/lurnix/bin:/usr/new:.

For bash and Korn shell users:

HOME=/usr/home/nate

LOGNAME=nate

PATH=/usr/ucb:/bin:/usr/bin:/usr/local:/lurnix/bin:/usr/new:.

SHELL=/bin/ksh or (/bin/bash)

The variables and their values are essential to a functioning shell. Your

output includes variables such as the following, but with values that are

appropriate for your account.

• The user or USER or LOGNAME variable is your account name that you

entered when you logged on.

• The shell or SHELL line indicates which of several shell programs is started

at login to interpret the commands that you enter: csh is the C shell, sh is the

Bourne shell, ksh is the Korn shell, bash is the bash shell, and tcsh is the tcsh

shell. They all handle basic commands in essentially the same way, and for

now it makes little difference which is running.

• The home or HOME variable is the location of your workspace or home

directory.

96 • I N T R O D U C T I O N T O U N I X A N D L I N U X

• The path or PATH variable lists the directories where the shell looks to find

UNIX utilities you request.

The subject of local and environment variables is explored in some detail in

Chapter 9.

•

Instructing the Shell Not
to Interpret Special Characters
The characters *, !, |, >, and $ have special meaning to the shell. Sometimes we

need to instruct the shell not to interpret special characters but to treat them as

ordinary characters instead. There are several ways to tell the shell to turn off

interpretation of special characters.

� 1. For instance, enter the following:

echo we can output a * uninterpreted

The output includes a literal * character.

In response to this command, the shell does not expand the asterisk to

match filenames, but passes it as a one-character argument to echo. It is not

interpreted. The echo utility reads the asterisk as a one-character argument

and outputs it, in this case, to your screen. When a special character is preceded

by a backslash (\), the shell interprets that character as ordinary (lacking any

special meaning). To put it the other way, the shell interprets the backslash

character as instruction to treat whatever character follows as an ordinary

character having no special meaning. Once the * is passed to echo, the * is

just an asterisk that it outputs.

2. Enter the following:

echo \$HOME

The output is the literal string $HOME without the backslash. The $ is not

interpreted as instruction to evaluate the HOME variable, because it is preceded

by a backslash. The shell interprets the $ as just an ordinary dollar sign, and

passes the string $HOME to the echo utility as an argument.

In the previous commands, the arguments the shell gave to echo after

it interpreted the * and \$ did not include the backslash. When the shell

interprets *, it reads the \ as a specific instruction: Don’t ascribe special

meaning to the character that immediately follows. The only character that

gets passed is the one character that follows the \ character. The backslash

is not passed to echo because the shell interpreted it as instruction not to

interpret the character that follows.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 97

3. Try the following:

echo \$USER * $USER

The output is $USER * and your login name. The last $USER is interpreted

because there is no backslash in front of the $ telling the shell not to

interpret it.

Likewise, we can use echo to place interpreted and not interpreted variables

into a file.

4. Enter:

echo var1 $USER > test-interp

echo var2 \$USER >> test-interp

more test-interp

The shell interprets the $ in $USER in the var1 line, but does not interpret

the $ in the var2 line. Note the second line in test-interp is:

var2 $USER

The shell does not pass the backslash to echo.

5. Have grep look for strings in the test-interp file:

grep $USER test-interp

The shell interprets the variable $USER and passes the value of your login

name to grep as the first argument. Then grep interprets the first argument

(your login name) as the search string. The line with your login name is

selected and output:

grep \$USER test-interp

This time the shell interprets the backslash as instruction not to interpret the

very next character, the $, so the string $USER is passed to grep as the first

argument. The grep utility searches for the actual string $USER in the file.

The same is true with the filename expansion wildcard * character.

6. Enter:

echo u*

echo u*

wc u*

wc u*

The shell interprets the u* as instruction to replace the characters u* with all the

filenames in the current directory that start with the letter u. The shell then passes

the names as arguments. echo reads the arguments and writes them to output. wc

interprets the arguments as filenames and counts the elements of each named file.

98 • I N T R O D U C T I O N T O U N I X A N D L I N U X

The shell interprets u* as a u and an uninterpreted *. The argument to echo is u*,

which it displays. To wc, the u* is the name of a file, a file that it cannot locate.

Not Interpreting ENTER

When you press ENTER at the end of a command line, you are signaling the end of

the command. The shell interprets ENTER as a special character, one that indicates the

end of the command to be executed, and starts processing. When we are entering

a long command line, we often want to put part of it on a second line. However,

as soon as we press ENTER, the command is executed. We need to be able to tell

the shell not to interpret ENTER.

� 1. Enter the following command:

who > \

and press ENTER

The backslash instructs the shell not to interpret the character that immediately

follows. Hence, ENTER is not interpreted. There is no end of the command.

