
CHAPTER 3

New Challenges and
New Threats

41



42 Web Services Securi ty

N
ow that we know what Web Services are (Chapter 1) and have at least a basic
understanding of the principles of security (Chapter 2), we are in a position to
answer the question “what kind of security does Web Services need?” We will

see in this chapter that Web Services security focuses on the application layer, although
security at the lower layers remains important. The principles of security are the same
as those we encountered in the previous chapter: authentication, authorization, and
so forth. The implementation technologies on which we focus are HTTP and SOAP,
although we will keep SMTP security in mind also since SOAP can be bound to SMTP
as well as HTTP.

It may not seem immediately obvious why security for SOAP presents such a
challenge. After all, SOAP is generally bound to HTTP, which already has SSL for
authentication and confidentiality. In addition, many Web authorization tools already
exist. It is a reasonable question to ask why these aren’t enough, and the answer is
made up of a number of reasons.

The first reason is that, although frequently bound to HTTP, SOAP is independent
of the underlying communications layers. Many different communications technologies
can be used in the context of one multihop SOAP message; for example, using HTTP
for the first leg, then SMTP for the next leg, and so forth. End-to-end security cannot
therefore rely on a security technology that presupposes one particular communications
technology. Even in the case of a single SOAP message targeted at a Web Service,
transport-level security only deals with the originator of the SOAP request. SOAP
requests are generated by machines, not by people. If the Web Service wishes to
perform security based on the end user, it must have access to authentication and/or
authorization information about the end user on whose behalf the SOAP request is
being sent. This is the second reason for Web Services security.

This information is not available in the transport layer, which deals only with
the originator of the SOAP request. When SOAP messages are routed between Web
Services, the same problem applies. The security context spans multiple connections,
meaning the principles of security such as integrity and confidentiality must also apply
across these multiple connections. These challenges are met by persisting security
information inside the SOAP message. This chapter introduces WS-Security, a framework
for including security information as XML in SOAP messages. Next, the specifications
for expressing security information (digital signatures, encryption, authentication, and
authorization data) in XML are introduced.

If confidentiality, integrity, and identity-based security can be viewed as the positive
aspects of security, then protecting against hacker attacks is the negative aspect. Hacker
attacks are a fact of life when computers connect to the Internet. These attacks tend to
follow the path of least resistance; that is, by circumventing security, not tackling it
head-on. A sophisticated authentication system is useless if it requires people to “play
by the rules” and these rules can be bypassed. Now that many of the vulnerabilities at
lower layers of the network have been addressed, the playing field has moved to the
application layer. In this chapter, we’ll see how these attacks share many characteristics
with the older, more traditional attacks at lower layers of the communications stack.

Web Services presents both a security challenge and a security threat. The challenge
is to implement the principles of security at the application layer. The threat is that



Chapter 3: New Challenges and New Threats 43

Web Services presents a new avenue of attack into enterprise systems, one that is not
addressed by current security infrastructure (including firewalls). This chapter examines
the new technologies that address these challenges and threats.

WEB SERVICES SECURITY CHALLENGES
In Chapter 2, we were introduced to the layers of the OSI stack. Table 3-1 shows us
how the OSI layers apply to Web Services.

Notice that SOAP is in layer 7, together with HTTP and SMTP. However, SOAP
travels over HTTP or SMTP. This does not mean that SOAP belongs in a new layer, a
layer 8. On the contrary, the seven-layer communications stack still applies for each
individual communication from a SOAP requester to a Web Service. However, one
SOAP-based communication is not the full story. Web Services security presents three
challenges:

• The challenge of security based on the end user of a Web Service

• The challenge of maintaining security while routing between multiple
Web Services

• The challenge of abstracting security from the underlying network

Let’s examine each of these challenges.

The Challenge of Security Based on the End User of a
Web Service
SOAP is a technology used to enable software to talk to other software much easier than
was previously possible. End users (that is, humans) do not make SOAP messages
themselves. However, if access to the Web Service is to be decided based on the
information about the end user, the Web Service must have access to the information
that allows it to make this authorization decision. This information does not have to
include the end user’s actual identity. Consider Figure 3-1.

Layer Number Layer Name Web Services Technology

Layer 7 Application HTTP, SMTP, SOAP

Layer 6 Presentation Encrypted data, Compressed data

Layer 5 Session POP/25, SSL

Layer 4 Transport TCP, UDP

Layer 3 Network IP Packets

Layer 2 Data Link PPP, 802.11, etc.

Layer 1 Physical ADSL, ATM, etc.

