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INTRODUCTION

Small consumers, generally referred to as meso -

herbivores or mesograzers, can have major influ-

ences on the composition and/or structure of marine

communities (Brawley 1992, Heck & Valentine 2006,

Hillebrand 2009). This is particularly true with

respect to macroalgal-associated amphipods (Duffy

& Hay 1991, 2000), which can have positive, nega-

tive, or neutral impacts on their host macrophytes

(e.g. Duffy 1990, Buschmann & Vergara 1993, Sotka

et al. 1999, Poore et al. 2009).

Subtidal communities on hard substrata along the

western Antarctic Peninsula support lush undersea

macroalgal forests which are dominated by large,

perennial brown algae (Wiencke & Amsler 2012) and

which support exceptionally dense amphipod assem-

blages (Richardson 1971, 1977, Huang et al. 2007,

Aumack et al. 2011a). Estimated amphipod densities

range up to tens to hundreds of thousands of

amphipods per m2 of the bottom in pure stands of

their preferred macroalgal hosts (Amsler et al. 2008).

Most of the macroalgae, including all of the ecologi-

cally dominant taxa, are chemically defended from
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previous studies, Plocamium cartilagineum was one of the most strongly deterrent algae in the

community to multiple consumers, and was found here to be unpalatable to 5 other amphipod spe-

cies which utilize it as a host in nature. Paradexamine fissicauda maintained on a diet of Ploca -

mium cartilagineum for 2 mo were much less likely to be eaten by fish than Paradexamine fissi-

cauda maintained on a red alga which does not elaborate chemical defenses, or than a different but

morphologically similar sympatric amphipod species. Halogenated secondary metabolites pro-

duced by Plocamium cartilagineum were identified from tissues of the Paradexamine fissicauda

that had eaten it but not those which had eaten the undefended red alga. This indicates that P. fissi-

cauda is sequestering the potent chemical defenses of Plocamium cartilagineum for its own use.
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being consumed by both macrograzers and meso-

grazers (Amsler et al. 2005, 2008, 2009a, Aumack et

al. 2010). Amphipods and other small marine grazers

can benefit from associating with chemically de -

fended macroalgae because the algae can provide a

refuge from omnivorous macrograzers such as fish

(Hay 1992, 1996). The relative mobility of the meso-

grazers, morphology of the macroalgae, and geo-

graphic location also are important (Holmlund et al.

1990, Duffy & Hay 1994, Taylor & Steinberg 2005,

Zamzow et al. 2010). In some cases the mesograzers

may be dietary specialists on the chemically de -

fended macroalgae (Hay 1992). Such dietary special-

ists not only benefit from an associational refuge

from predators but also in having an additional food

source (cf. Sotka & Whalen 2008).

Herbivore specialization on chemically defended

prey necessitates a mechanism for tolerating the

host’s defensive secondary metabolites. Terrestrial

herbivores are able to tolerate plant secondary meta -

bolite defenses via a range of behavioral and meta-

bolic processes (Després et al. 2007). There are far

fewer studies of tolerance in marine herbivores, but

the mechanisms of metabolic tolerance are similar

(Sotka & Whalen 2008). In both terrestrial and marine

herbivores, metabolic tolerance of lipophilic meta -

bolites is commonly mediated by all or part of a

3-phase pathway involving cytochrome P450s, glu-

tathione S-transferases, and ATP binding cassette

transporters, in which the metabolites are made more

hydrophilic and then isolated into vesicles or ex cre -

ted (reviewed by Karban & Agrawal 2002, Sorensen

et al. 2006, Després et al. 2007, Sotka & Whalen 2008).

In addition to tolerating prey chemical defenses,

some terrestrial arthropods (insects, particularly in

the Coleoptera and Lepidoptera) and vertebrates

(primarily amphibians, reptiles, and birds) are able

sequester chemical defenses from prey organisms

within their tissues for use as defenses against their

own predators (Blum 1983, Nishida 2002, Opitz &

Muller 2009, Savitzky et al. 2012). Many species of

marine opisthobranch molluscs similarly not only tol-

erate chemical defenses of their prey but are able to

sequester them for their own use (Cimino & Ghiselin

2009). However, we are not aware of reports of this

occurring in any taxon of marine grazers other than

opisthobranchs. The metabolic mechanisms res pons -

ible for sequestration are less studied than for toler-

ance, but include selective transport and storage of

the defensive metabolites (Després et al. 2007).