At this point, the shell has not been told to process the command line, because

no real ENTER has been received. It waits for more input. In fact, what you

have entered so far is not a complete command. The shell needs to redirect

the output of who to a file, but the filename is not included.

2. Enter the filename:

users2

and press ENTER again.

This time, ENTER is not preceded by a backslash. The shell interprets it as a

real ENTER, signifying the end of the command line, which now happens to

span two input lines. It is processed.

3. Confirm that the new file is created by entering:

ls

more users2

4. Examine the history list to see the previous command:

history

The who > users_on is one command even though it was entered on

two lines.

When you want a command line to span more than one input line, precede

the first line's ENTER with a backslash character to instruct the shell not to

interpret ENTER's special meaning.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 99

Not Interpreting Several Characters in a String
The backslash turns off interpretation for one character only, whatever single

character follows.

We can turn off interpretation for more than one character.

� 1. Enter the following using single quotes:

echo '$USER * $USER'

echo '$HOME $USER'

The output is the literal string of characters entered. When inside single

quotes, the * and $ are seen just as characters, so the shell does not expand

the * to match filenames. The $HOME and $USER are not evaluated for the

variable values. The arguments passed to echo are just the uninterpreted

character strings.

We can instruct the shell to interpret part of a line and not interpret other

parts of the line.

2. Enter the following, paying careful attention to the single quotes:

echo $USER '$HOME $USER' $USER

The portion of the command line inside single quotes is not interpreted,

but passed as an argument to echo as is. The parts of the line not in quotes are

interpreted and variable values are substituted for the $USER variables.

When the shell encounters the first single quote, the shell turns off interpretation

of all special characters. The second single quote turns interpretation back on

again. Any special characters inside the single quotes are not interpreted.

•

Creating Multiple Token Arguments
Because we can tell the shell not to interpret special characters inside single

quotes, we can tell the shell not to interpret spaces.

� 1. Pass several arguments to echo with several spaces between them:

echo AA BB CC DD

The output does not include the multiple spaces:

AA BB CC DD

The shell interprets one or more spaces as separating the tokens on the

command line. The shell interprets echo as the utility, and passes it four

distinct arguments. It does not pass the whole line of words and spaces.

100 • I N T R O D U C T I O N T O U N I X A N D L I N U X

When echo reads its argument list, it outputs the first argument, then a

single space, then the next argument, a space, and so forth.

2. Use quotes to tell the shell not to interpret special characters (including spaces):

echo 'AA BB CC DD'

A single argument is passed to echo. The argument consists of the line as it

was entered, including spaces, namely:

AA BB CC DD

The shell does not interpret spaces as indicating different arguments, so it is

all one argument. echo outputs the single argument, spaces and all.

•

Passing Complex Arguments
One of the most useful functions of modern computers is database management.

The UNIX operating system provides several utilities that are used with database

information. One of the most versatile is awk.

� 1. Type the following commands:

ps -ef

ps -ef | awk '{print $1}' | more

The awk utility extracts the first field from each line of the output of ps. The

output of awk is displayed on the screen.

2. Change the command line to instruct awk to select the second field. Enter:

ps -ef | awk '{print $2}'

This table describes the pieces of the command line:

C O M M A N D I N T E R P R E T A T I O N

ps -ef Instructs the shell to run the ps utility and pass it the argument -ef,

which ps interprets as instruction to list all processes.

| Instructs the shell to connect the output of ps to the input of the

next utility, awk.

awk Instructs the shell to run the awk utility.

' ' Instructs the shell not to interpret any special character between the

single quotes, but to pass the enclosed characters as is to awk as

an argument.

{print $2} This is the contents of the quoted string that is passed to awk.

The awk utility interprets this instruction as, “For every line of

input, print out only the second field.”

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 101

3. Have awk select more than one field by entering:

ps -ef | awk '{print $2, $1, $4}'

awk '{print $2, $1}' lost-days

The output is the second field, a space, and then the first field of all records

(lines) in the file lost-days. This works because the shell does not interpret

special characters such as the $2; rather, it passes the whole {print $2, $1}

exactly as it is to awk, which interprets it as instructions.

The awk utility can be used to select and print specific fields, make calculations,

and locate records by the value of specific fields. You will use it more extensively

in Chapter 5.

•

Communicating with Processes
We instruct the shell to start processes. Usually the processes simply complete

their tasks and then exit. We can also use control characters to send important

signals to processes.

Signaling the End of File
We have used the control character CTRL-D to end input.

� 1. For example, enter:

wc

2. Add a few words and then press ENTER.

3. On the new line, press:

CTRL-D

The CTRL-D is the end-of-file (EOF) marker. When we are entering text from the

keyboard to the input of a utility, we signal the end of our input by pressing

CTRL-D. The wc utility counts the lines, words, and characters in whatever

text that we enter until we press CTRL-D. The wc utility then displays the

results and quits. Every file has a CTRL-D (EOF) character at the end to indicate

where to stop reading.