Table 3-1. OSI Layers



The end user in Figure 3-1 is accessing a travel Web site and making a reservation.
The reservation is made, on the user’s behalf, on a third-party system accessed using
SOAP. The end user may have authenticated to the travel Web site, perhaps using a
username and password. Because of the successful authentication, the user may have
been shown personalized content. Information about the user’s identity, as well as
attributes of the end user such as their travel preferences and previous bookings, are
known to the Web site. However, in Figure 3-1, we see that the Web Service only has
visibility of the travel Web site, not the end user.

How can this information about the end user be conveyed to the Web Service? Session
layer or transport layer security between the application server and the Web Service
doesn’t convey information about the identity of the end user of the Web Service. It
merely conveys information about the application server that is sending the SOAP
message. It may be the case that many of the requests to the Web Service originate
from that application server.

This challenge is addressed by including security information about the end user in
the SOAP message itself. This information may concern the end user’s identity, attributes
of the end user, or simply an indication that this user has already been authenticated
and/or authorized by the Web server. This information allows the Web Service to
make an informed authorization decision.

This scenario is likely to be widespread where many Web Services are used to
implement functionality “behind the scenes.” It shouldn’t be the case that the end user
has to reauthenticate each time a SOAP request must be sent on their behalf. The challenge
of providing this functionality is sometimes called “single sign-on” or “federated trust.”

End-User Access to a Web Service: A Practical Example
This example uses the ASP.NET Web Matrix tool, freely downloadable from http://www
.asp.net. ASP.NET Web Matrix in turn requires the .NET Framework to be installed.
The .NET Framework can be downloaded from the following URL: http://msdn.microsoft
.com/netframework. Please ensure that you download the latest service pack for the
.NET Framework.

Simple “Add” and “Subtract” Web Services
When ASP.NET Matrix is opened, it displays the dialog box seen in Figure 3-2.

44 Web Services Securi ty

Figure 3-1. Security based on the end user of a Web Service



Enter calculations.asmx in the Filename text box, Calculations in the Class text box,
and Example in the Namespace text box. Choose C# as the language. Now click OK.
You will be presented with the screen shown in Figure 3-3.

Conveniently, for our example, the code for an example Add Web Service is
already provided. Now add a “Subtract” method so that the code listing onscreen is
identical to the following code:

<%@ WebService language="C#" class="Calculations" %>

using System;

using System.Web.Services;

using System.Xml.Serialization;

public class Calculations {

[WebMethod]

public int Add(int a, int b) {

return a + b;

}

[WebMethod]

public int Subtract(int a, int b) {

return a - b;

}

}

Chapter 3: New Challenges and New Threats 45

Figure 3-2. The ASP.NET Add New File page



46 Web Services Securi ty

Click the Save button and then click the Run icon (the right-facing triangle on the
toolbar). You will be prompted with the dialog box seen in Figure 3-4.

Click the Start button to start the ASP.NET local Web server. Now open a Web
browser and navigate to http://localhost:8080/calculations.asmx . A Web form is
automatically created in order to pass data to the calculation Web Services. In order
to see the WDSL descriptors for the Web Service, navigate to http://localhost:8080/
calculations.asmx?WDSL.

From the main Calculations Web Service page, click the Add link. The resulting
page shows a Web form that can be used to submit data to the Web Service, and
examples of SOAP messages that can be targeted to the Web Service.

It is important to note the distinction between the user calling the Web Service
directly, using the form, and the scenario where SOAP is sent on the user’s behalf. This
distinction is shown in Figure 3-5.

When the data from the form is submitted to the Web Service, the user’s browser is
making a direct connection to the Web Service, using HTTP GET or HTTP POST. SSL,
or cookies can be used to secure the connection between the Web Service and the user’s

Figure 3-3. ASP.NET development environment



browser. However, when SOAP is used—meaning that one of the example SOAP
messages is submitted to the Web Service—the user is one step away from the
communication. The application sending the SOAP message on the user’s behalf may
use cookies or SSL, but that would only secure the connection between the application
and the Web Service. If the user has connected to a Web site that uses the calculation
Web Service on their behalf, then the Web Service will only have visibility of the Web

Chapter 3: New Challenges and New Threats 47

Figure 3-4. The ASP.NET Web Services deployment dialog box

Figure 3-5. Direct vs. indirect access to a Web Service



48 Web Services Securi ty

site that is sending the SOAP message, not of the end user on whose behalf the message
is being sent.

The problem is that there are two security contexts in play. These are spelled out in
Figure 3-6.

In our trivial calculation example, it may not seem important who is running the
Web Service. But imagine that the end user is a currency dealer who connects to a local
portal in order to execute a trade. If a Web Service is run on that dealer’s behalf, the
provider of the Web Service must know not only what portal is sending the SOAP
request to it, but who the dealer is. The solution to this problem, as we will see, is to
include information about the end user in the SOAP message itself.