As with amphipods from lower latitudes, Antarctic

amphipods appear to benefit from associating with

their chemically defended macroalga hosts because

the algae provide a refuge from omnivorous fish

predators. Along the western Antarctic Peninsula,

densities of amphipods during daylight hours can be

orders of magnitude higher on chemically defended

macrophytes, particularly those with branching

morpho logy, than on palatable macroalgae (Huang

et al. 2007). Amphipod densities on Desmarestia

menziesii, a chemically defended macrophyte sup-

porting the greatest daytime amphipod densities,

significantly decrease at night (Aumack et al. 2011a)

when visual predators such are fish are less of a

threat, while amphipod densities on blade-forming,

chemically defended macrophytes and on palatable

macrophytes increase. Zamzow et al. (2010) demon-

strated that amphipods associated with D. menziesii

were less susceptible to predation from the domi-

nant, omnivorous fish than were amphipods associ-

ated with a non-defended macrophyte.

Although these Antarctic amphipods do not appear

to consume most host macroalgae, they consume

large quantities of epiphytic diatoms (Aumack 2010,

Aumack et al. 2011b) which almost certainly benefits

their hosts. Many studies throughout the world have

shown that amphipods and other mesograzers can

benefit their host macrophytes in this manner by

 limiting the growth of epiphytic microalgae and/or

filamentous algae, which can compete with the

macrophytes for light and nutrients (e.g. Brawley &

Adey 1981, Shacklock & Doyle 1983, D’Antonio 1985,

Brawley & Fei 1987, Duffy 1990, Jernakoff et al.

1996). Although less studied, mesograzers can also

influence filamentous algae growing endophyticly.

Parker & Chapman (1994) reported that when meso-

grazers were excluded from tide pools dominated by

the brown alga Fucus distichus, fatal, pathogenic

effects of otherwise unapparent filamentous algal

endophytes drastically reduced the macroalgal

canopy.

Free-living filamentous algae, epiphytic or other-

wise, are very uncommon in subtidal communities

along the western Antarctic Peninsula (Peters 2003)

even though they are commonly present in adjoining

intertidal areas (e.g. Delépine et al. 1966, Hedgpeth

1969, Chung et al. 1994, Kim 2001). However, fila-

mentous algal endophytes growing within the larger,

chemically defended macroalgae are unusually com-

mon (Peters 2003, Amsler et al. 2009b). Peters (2003)

hypothesized that the high densities of macroalgal-

associated amphipods in these Antarctic communi-

ties were preventing the growth of free-living fila-

ments while selecting for an endophytic growth form,

and this has been supported by experimental field,

laboratory, and mesocosm studies (Amsler et al.
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2009b, 2012, Aumack et al. 2011b). Consequently,

the dense assemblage of chemically defended Ant -

arctic macroalgae benefits from the dense assem-

blage of amphipods associated with it because the

amphipods limit the growth of both unicellular and

filamentous epibionts on the macroalgae.

Since both the chemically defended macroalgae

and the amphipods benefit from their association,

this is a mutualistic relationship across the macroal-

gal and amphipod assemblages. As a consequence of

the macroalgae dominating Antarctic Peninsular

communities in terms of biomass and structure, and

amphipods clearly being the most abundant and

widespread invertebrates in these communities, this

mutualistic relationship is likely to have widespread

impacts on the community dynamics and/or structure

of near shore communities along the western Antarc-

tic Peninsula.