Telling a Process to Quit
There are other important control characters.

� 1. Start wc again without input or arguments:

wc

2. Enter some text.

102 • I N T R O D U C T I O N T O U N I X A N D L I N U X

3. Instead of the usual end-of-file character, press:

CTRL-C

The wc program stops, and a shell prompt is displayed. However, no output

from wc is displayed. CTRL-C is the interrupt signal, which kills the process.

The end-of-file CTRL-D says, “End of input, do whatever you do with input

and then exit,” but the CTRL-C says, “Stop, put toys away, process nothing

more, and be gone.” No output is displayed.

Which control character we use depends on the way the utility functions.

4. For example, enter:

sleep 40

No new shell prompt is displayed. The sleep utility is counting 40 seconds.

5. Try to end the sleep process with:

CTRL-D

Because sleep is not reading CTRL-D the EOF has no meaning.

6. Kill the process by pressing:

CTRL-C

The interrupt signal reaches the process and it terminates.

•

Sending a Process to the Background
Many of the processes running on the system are not associated with a particular

user, but are important elements of the operating system. These processes are

running in the background and are invisible to most users. This section examines

how users can run processes in the background.

� 1. Type the following command:

sleep 6

The shell runs sleep and gives it the number 6 as an argument. While sleep

is counting to 6, the shell waits. No new prompt is presented until sleep is

finished.

2. Enter:

sleep 60 &

This command line tells the shell to run the sleep command in the background.

The ampersand (&) at the end tells the shell to execute the whole command

line, but instead of waiting until sleep is finished, the shell is to return a new

shell prompt so that you can continue working.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 103

3. Obtain a list of current programs by entering:

ps

The sleep process is still running. When you execute this command, a

number is displayed. This is the process ID number of the ps utility as it is

executed. When the process is finished, a message is sent to the screen.

This feature allows us to run time-consuming programs in the background

while we continue to work in the foreground on some other task. Obviously,

with a command process that runs quickly, placing it in the background does

not do much good, but there are times—such as when you are running long

searches, database queries, and so forth—that it saves time and work.

•

Programming with Utilities
Thus far in these examples, communication with the shell has been interactive.

We enter a command line; then the shell reads and processes whatever we enter

from the keyboard. The shell will also read instructions that are placed in a file.

Creating a File of Commands
Until we examine the visual editor in the next chapter, we can use cat to read

whatever we type and write it to a file.

� 1. Enter:

cat > commands-file

2. Enter the following lines, pressing ENTER after each:

echo

date

cal

sleep

ps

echo

3. Conclude the input by pressing:

ENTER

and then on a new line press:

CTRL-D

4. Make sure the file contents are as just described:

more commands-file

104 • I N T R O D U C T I O N T O U N I X A N D L I N U X

If there is a mistake, remove the file with rm commands-file and re-create it.

There is no simple way to modify a file until you learn to use the editor.

Instructing the Shell to Read a File
We can tell the current shell to read a file and execute each line in the file.

� 1. If you are in a csh or tcsh shell, enter:

source commands-file

2. If you are in the ksh or bash or sh shell, use the “dot” command by entering:

. commands-file

The commands that are the contents of the file are executed one after the other.

Both the source and dot (.) commands instruct the current shell to read the

file named as an argument and to execute every line in the file as though we just

typed it in from the keyboard. In either case we refer to it as sourcing the file.

• Self Test 2
Answer the following, and then check your answers using the information within

the chapter.

1. What would be the contents of file1 if each of the following were independently

executed?

A. grep file1 * > file1

B. echo $USER $HOME > file1

__

2. How do each of the following commands work? What is the result?

A. spell file1

__

B. spell < file1

__

C. cat file1 | spell

__

D. grep ‘Joan Heller’ faculty

__

E. grep \$USER file1

__

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 105

3. What command instructs awk to output just the time that each user logged on?

__

4. What is the output of the command echo $PATH?

__

• 3.5 Modifying the User Environment
One of the strengths of the UNIX operating system is its flexibility. The system allows

us to customize a variety of programs to meet our individual needs. We can tailor

how the shell behaves, and instruct the editor to include features. We can operate

with a graphical desktop that includes color, icons, and startup programs of our

own choice. Each user can tailor or modify all of these environmental features.

This section explores a small part of the tailoring functionality.

•

Instructing the Shell Not to Overwrite Files
Thus far, we have used the > symbol to instruct the shell to connect the output of

a utility to a new file. What happens when we redirect output to an existing file

depends on the shell you are using and the value of a variable named noclobber.

As users, we make the decision whether the shell should overwrite existing files

or not overwrite them.

� 1. To make sure that the shell is functioning in its “file clobbering” mode for

this demonstration, enter the following commands.