The Challenge of Maintaining Security While Routing Between
Multiple Web Services
Although SOAP routing is not in the scope of SOAP 1.1 or SOAP 1.2, it has been
proposed as part of Microsoft’s GXA (Global XML Web Services Architecture).
WS-Routing provides a means for SOAP messages to route between multiple Web
Services. WS-Routing defines how to insert routing information into the header of a
SOAP message. This routing information can be thought of as equivalent to routing
tables that operate at lower layers of the OSI stack for routing IP packets.

Figure 3-6. Multiple security contexts



Chapter 3: New Challenges and New Threats 49

WS-Routing means that one SOAP message may traverse multiple SOAP “hops”
between the originator and the endpoint. The systems that implement these hops may
have nothing in common apart from the ability to parse and route a SOAP message.

The following code listing is an example of a SOAP message that uses WS-Routing
in order to route between Web Services. It routes from the originator, via an intermediary,
to an endpoint. It is targeted at the Calc Web Service, familiar from the previous
example in this chapter.

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SOAP-ENV:Header>

<h:path xmlns:h="http://schemas.xmlsoap.org/rp/"

SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next"

SOAP-ENV:mustUnderstand="1">

<rp:action xmlns:rp="http://schemas.xmlsoap.org/rp/">

Addition

</rp:action>

<rp:to xmlns:rp="http://schemas.xmlsoap.org/rp/">

http://www.example.com/Calc

</rp:to>

<rp:fwd xmlns:rp="http://schemas.xmlsoap.org/rp/">

<rp:via>http://wwww.intermediary.com/webservice</rp:via>

</rp:fwd>

<rp:rev xmlns:rp="http://schemas.xmlsoap.org/rp/">

<rp:via/>

</rp:rev>

<rp:from xmlns:rp="http://schemas.xmlsoap.org/rp/">

originator@example.com

</rp:from>

<rp:id xmlns:rp="http://schemas.xmlsoap.org/rp/">

uuid:EC823E93-BE2B-F9DC-8BB7-CD54B16C6EC1

</rp:id>

</h:path>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<SOAPSDK1:Add xmlns:SOAPSDK1="http://tempuri.org/message/">

<A>1</A><B>2</B>

</SOAPSDK1:Add>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 3-7 illustrates how this routing scenario involves more than one security context.



SOAP routing does not have to depend on routing information in the SOAP
message itself. Routing can be performed for a number of reasons, including scaling a
Web Services infrastructure between multiple SOAP servers, bridging between two
different networking protocols, or transforming message content from one format to
another. All of these scenarios extend the security context beyond a single SOAP
request/response.

When routing between Web Services, the requirement for confidentiality can apply
from the originator through to the final SOAP endpoint. It may be a requirement that
information be kept secret from SOAP intermediaries. There may be a chance that
intermediaries may disclose the information either deliberately or through leaving
“gaps” between one transport-level security session and the next. While the data is
decrypted, it is vulnerable. This is the same problem that plagued the first release of
the Wireless Access Protocol (WAP), in which data was decrypted in between the
wireless encryption session and encryption on the fixed wire. This so-called “WAP
gap” caused a loss of confidence in WAP security and was addressed in later releases
of the WAP specification. Implementing encryption only at the transport level makes a
“SOAP gap.”

It is often noted that most security breaches happen not while data is in transit, but
while data is in storage. This is the principle of least resistance—attempting to decrypt
eavesdropped encrypted data from an SSL session is much more difficult than simply
testing if a Web site maintainer has remembered to block direct access to the database
where the credit card numbers are stored. If decrypted data is stolen from a database,
the consequences are no less dramatic. Once data has reached its final destination, it
must be stored in a secure state. Confidentiality for a SOAP transaction should not
involve simply chaining instances of confidentiality together, since “SOAP gaps” of
unencrypted data are available between each decryption and encryption.

The Challenge of Abstracting Security from the
Underlying Network
As we saw in Chapter 1, the term “Web” Services is misleading. “Services” is
somewhat redeemable since it indicates a services-oriented architecture (SOA).

50 Web Services Securi ty

Figure 3-7. Multiple Security Contents when SOAP is routed



However “Web” points squarely at the World Wide Web. However, Web Services is
not reliant on HTTP. “Net Services” would have been a better term, but it is too late
to change the name now. Just as Web Services is not reliant on the Web, Web Services
security cannot rely on Web security. This does not mean that Web security can be
ignored. We’ll see later in this chapter that Web server security can be the “soft
underbelly” of an HTTP-based SOAP service and may well afford the path of least
resistance to an attacker.

