Exploring Prime Factors

By Dr. Alice C. Raganas

Here are 12 squares . . .

Use the 12 squares to form rectangles of different shapes. How many different forms of rectangle can you make?

Did you come up with these three different rectangles?

A 3 by 4 or 4 by 3, a 2 by 6 or 6 by 2 , and a 1 by 12 or 12 by 1 .

Now, form as many different rectangles as you can with seven of your squares.

Have you noticed that just one rectangle is formed? A 1 by 7 or 7 by 1 rectangle.

12 is a composite number with factors $1,2,3,4,6$, and 12 .
7 is a prime number with factors 1 and 7.
A number with more than two factors is a composite number.
A number with exactly two factors is a prime number.

Prime Less than 100				
2	13	31	53	76
3	17	37	59	79
5	19	41	61	83
7	23	43	67	89
11	29	47	71	97

To factor a number, you need to test only prime numbers to find prime factors. From these, all the whole numbers, between 1 and 100 , are given in the table above.

To find the factors of 42 in this way, we test the primes in succession using either of the methods below:
(Inverted Short Division)

2	$\frac{42}{}$
3	$\frac{21}{7}$

(Factor Tree)

$$
\overbrace{3 \overbrace{3}^{21}}^{42} \rightarrow 42=2 \times 3 \times 7
$$

We find the remaining whole number factors of 42 by taking all possible products of the prime factors:

$$
\begin{aligned}
& 2 \times 3=6 \\
& 2 \times 7=14 \\
& 3 \times 7=21 \\
& 2 \times 3 \times 7=42
\end{aligned}
$$

Including 1, the whole-number factors of 42 are $1,2,3,4,6,7,14,21$, and 42 . The statement $42=2 \times 3 \times 7$ gives a prime factorization of 42 .

Try This！

A．State whether each number is prime or composite．
1． 9
6． 23
2． 57
7． 19
3． 21 \qquad 8． 17
4． 12
9． 33
5． 10
10． 11
\qquad
\qquad

6．	$51=$
7.	$22=$
8.	$34=$
9.	$144=$
10.	$135=$

C．Express each number as the sum of two primes in as many ways as possible．
Example： $16=3+13$ or $16=5+11$

1． $8=$
2． $22=$
3． $10=$
4． $24=$
5． $12=$
\qquad 6． $18=$
7． $30=$
8． $20=$
9． $32=$
10． $28=$

LI＋II	－${ }^{\text {I }}$
$\varepsilon \mathrm{E}+6 \mathrm{I}$	6
$L+\varepsilon I$	8
$L I+\varepsilon$ I	$\stackrel{\text { L }}{ }$
$\underline{L+}+$	9
$\mathcal{S} \times \mathcal{\varepsilon} \times \mathcal{\varepsilon} \times \mathcal{\varepsilon}$	0 1
$\mathcal{E} \times \mathcal{E} \times て \times Z \times Z \times て$	6
LI \times Z	8
$\underline{\text { LI } \times \text { て }}$	$\stackrel{L}{ }$
$L I \times \varepsilon$	9
әuı！	01
әң！soduos	－ 6
әu！ıd	－8
әu！！d	L
әu！ud	$\cdot 9$

$\varsigma+L$	＇
$\varepsilon\left[+I{ }^{\text {d }}\right.$	${ }^{+}$
$\varsigma+\varsigma$	$\mathcal{\varepsilon}$
II＋II	乙
$\varepsilon+\varsigma$	\bigcirc
$\varepsilon I \times \varepsilon$	¢
$\mathcal{E} \times \mathcal{E} \times$ Z	\dagger
$\mathcal{E} \times \mathcal{E} \times て \times て \times て$	＇ε
$\tau \times \mathcal{E}$	て
$L \times て$	＇g
ขฺ！	\bigcirc
ขฺ！	\dagger
әң！Soduos	＇ε
ә！！！soduos	＇
әң！soduos	－－ V