If you are in a csh or tcsh shell, enter:

unset noclobber

If you are in the ksh or bash shell, enter:

set +o noclobber

The sh shell always overwrites files when we redirect output to an existing

file. We cannot have it do otherwise.

2. Create a new file and examine its contents by entering:

ls > test-list

cat test-list

3. Instruct the shell to put the output of date into the same file and examine

the file:

106 • I N T R O D U C T I O N T O U N I X A N D L I N U X

date > test-list

cat test-list

The original contents of the file have been replaced or overwritten by the

output of date.

When we tell the shell to redirect the output of a utility to a file, the shell

creates the file if it does not exist. If there is a file by that name, the current

contents are removed to make room for the new output.

4. Instruct the shell not to clobber files when redirecting output:

In the csh or tcsh shells, enter:

set noclobber

In the ksh or bash shells, enter:

set -o noclobber

5. Attempt to redirect output from another utility to the file:

ls > test-list

An error message is displayed.

6. To see whether shell variables such as noclobber are on or off, try the

following:

In the csh or tcsh shell, enter:

set

The list of variables currently set is displayed.

In the ksh or bash shell, enter:

set -o

A list of shell operational variables is displayed.

In a csh or tcsh shell, we turn noclobber on with set and off with unset. In

the ksh and bash shells, we turn noclobber on with set -o and off with set +o

commands, as follows:

S H E L L T U R N n o c l o b b e r O N T U R N n o c l o b b e r O F F

csh, tcsh set noclobber unset noclobber

ksh, bash set -o noclobber set +o noclobber

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 107

•

Avoiding Accidental Logout
If you accidentally enter a CTRL-D to your login shell, you may be logged out.

The end-of-file character says, “No more input; exit,” so the shell exits.

� 1. Start a child shell process by entering:

csh

2. List your processes:

ps

The child csh is listed among the processes.

3. Issue an end-of-file signal to your shell by pressing:

CTRL-D

4. List your processes again:

ps

The csh shell is gone. Pressing CTRL-D instructs it to exit.

5. Start another child shell by entering one of the following:

bash

or

ksh

6. Identify the current processes with:

ps

The child shell is among those listed.

7. Instruct the child shell to terminate by giving it the end-of-file signal:

CTRL-D

ps

The child shell is no longer running.

8. We can tell the shells to ignore an end-of-file character. Enter one of the

following commands.

In the csh or tcsh shells:

set ignoreeof

In the ksh and bash shells:

set -o ignoreeof

9. Now press CTRL-D

You receive a message telling you to use exit or logout, not CTRL-D.

108 • I N T R O D U C T I O N T O U N I X A N D L I N U X

You will soon customize your account to have ignoreeof and noclobber set at

all times. For now, enter each after you log on to protect yourself from accidental

overwrite and accidental logout.

•

Changing the Prompt
Throughout this book, we have talked about the shell prompt. There are some

standard shell prompts, shown in the following table. The prompt that your shell

displays, like much of your user environment, can be modified.

P R O M P T S H E L L

$ Bourne and Korn shells (sh, bash, and ksh)

% C shells (csh and tcsh)

Any shell as root

� 1. Look at the current variables:

set | more

If the list includes a variable named prompt, you are interacting with a csh

or tcsh shell. If the output of set includes a PS1 variable, you are in a ksh or

bash shell.

2. If you are using a csh or tcsh shell, type the following command:

set prompt='myname '

where myname is whatever you want the prompt to be.

3. If you are using the sh, bash, or ksh shells, type the following:

PS1='myname '

Your prompt is now reset. This “personalized” prompt remains set until you

log out. Later you will learn more about setting up your computer environment,

and you will have the opportunity to customize various aspects of your workspace

permanently, such as the shell prompts and the shell’s behavior.

• 3.6 Surveying Elements of a Functioning System
We have been examining the system utilities, processes, shell interactions, and parts

of the filesystem. This section lifts up the hood to addresses questions such as,

where on the system are the utilities? When I log in, why do I wind up in my

home directory? Why can I read some files but not others? How can we put

commands in a file and run them by reading the file?

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 109

•

Examining the Toolboxes That Contain the Utilities
Throughout this chapter, you have been issuing commands that call for the shell

to execute a utility, but we have not examined where the programs are actually

located.

� 1. Enter the following misspelled command:

dzatte

2. The error message displayed on the screen is something like:

Command Not Found

Where is the shell looking before it reports “Command Not Found”? I ask

my five-year-old to go upstairs and get a book that is either on the desk or

the nightstand. She leaves and returns with the book. It must have been on

the desk or on the nightstand. Had it been on the bed with large red arrows

pointing at it, she would have returned with the error message:

Book Not Found

Just like the five-year-old, the shell looks only where it’s told to look.