SSL is the obvious choice for confidentiality and authentication (one-way or two-way)
for the single connection between a SOAP requester and a Web Service over HTTP.
First-generation Web Services are almost unanimously using HTTP, so for the
implementer, the reasons to use SSL are compelling. However, second-generation
Web Services are likely to move beyond HTTP to reliable messaging frameworks
such as HTTPR and SonicXQ, and peer-to-peer technologies such as Jabber.

SSL: A Pragmatic Solution
The challenge of HTTP independence is one that faces standards groups as they are
generating Web Services security specifications. A more mundane challenge faces the
architect charged with implementing Web Services for their organization: to get secure
services up and running as soon as possible. SSL provides for confidentiality between
the SOAP requester and the Web Service itself, as well as authentication. If this is all
that is required, with no possibility that end-user security or SOAP routing will be
introduced to the solution in the future, then this is a pragmatic solution. Chapter 2
explained that it is the high-level principles of security that must be implemented, and
just because SOAP is used, it doesn’t follow that SOAP security must be used. SSL is
available in all Web servers, and with the vast majority of first-generation Web Services
using HTTP, it is a useful and pragmatic solution.

MEETING THE CHALLENGES: NEW TECHNOLOGIES FOR

WEB SERVICES SECURITY
At this point, we’ve seen the requirement for new Web Services security specifications.
Let’s look at how this requirement is being met by introducing new security
specifications, which will be explored in greater detail in subsequent chapters.

Persistent Security
The three security challenges we’ve seen have one thing in common. The principles
of security must apply to a security context that includes more than a single request/
response SOAP message. The solution to this problem is to persist security data in the
SOAP message itself. The security data therefore is not lost after one SOAP communication
has ended. Confidential information in a SOAP message should remain confidential
over the course of a number of SOAP hops.

Chapter 3: New Challenges and New Threats 51



52 Web Services Securi ty

A number of industry specifications have been developed for this purpose. These
specifications can be organized into two distinct categories:

1. A standardized framework to include XML-formatted security data into
SOAP messages.

2. Standards for expressing security data in XML format. This security
information should be used for the high-level principles of security:
confidentiality, authentication, authorization, integrity, and so forth.

Including XML-Formatted Security Data in SOAP Messages:
Introducing WS-Security
WS-Security has emerged as the de facto method of inserting security data into SOAP
messages. Work on WS-Security began in 2001, was published by Microsoft, VeriSign,
and IBM in April 2002, and was then submitted in June 2002 to the OASIS standards
body in order to be made into an industry standard. WS-Security defines placeholders
in the SOAP header in order to insert security data. It defines how to add encryption
and digital signatures to SOAP messages, and then a general mechanism for inserting
arbitrary security tokens. WS-Security is “tight” enough to present the definitive means
of including security data into SOAP messages, but is “loose” enough to not place
limits on what that security data can be.

Confidentiality for Web Services: Introducing XML Encryption
XML Encryption is a specification from the W3C. It provides not only a way of
encrypting portions of XML documents, but also a means of encrypting any data and
rendering the encrypted data in XML format. XML Encryption makes encryption
functionality easier to deploy.

XML Encryption is not a replacement for SSL. SSL is still the de facto choice for
confidentiality between two entities that are communicating using HTTP. However, if
the security context extends beyond this individual HTTP connection, XML Encryption
is ideal for confidentiality. The capability to encrypt XML is nothing new, because XML is
just text after all. However, the ability to selectively encrypt XML data is what makes
XML Encryption so useful for Web Services. Encrypting an entire SOAP message is
counterproductive, because the SOAP message must include enough information to
be useful—routing information, for example. Selectively encrypting data in the SOAP
message is useful, however. Certain information may be hidden from SOAP intermediaries
as it travels from the originator to the destination Web Service.

XML Encryption does not introduce any new cryptography algorithms or techniques.
Triple-DES or RSA encryption may still be used for the actual encryption. XML Encryption
provides a way to format the meta-information about which algorithm was used,
and when the encryption occurred. This aids the Web Service in decrypting the data,
provided the decryption key is available to it. This is important, because prior to XML



Chapter 3: New Challenges and New Threats 53

Encryption the only standardization of encryption data was for e-mail messages (that
is, S/MIME). If an organization wished to send encrypted data to another organization,
both organizations would have to agree on the format of the encrypted data, how and
which algorithms to use, and possibly also how to send an encrypted key. Now that
information can be contained in an XML Encryption block. Chapter 5 explores XML
Encryption in detail, including code examples in C# and Java.

WS-Security defines how XML Signature data can be included in a SOAP message.
This provides persistent confidentiality beyond a single SOAP communication.

Integrity for Web Services: Introducing XML Signature
XML Signature is a specification produced jointly by the W3C and the Internet
Engineering Task Force (IETF). Like XML Encryption, it does not only apply to XML.
As well as explaining how to digitally sign portions of an XML document, XML Signature
also explains how to express the digital signature of any data as XML. As such, it is an
“XML-aware digital signature.” PKCS#7 is a means of rendering encrypted data, and
signed data, which predates XML Signature and XML Encryption. Rather than using
XML, it uses Abstract Syntax Notation number 1 (ASN.1). ASN.1 is a binary format,
renowned for its complexity. Producing or verifying a PKCS#7 signature requires not
just cryptography software, but also an ASN.1 interpreter. XML Signature also requires
cryptography software, of course, but an XML DOM replaces the ASN.1 interpreter.

The power of XML Signature for Web Services is the ability to selectively sign XML
data. For example, a single SOAP parameter passed to a method of a Web Service may
be signed. If the SOAP request passes through intermediaries en route to the destination
Web Service, XML Signature ensures end-to-end integrity.

WS-Security describes how to include XML Signature data in a SOAP message. An
important feature of XML Signature is that it can be very selective about what data in
an XML instance is signed. This feature is particularly useful for Web Services. For
example, if a single SOAP parameter needs to be signed but the SOAP message’s
header needs to be changed during routing, an XML Signature can be used that only
signs the parameter in question and excludes other parts of the SOAP message. Doing
so ensures end-to-end integrity for the SOAP parameter while permitting changes to
the SOAP’s header information. Chapter 4 explores XML Signature in detail, including
code examples in C# and Java.

Web Services Authentication and Authorization: Introducing SAML,
XACML, Passport, and Liberty
Single sign-on (SSO) is one of the “hard” problems in information technology. As seen
in Figure 3-5, if a user signs on to a Web site and then a SOAP request is produced on
the user’s behalf, the destination Web Service may require information about the end
user in order to make an authorization decision. Otherwise, the destination Web
Service only has visibility of the machine that is creating the SOAP request. There are
two approaches to this requirement. The first approach is to include the information in



the SOAP message itself. The second approach is to request this information from a
central repository.

Security Assertions Markup Language (SAML) provides a means of expressing
information about authentication and authorization, as well as attributes of an end user
(for example, a credit limit) in XML format. SAML data may be inserted into a SOAP
message using the WS-Security framework. SAML is used to express information about
an act of authentication or authorization that has occurred in the past. It does not
provide authentication, but can express information about an authentication event that
has occurred in the past; for example, "User X authenticated using a password at time
Y.” If an entity is authorized based on the fact that they were previously authorized
by another system, this is called “portable trust.” SAML is important to address the
challenge of multihop SOAP messages also, because separate authentication to each
Web Service is often out of the question. By authenticating once, being authorized, and
effectively reusing that authorization for subsequent Web Services, single sign-on for
Web Services can be achieved.

Note that this information in a SAML assertion may not indicate the end user’s
identity. The user may have authenticated using a username and password, and the
administrator of the Web site may have no idea of the user’s actual identity. It may
simply be an indication that the user presented credentials and was authenticated and
authorized. SAML allows information to be placed into a SOAP message to say “this
person was authorized according to a certain security policy at a certain time." If the
recipient of this SOAP message trusts the issuer of the SAML data, the end user can
also be authorized for the Web Service. This SAML data is known as an “assertion”
because the issuer is asserting information about the end user. The concept of security
assertions has existed before SAML, and is already widely used in existing software.

XML Access Control Markup Language (XACML) is designed to express access
control rules in XML format. Although the two technologies are not explicitly linked,
XACML may be used in conjunction with SAML. An authorization decision expressed
in a SAML assertion may have been based on rules expressed in XACML.

Microsoft’s Passport technology takes a different approach to single sign-on. The
user authenticates to the passport infrastructure, either directly through www.passport
.com or through an affiliate site that makes use of functionality provided by passport.com.
Once the user is authenticated and authorized by Passport, their authentication status
is also available to other Web Services that use Passport. Like SAML, this provides
single sign-on. However, the model is different, relying on a central point of authentication
rather than SAML’s architecture where authentication happens at an individual Web
Service. By being implemented at the site of the Web Service itself, SAML authentication
and authorization information may be based on role-based security. Role-based security
means that access to resources is based on the user’s organizational role; for example,
in a medical setting doctors may have access to certain information while nurses have
access to different information.