3. Ask the shell to display the value of the PATH variable:

echo $PATH

The variable PATH is something like:

/bin:/usr/bin:/usr/local/bin:/usr/bin/x11:/usr/hosts

This variable consists of a series of directories separated by colons. These

are the “desk” or “nightstand” places that the shell checks for a utility when

you ask for one to be executed. The shell looks first in the directory listed on

the left, then the next, and so on.

The /bin directory contains some of the utilities available on the system in

the form of binary files.

4. Obtain a listing of the utilities in /bin. (Note: The / is important; do not

omit it.)

ls /bin | more

The ls utility outputs a list of the files in the directory /bin. You may recognize

some of these files—they are utilities you have already used, including cat, rm,

and ls. These are some of the executable programs that you access when you

type a command. As you saw when you examined your PATH, the /bin directory

is not the only directory that contains executable code. The list of directories

(PATH) that your shell examines can be modified to include other directories.

110 • I N T R O D U C T I O N T O U N I X A N D L I N U X

•

Determining Where a Utility Is Located
The shell looks for utilities in the directories in the PATH variable and reports on

their location.

� Enter:

which who

which xterm

which ls

which set

If you ask for the location of a utility that you know exists, such as set, and

the shell reports it cannot be found, that program, like set, is built into the shell.

The shell cannot find it in the path because the code is not in a different utility

file; rather, it is in the shell itself.

The search path is one of the features that make UNIX and Linux so flexible.

When we want to add a new application or program, we can add it to one of

the directories in the path and instantly give everyone access to it. Alternatively,

we can create a new directory, put the application there, and modify the path

variable for the users who should have access to the new application.

•

Examining the Elements of the Password File
The utilities consult many system files as they perform their jobs. When you log on,

a program called login asks for your password and starts your shell. Your shell

gets information such as USER and HOME so it can access the needed information

about your account.

Your user ID number, probably your password, and other information

about you reside in a file called /etc/passwd. On a stand-alone system, the

/etc/passwd file that resides on the machine contains information about all

users. If a system is a part of a network that allows users to log on from any

of several machines with the same password and login information, one of

the network machines contains the complete password file information, and

it serves the other machines as needed. This Network Information Service is

called NIS. Whenever you or any other user logs on, your entry from either

the local or the NIS network passwd file is consulted.

� 1. Examine the local password file by entering the following command (note

the spelling of passwd):

more /etc/passwd

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 111

2. If it is a very long file, page through the file by pressing several times:

SPACEBAR

3. Locate the entry for your account.

4. Press q to stop and return to the shell.

If your login name is not in the output, you are probably on a network that

provides the passwords.

5. To see the passwd information from the network server, enter:

ypcat passwd | more

6. Locate the entry for your account.

7. Press q to stop and return to the shell.

We can use grep to select one record from the passwd data.

8. Depending on whether you are on a local or network served password file,

type one of the following commands:

grep $USER /etc/passwd

or

ypcat passwd | grep $USER

In these versions, you are asking the shell to evaluate the variable USER and

pass its value to grep as the search target. The grep utility then selects the line

that contains your login name.

N O T E : If your login name record is output when you enter grep

/etc/passwd, you are on a locally served system, and the /etc/passwd
file should be used for password lookups throughout this text. If the ypcat

command outputs your login name record, your system is using NIS and

you should use the ypcat passwd form of commands to access password

information.

•

The records in the /etc/passwd file consist of seven fields separated by colons.

The general format is as follows:

112 • I N T R O D U C T I O N T O U N I X A N D L I N U X

The fields of the password file are described in the following table:

F I E L D I N F O R M A T I O N

login The login or name for your account.

password Your encrypted password. (May be an x if the passwords are kept in

a secure /etc/shadow file. May also be an *.)

uid Your user ID, the unique number that is assigned to your account.

gid Your group ID. Each user must be a member of at least one group.

Every user who has the same number in this field as you have is in

your group. You can share files with group members using permissions.

misc Information about the user such as the user’s full name. The

miscellaneous field is often blank.

home Your home directory. This is your current directory when you first log on.

Startup program The program that is started when you log on—it is usually a shell

such as the Bash shell (/usr/bin/bash) or the tcsh (/bin/tcsh) or

the Korn shell (/bin/ksh), but it does not have to be a shell. It can

be anything, including a data entry program or a menu for accessing

your accounts at a bank.

•

Changing Your Password
One of the most important ways to protect the data in your account is to choose

a secure but memorable password. This is not only convenient, but necessary for

maintaining the security of everyone’s data on the computer.

Before you begin the process of changing your password, decide on an

appropriate new one. When choosing a password, there are several words

you should avoid because they are easily guessed. It is unsafe to use any of

the following:

• Your login name

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 113

• Any first or last name

• Your address

• A word listed in a dictionary in any language

• Obscenities

• Pop culture words

It is best to include both upper- and lowercase letters, and at least one numeral

and at least one special character in addition to regular alphabetic characters.