Another industry proposal for the SSO on the Web is the Liberty Alliance Project,
championed by Sun. The Liberty Alliance Project aims to enable a noncentralized

54 Web Services Securi ty



Chapter 3: New Challenges and New Threats 55

approach to SSO, termed a “federated network identity.” At the time of this writing, it
appears the Passport proposal by Microsoft may be taking a similar tack to the Liberty
Alliance Project.

PKI for Web Services: Introducing XKMS
As you may recall from Chapter 2, PKI is a system that allows public key keys to be
trusted by providing key signing and key validation services. Although accepted as an
important, even vital, technology, PKI has a reputation for being notoriously difficult
to implement. The benefits of XML and Web Services apply quite naturally to PKI:
addressing interoperability and integration issues. The XML Key Management
specification (XKMS) enables PKI services such as trustworthily registering, locating,
and validating keys through XML-encoded messages. Because XKMS is service-
oriented and uses XML messages, it is only natural that it be implemented as a
SOAP-based Web Service giving it the distinction of not only being useful for securing
Web Services, but also being available as a Web Service itself. By leveraging the benefits
of XML and by learning from past experiences with pre-XML PKI architectures, XKMS
makes PKI practical for common use.

Like XML Signature, XKMS eliminates the need for ASN.1 functionality in software
that deals with digital certificates. It goes further, however, and can allow XML software to
use digital certificates and PKI without the need to implement cryptography algorithms.
This is useful for software developers, many of whom may not have the time or inclination
to delve into cryptography or employ cryptography toolkits.

WEB SERVICES SECURITY THREATS
We’ve seen the positive side of Web Services security: the industry cooperation on
new specifications and frameworks. Now let’s investigate the negative side. The new
specifications that implement the principles of security for Web Services are useless if
the user is required to “play by the rules.” A sophisticated authorization system using
SAML and WS-Security is useless if the Web Service on which it runs can be disabled
by a CodeRed attack. (CodeRed is a worm program that attacks IIS Web servers.)

Some of these “new threats” are, in fact, old threats, such as buffer overflow and
attempts to exploit other programming errors, but the avenue of attack—SOAP—is new.

Firewalls have traditionally addressed vulnerabilities at the lower layers of the OSI
stack. Firewall functionality has progressively moved up the OSI stack to reach the
application layer. However, they are not yet “SOAP-intelligent.”

The following section examines these aspects of Web Services security.

Web Application Security
Application layer security existed long before SOAP. Application layer security for
Web servers involves securing both the Web server itself and Web applications that use



56 Web Services Securi ty

the Web server as their platform. A Web application is a CGI-based application with
which the user interacts using a Web browser. Attacks on Web applications initially
focused on attacking the platform itself, exploiting security holes in the Web server.
These frequently took the form of buffer overflow attacks. Like the “ping of death”
attack we saw at the network layer in Chapter 2, buffer overflow attacks on a Web
server presented more data than the Web server expected. This data would be written
to memory, and could find its way into the execution stream. This allows arbitrary
commands to be executed on the server.

It is difficult and time-consuming to produce a buffer overflow attack, but once
produced, the attack can be packaged into a scriptable tool that so-called “script
kiddies” can use. Script kiddies use existing techniques and programs or scripts to
search for and exploit weaknesses in computers on the Internet. The derogatory nature
of the term refers to the fact that the use of such scripts or widely known techniques
does not require any deep knowledge of computer security.

Gradually, buffer overflow attacks on HTTP implementations were addressed in
patches to Web servers. At that stage, attacks began to exploit the extra features bundled
with certain Web servers, features often installed whether users wanted them or not.
These extra features included indexing engines and example scripts. After these holes
were patched, it became more difficult for hackers to construct attacks on Web server
software. This is when application layer hacking attacks progressed to attacking Web
applications, rather than the platforms on which the Web applications run. These are
not across-the-board attacks that can be packaged and used against thousands of Web
servers by script kiddies. These attacks are specific to individual Web applications.
However, they can be put into categories, including the following:

• SQL attacks Inserting SQL statements into Web forms in order to force a
database to return inappropriate data, or to produce an error that reveals
database access information. For Web Services, this category of attack
translates to manipulating data in a SOAP message to include SQL statements
that will be interpreted by a back-end database.

• Directory traversal attacks Attempts to bypass hyperlinks by attempting to
directly access resources. For example:

• If a URL is http://www.example.com/documents/sales.htm, what
happens if http://www.example.com/documents/ is requested?

• Does a directory called /test/ exist?

For Web Services, this category of attack translates to attempting to detect other
SOAP services which are not explicitly offered.