With all these considerations, it can be difficult to create a password that we

can remember and is secure. One way to formulate a memorable yet difficult-

to-crack password is to use the first letters of every word in a sentence that has

meaning. For example, if you enjoy the work of a particular author, your password

might be:

MfaiMT!60

This looks difficult to remember. It is extremely difficult to crack—but for me it’s

easy to recall because it is the first letter of each word in the following sentence,

followed by the year my daughter Cassy was born. Cassy was borne in 91.

My favorite author is Mark Twain! and Cassy was born in 91.

or

{OwaiS19}

which stands for

{Our wedding anniversary is September 19}

When you have decided on a new password and are ready to change your

current password, take the following steps:

� 1. Determine whether your system is running the Network Information

Service (NIS).

Once you have decided on a new password, type whichever of the

following commands is appropriate.

2. If your system is running NIS, type:

yppasswd

3. Otherwise, enter:

passwd

114 • I N T R O D U C T I O N T O U N I X A N D L I N U X

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 115

4. You are prompted for your current password. To protect you, the program

will not continue unless you identify yourself by correctly providing the

current password.

5. Type your current password and press ENTER

You are now prompted for a new password

6. Type your new password and press ENTER

The program asks you to repeat the new password to make certain that you

can type it correctly and can remember it.

7. Type your new password again and press ENTER.

When the shell prompt returns with no error messages, your password has

been changed. It might even confirm that all went well.

The passwd utility accomplishes tasks you cannot do. It actually changes

a system file that you are not permitted to alter. Because you have that power

when running the passwd utility, it grills you extensively to be sure you are

legitimate and that you can remember your new password.

Forgetting Passwords
Sometimes it happens. The system administrator (root) cannot find your current

password. It is located on the system only in the encrypted form. However,

the root user is a 600-pound gorilla and can sit wherever she wishes, so the root

user can change your password to a new one without knowing the original. See

Chapter 13.

•

Modifying Permissions on Files
As the owner of a file, you determine who has permission to read the contents of

the file or to change the contents of the file. If it is a command file, you can specify

who can execute it. We can modify permissions only on files we own.

� List the files in the current directory with the long option:

ls -l

The -l option is interpreted by ls as instruction to provide a long listing

of information about the file. The first field in the output, which consists of 10

character places, shows the permissions currently set for that file. In Chapter

9 you will explore setting file permissions in much more depth. For now,

however, look at the permissions field. The very first character is a dash for

files and a d for directories. The remaining nine characters are a mix of dashes,

and r, w, and x characters that show which permissions are currently granted.

Denying and Adding Read Permission on a File
All files have a set of permissions that determine who can do what with the file.

� 1. To view the permissions of the users_on file, type the following command:

ls -l users_on

2. The output resembles the following:

-rw-rw-r-- 1 cassy 453 Jul 18 11:17 users_on

In this example, the first rw- indicates that you (the file’s owner) have

permission to read and write to the file. The second rw- indicates that

other users who have been assigned to your group have read and write

permissions for your file. The last three characters indicate the permission

granted to all other users who are not in your group; in this case, they get

read permission only.

If you are the owner, you can change the permissions on a file to make the

file inaccessible to all users, including yourself. Because you own the file,

you can still change its permissions again at any time. No user can read

or copy your file if you don’t grant read permission.

3. Type the following command to remove read permission from the file

users_on:

chmod -r users_on

4. Examine the permissions field for users_on by typing:

ls -l

116 • I N T R O D U C T I O N T O U N I X A N D L I N U X

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 117

Notice that although the previous permissions were read and write for you

and your group, the new permissions only include a w. By placing the minus

in front of the r in the chmod command, you removed read permission. The

chmod command is used to change the mode of files.

5. Verify the state of the file’s permissions by trying to display the file with the

following command:

cat users_on

You immediately receive an error message saying that you do not have

permission to read the file. Even though you own the file, if you deny

yourself read permission, you can’t read the file. You still own the file,

however, so you can change the permissions again.

6. Return the read permission to the file with the following command:

chmod +r users_on

ls -l users_on

By preceding the r with a +, you add read permission.

In Chapter 10, we will examine what each permission (r, w, and x) controls

for files and directories, as well as how to set the permissions specifically for

owner, group, and other users.

•

Creating a Shell Script
You can use UNIX to program in a variety of formats and languages. The UNIX

operating system gives programmers a number of programming tools that either

are packaged with the system or that can be added.

One of the most basic and useful program tools is the shell itself. You have

been using the shell as an interactive command interpreter. It is also a powerful

programming environment.