• URL string attacks Manipulating CGI name/value pairs in the URL string;
for example, changing “maxResults=10” to “maxResults=1000” to return more
information from a database. For Web Services, this translates to circumventing
the rules on SOAP parameters (for example, if a search SOAP service takes an
integer between 1 and 10 as a SOAP parameter, what if the number 1000 is
submitted?).



Chapter 3: New Challenges and New Threats 57

Many of these attacks can be avoided by implementing careful programming practices
and by cleaning up resources that are not required on the Web server. However, it is often
the case that no matter how much care is taken; vulnerabilities can slip through the net.

TIP In order to guard against the possibility of attacks on application vulnerabilities, consider the use
of an XML firewall or XML proxy to filter SOAP requests before they reach your application.

When bound to HTTP, SOAP itself can be seen as a Web application, albeit a more
standardized and formalized application than what has gone before. It is likely that
initial SOAP implementations will be vulnerable to attacks based on invalid data such
as buffer overflow attacks or attacks based on SOAP routing that attempt to create
SOAP “worms.” This vulnerability is not necessarily due to carelessness but, rather,
due to the fact that all security bases cannot be covered in initial versions of any software.
The lesson from the history of Web server attacks is that once the platform is secured,
the playing field shifts to the applications implemented on that platform. These attacks
are potentially more dangerous than in the case of CGI applications; because of the
nature of the business processes implemented using SOAP.

The Role of Firewalls for Web Services
“SOAP bypasses firewalls.” This phrase is frequently heard. Let’s examine what it
means. The first question to ask is: What is a firewall? The answer is that different
categories of firewalls apply to different layers of the OSI stack.

Packet-Filtering Firewalls
The lowest layer at which a firewall works is layer 3. At this level, the firewall checks
if the information packets are from a trusted source and is not concerned with the content
of the packets. These are called “packet-filtering firewalls” and are usually part of a
router. IP packets are compared to a set of criteria and dropped or forwarded accordingly.
These criteria can be source and destination IP address, source and destination port
number, the protocol used, and the format of the IP packet.

The “ping of death” that we encountered in the previous chapter applies at the
network layer and is protected by packet-filtering firewalls. Much of this functionality
is now built into operating systems and routers.

Circuit-Level Firewalls
At layer 4, firewalls filter traffic based on more sophisticated criteria. TCP layer firewalls
are known as “circuit-level firewalls.” These firewalls monitor TCP handshaking to
determine a session’s legitimacy. Information about the protected network they are
protecting is hidden, because packets appear to originate from the firewall and not
from an address inside the protected network. These firewalls do not filter individual
packets; rather, filtering is based on the rules of the TCP session, including who initiated
the session and at what time.



Circuit-level firewalls prevent “session hijacking”—sending an IP packed that is
intended to appear as if it belongs to a trusted session. It also hides an internal network
from an attacker who wishes to scan it for vulnerabilities.

Application-Level Gateways
Application-level gateways filter packets at the application layer. They are aware of
what traffic meant for specific applications should look like. For example, it knows
the difference between Web traffic and telnet traffic, even though both use TCP/IP.
Application-specific commands and user activity can be logged. These firewalls are
relatively processor-intensive.

An application-level gateway will know that if it is protecting an e-mail POP server,
the command “USER” is allowed, and takes one parameter (that is, the username).
Anything else is not allowed. For example, traffic that looks like telnet traffic directed
to the POP server will be blocked.

Stateful-Inspection Firewalls
Stateful-inspection firewalls operate at multiple levels and include much of the
functionality of packet-filtering firewalls, circuit-level firewalls, and application-level
gateways. These are complex and powerful, but tend to be difficult to configure. When
not properly configured, they may contain security holes.

Application Layer Firewalls
Many firewalls have been configured to only allow Web (HTTP, SSL) and e-mail (POP,
SMTP) traffic to pass. Other TCP/IP ports, and other protocols, are routinely blocked.
It has become standard practice to “tunnel” other applications through the Web ports
(80 for HTTP, 443 for SSL), effectively disguised as normal Web traffic. This is generally
not done for malicious reasons, but rather for pragmatic reasons, because all other
ports are blocked. In particular, SOAP is very frequently bound to HTTP. It provides a
standardized means for applications to communicate over the Web ports. One of the
lessons of computer industry history is that standards drive usage and SOAP promises
to enable the explosive growth of application communication over the Web ports.

When a firewall examines a SOAP request received over HTTP, it might conclude
that this is valid HTTP traffic and let it pass. Firewalls tend to be all or nothing when it
comes to SOAP. A SOAP-level firewall should be able to:

• Identify whether the incoming SOAP request is targeted at a Web Service that
is intended to be available.