� 1. Type the following command to create a new file:

cat > new_script

2. Type the following lines:

echo Your files are

ls

echo today is

date

echo Current processes are:

ps

3. Press ENTER to move the cursor to a new line.

4. Press CTRL-D

At this point, the file new_script contains a series of shell commands.

5. Examine the file to be certain it is correct:

cat new_script

If there are errors, remove the file new_script and return to step 1 to create it

again.

6. Try to run the script by entering its name:

new_script

It does not run when we enter its name. You could source it and have the

current shell read the file and execute its contents as we did earlier.

However, the goal is to enter the filename and have it executed.

7. Display the permissions of the file by entering:

ls -l new_script

The permissions indicate that the file is not executable. To run the script by

simply calling its name, you must grant yourself execute permission.

8. Type the following command to make new_script executable:

chmod +x new_script

9. To see the new permissions, enter:

ls -l

You now have execute permission, as well as read and write permissions for

the file.

10. Execute the new script by typing its name:

new_script

11. If you receive an error message such as:

Command not found

type the following:

./new_script

This command line tells the shell exactly where to find the shell script,

new_script, in your current directory known as “dot.”

All the commands that you typed into the file are executed, and their output

is sent to the screen.

118 • I N T R O D U C T I O N T O U N I X A N D L I N U X

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 119

The output from ps indicates that a new process was started that ran the

script. Your shell executed this child process to run the commands inside

the script.

The steps to create and use a shell script are:

� 1. Create a file of shell commands.

2. Make the file executable with chmod.

3. Execute the file by entering the script name.

When we execute a script, the shell that is reading the script follows those

instructions. It executes each line of the script as though it were a line you

entered at the keyboard. All utilities in the script are executed.

In an earlier exercise, you told your current shell to read the script and execute

the contents of the file with the source command. In this case, you issue the

script name, which your current shell interprets as instruction to start a child

process to read the script. Read permission is enough when you source a script.

Execute permission is needed if you start a child shell to execute its contents.

You will create many scripts in later chapters.

• Self Test 3
Answer the following, and then check your answers at the end of the chapter.

1. When you enter the following command, what happens and why?

cat > dog

__

2. What results from the following commands?

A. who | grep $USER

__

B. grep \$HOME file1

__

C. echo u* >> file1

__

120 • I N T R O D U C T I O N T O U N I X A N D L I N U X

D. echo ‘u*’ >> file1

__

E. ps

__

F. . fileA

__

G. set noclobber

__

H. set -o

__

I. chmod +x file2

__

3. How can we change the prompt to be “Next?” in both families of shells

(C shells and Korn shells)?

__

4. What data is in each field in the passwd file?

_______: ______: ______: ______: ______: ______: ______

5. What command instructs the shell not to accept CTRL-D as a signal to log off?

__

• Chapter Review

Use this section to review the content of this chapter and test yourself on your

knowledge of the concepts.

•

Chapter Summary
UNIX is a multiuser, multitasking operating system. It includes numerous

utilities that can be linked together for efficiency. UNIX is a complex, powerful,

and occasionally unusual operating system. In this chapter, you examined the

fundamental commands and concepts:

• Utilities are essential tools for accomplishing work in Linux/UNIX.

• The sort utility sorts lines from input or from a filename argument. It sorts in

ASCII order by default, or in reverse order if given the -r option as an argument.

• The wc utility counts lines, words, and characters, by default. It outputs only

lines if given the -l option, words if given -w, and only characters if given the

-c option. Options can be combined to output more than one count.

• The grep utility interprets its first argument as a target search string and all

other arguments as files to examine. grep searches through all lines of input

for the target string. If the string is on the line, the line is output; otherwise,

it is ignored.

• The shell redirects input and output for processes running utilities:

| Connects the output from the previous utility to the input of the next.

> Connects the output of the previous utility to a file. The file’s name follows

the redirection character.

>> Connects the output of the previous utility to the end of the file whose name

follows; thus, the output is appended to the end of the file.

< Connects the file whose name follows the redirection to the input of the

previous utility.

• The shell interprets the $ as specifying a variable such as $USER and

$HOME. The shell replaces both the $ and the variable name with its value.

• The * character is a special character to the shell which it interprets as a

“wildcard” for matching filenames in the current directory. It is a wildcard

such that w* is interpreted to mean all filenames that start with a w followed

by any number of any characters. The shell replaces the string that includes

the * on the command line with all matching filenames.

• The shell interprets the \ as instruction to turn off the interpretation of the

special meaning for whatever character follows.

• If special characters are between single quotes, the shell does not interpret the

special meaning.

• CTRL-D is the end-of-file character (EOF), and CTRL-C is the interrupt. When

a process is sent the end-of-file signal, it completes whatever processing it is

programmed to do on input data and then dies. With an interrupt, the process

just terminates.

• We can tell the shell to protect existing files and not overwrite them when we

use the > redirect by setting noclobber:

• C shell family: set noclobber

• Bash, Korn shell family: set -o noclobber

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 121

• We can change the password using the passwd or yppasswd commands.

• Permissions determine who has read, write, and execute access to a file. The

chmod command takes arguments such as -r as instruction to remove read

permissions.

• When we create a file of shell commands, we can have the current shell

execute the commands that are its contents by entering:

• C shell family: source file

• Bash, Korn shell family: . file

• We can have a child shell run the contents of a script by first changing the

permissions on the script file to include execute and read permissions, then

enter the filename as a utility on the command line.

•

Assignment
What Commands Accomplish the Following?

1. What options to ls accomplish the following?

A. Lists all files, including dot files.___________________

B. Provides a long listing of information about the files.___________________

C. Identifies directories with a /.___________________

2. What command line outputs a number that is the total number of files,

including dot files, listed in the current directory?

__

3. What command obtains information about the ps utility?

__

4. What command sorts the contents of all files in the current directory with

names beginning with the letter f?

__

5. In the following commands, how does each utility interpret each of the

arguments:

A. echo dogfish___________________

B. rm dogfish___________________

C. grep dogfish___________________

6. What command creates a new file called all consisting of the lines in the files

file1, file2, and file3?

__

122 • I N T R O D U C T I O N T O U N I X A N D L I N U X

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 123

7. Explain what the following command lines accomplish:

A. grep 'Linux is fun' *___________________

B. sort > file4___________________

C. grep $USER /etc/passwd___________________

D. echo \$PATH $PATH___________________

E. grep '1 2 3' f*___________________

F. set -o EOF___________________

Fill-in

8. What is the difference between CTRL-D and CTRL-C?

__

9. Assume the contents of a file are the following series of shell commands:

date

ps -ef

A. If you want to source the file, what permissions are needed?

__

B. If you wish to execute the script simply by calling its name, what

permission is needed?

__

C. Which process executes the contents when you source a script?

__

D. Which process executes the contents when you execute the script by

calling its name?

__

•

Project

1. Write a command line that outputs the first, second, third, and eighth fields

of the output of ps -ef.

__

2. Create a script named allproc that outputs the first, second, third, and eighth

fields of the output of ps -ef. How would you make it executable? How

would you run it?

__

124 • I N T R O D U C T I O N T O U N I X A N D L I N U X

COMMAND SUMMARY

passwd Changes the user’s password.

ls Lists the contents of the current directory.

ls -l Outputs a long listing of the contents of the

current directory with one file or directory per

line.

F I L E D I S P L A Y I N G

U T I L I T I E S

cat file1 file2 Concatenates file1 and file2. (Outputs file1,

then file2.)

grep word filename Searches for lines containing a particular word

(or pattern) in filename.

wc filename counts the lines, words, and characters in

filename.

D A T A B A S E U T I L I T I E S

awk ‘{print $#}' file Prints the #th field of file.

D A T A P R O D U C I N G A N D

E X A M I N I N G U T I L I T I E S

grep word filename Searches for lines containing a particular word

(or pattern) in filename.

sort filename Displays the lines in filename in sorted order.

spell filename Checks the spelling in filename.

R E D I R E C T I O N O F

I N P U T A N D O U T P U T

utility < filename Makes filename the input for utility.

utility > filename Sends the output of utility to filename.

utility1 | utility2 Makes the output of utility1 the input of utility2.

F I L E P E R M I S S I O N S

chmod -r filename Removes permission to read filename.

chmod +r filename Gives permission to read filename.

chmod +x filename Grants execute permission on the file.

chmod -x filename Removes execute permission on the file.

S H E L L P R O G R A M M I N G

set Lists the variables that are set for your shell and

their values. In C shell, lists local variables. In

Korn shell, lists local and environment variables.

env Lists environment variables.

R E D I R E C T I O N O F

I N P U T A N D O U T P U T

printenv Lists environment variables.

$var Evaluates a variable, var.

* Expands to match filenames.

\ Interprets the next character as an ordinary

character without special meaning.

' ' Turns off interpretation of all characters between

the single quotes. They are seen as ordinary

characters.

scriptname Executes the commands in the file scriptname.

S E T T I N G T H E U S E R

E N V I R O N M E N T

set prompt = ' string ' In the C and tsch shells, makes string the

new prompt.

PS1=' string ' In the Bourne, bash, or Korn shell, makes

string the new prompt.

P R O C E S S M O N I T O R I N G

ps Displays the current processes for this login

session.

A D D I T I O N A L U T I L I T I E S

clear Clears the terminal screen.

echo Reads arguments and writes them to output.

which utility-name Reports the location of utility-name.

ypcat Reads network database files the way that cat
reads local files.

C H A P T E R 3 T O U R I N G U T I L I T I E S A N D S Y S T E M F E A T U R E S • 125