• Identify whether the content of the SOAP message is valid. This is analogous
to what happens at the network layer, where IP packet contents are examined.
However, at the application layer it requires knowledge of what data the Web
Service expects.

Content-Filtering Security at the Application Layer
Web Services present a new avenue of attack into the enterprise. Even so, some of the
tactics are familiar: feeding unexpected data to an application in order to confuse it, or

58 Web Services Securi ty



Chapter 3: New Challenges and New Threats 59

disable it. In Chapter 2 we saw how the “ping of death” was an attack that operated at
the network level to provide unexpected data in an Internet Protocol (IP) packet. Web
Services present details of their interface in WSDL files, which effectively say, “Here
are the details of the data that I expect.” This invites a hacker to send it inappropriate
data in order to see what happens.

A WSDL file may contain the following line:

<xsd:element name="tickerSymbol" type="string"/>

This indicates that one of the parameters expected by the Web Service is a string,
called “tickerSymbol.” The options for a speculative attack on this Web Service would
include sending it a number instead of a string, or sending it a very large string
designed to overload the Web Service. It is important, therefore, that “sanity checks”
are performed on incoming data directed to Web Services. This may take the form of
checking SOAP parameters against an XML Schema. However, XML Schema validation
is processor-intensive. In addition, certain portions of a SOAP message may be volatile,
meaning that they change while in transit between the SOAP requester and the Web
Service. Volatile portions of a SOAP message include the header, which may contain
routing information that changes as the message is routed. Therefore, it is more
appropriate to use XPath to narrow down the data validation to nonvolatile portions
of the SOAP message.

Another aspect of content filtering is ensuring that only valid Web Services are
called. Firewalls must be able to distinguish SOAP requests from invalid requests. A
valid request and an invalid request may differ only on the basis of the SOAP method
called. The following code listing shows a valid SOAP request to a method called
“GetTime” that takes a time zone as a parameter:

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header></SOAP-ENV:Header>

<SOAP-ENV:Body>

<SOAPAPP:GetTime xmlns:SOAPAPP="http://tempuri.org/message/">

<TimeZone>GMT</TimeZone>

</SOAPAPP:GetTime>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The following code listing shows a SOAP request that targets another Web Service
method, called “ResetComputer”:

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<SOAPAPP:ResetComputer xmlns:SOAPAPP="http://tempuri.org/message/">



</SOAPAPP:ResetComputer>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The challenge for firewalls is how to allow the first SOAP message, targeting a
valid method of a Web Service, and to block the second one. There are analogies with
firewall functionality at lower layers of the OSI stack. Filtering on the targeted SOAP
method is only the first step, however.

Filtering on the data that is provided to a Web Service is more complicated. The
details of each Web Service are specific. Consider a Web Service that takes a ZIP code
as a parameter. The valid input is a five-character string. If the Web Service receives
5,000 characters as input, this may indicate that an attacker is testing for vulnerability
to a buffer overflow attack. In order to block this sort of attack, a firewall must be
aware of what type of data is valid for the Web Service.

The Next Steps for Firewalls
Application layer security began by ensuring that connecting entities played by the
rules for applications that ran over TCP/IP; then, they progressed to patching holes in
Web servers; and now it has moved to blocking attacks on Web applications. A SOAP
implementation bound to HTTP may be seen as a Web application itself, and therefore
the next step is to prevent SOAP implementations from attack. After protecting the
SOAP implementation, the final step is to protect Web Services that use that SOAP
implementation.

The challenge is to ensure that the firewall rules are in sync with the Web Services
themselves—and it seems obvious that UDDI and WSDL should be used for this purpose.
UDDI, after all, is used to return a list of deployed services. A dynamic updating
firewall could query this list using a UDDI query such as we encountered in Chapter 1,
and use this to ensure that only legal traffic passes through.

The next challenge is to ensure that only permitted traffic travels out of the network
to third-party Web Services. A number of organizations are investigating the
establishment of two-way Web Services gateways that act as “choke points” for SOAP
traffic. This ensures that only valid SOAP traffic comes into the enterprise, and only
valid SOAP traffic leaves the enterprise.

This is the natural evolution of firewall functionality, which began at the network
layer and has been “climbing the ladder” of the OSI stack ever since.

Hint: When choosing a firewall product, check if the vendor supports SOAP
filtering. A firewall should be capable of blocking SOAP messages based on target
(endpoint) and based on the payload of the SOAP message, validated against an XML
Schema.

This is the end of Part I. We have seen what Web Services are, what the high-level
principles of security are, and how security is applied to Web Services. Part II looks at
the implementation technologies in-depth.

60 Web Services Securi ty