As mentioned, temperate and tropical mesograzers

that specifically associate with chemically defended

macroalgae are sometimes able to consume their

hosts (Hay 1992, 1996). If macroalgal-associated am-

phipods along the western Antarctic Peninsula are

also consuming significant quantities their hosts rela-

tive to the benefits they provide from eating epibionts,

considering their association as a community level

mutualism would not be appropriate. With one excep-

tion, none of our studies of trophic relationships in this

community have given any indication that the amphi -

pods are consuming the dominant, chemically defen -

ded macroalgae. The exception is for the amphipod

Paradexamine fissicauda, which has previously been

suggested to be broadly omni vorous (Momo et al.

1998). In a survey of the amphipod fauna associated

with 8 common macroalgae in our study area, P. fissi-

cauda was 2 to 3 orders of magnitude more abundant

on the chemically defended red alga, Plocamium

 cartilagineum, than on any of the other 7 species

(Huang et al. 2007). In a study including both amphi-

pod gut content analyses and stable isotope composi-

tion, Aumack (2010) found a majority of the gut con-

tents from Paradexamine fissicauda were macroalgal

thallus or filaments. The stable isotope composition of

P. fissicauda was the only one of 8 common amphipod

species examined that closely matched Plocamium

cartilagineum or other chemically defen ded red

algae. No other possible dietary components sampled

including diatoms or filamentous algal endophytes,

either alone or in combination, would result in its iso-

topic signature — strongly suggesting that Paradex-

amine fissicauda is unlike other common amphipods

in the community in being able to consume chemically

defended red algae.

The first goal of the present study was to test the

hypothesis that the amphipod Paradexamine fissi-

cauda is unique among common amphipods in the

community in being able to consume chemically

defended macroalgae, particularly Plocamium carti-

lagineum. After discovering that this is indeed the

case, we sought to determine if Paradexamine fissi-

cauda might derive benefits in addition to having a

de fended algae as a food source, specifically by test-

ing the hypothesis that it is able to sequester defen-

sive algal metabolites for its own use.

MATERIALS AND METHODS

Sample collection

Subtidal macroalgae and associated amphipods

were collected within 3.5 km of Palmer Station on

Anvers Island, Antarctica (64° 46.5’ S, 64° 03.3’W; see

Amsler et al. 2009b for map). All samples were col-

lected by hand during SCUBA dives at 5 to 30 m

depth during March through April 2010, February

through May 2011, and March 2012. Following col-

lection, the samples were kept submerged in buckets

of seawater and transported to flow-through ambient

seawater aquaria at Palmer Station. Fish were collec -

ted using baited traps submerged off the station

dock. Macroalgae for use in secondary metabolite

analyses were frozen at −80°C.

Macroalgae used in bioassays were held in flow-

through aquaria under ambient room lighting for a

maximum of several days before use in experiments.

Amphipods were collected on their host macroalgae

following the techniques of Huang et al. (2007). The

amphipods were sorted by species and maintained in

4 l plastic bottles with screened windows to allow

seawater exchange while floated in aquaria with

flow-through, filtered ambient seawater. Each bottle

had several pieces of algae on which the amphipods

could graze or perch. Fish were held in a large, com-

partmented aquaria with flow-through seawater for

approximately 1 wk prior to the experiment. Each

fish was fed 3 times daily with fresh limpet tissue

delivered using long forceps.

Feeding bioassays

Several different feeding bioassays were conduc -

ted with amphipods, fish, and macroalgae over the

course of 3 yr. To determine the palatability of the red

alga Plocamium cartilagineum to the most common
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amphipods in the community, fresh thallus from the

alga was bioassayed with 6 species of amphipods

(Gondogeneia antarctica, Oradarea bidentata, Para -

dexamine fissicauda, Paraphimedia integricauda,

Pro stebbingia gracilis, and Schraderia gracilis) in

2010. In order to determine the range of chemically

defended macroalgae that Paradexamine fissicauda

is able to consume and their relative palatability, a

set of no-choice experiments performed in late

March and early April 2010, and repeated twice in

2011 (once in late March and early April, once in

early to mid-May) examined the palatability of 6 red

algal species (Cystoclonium obtusangulum, Delisea

pulchra, Palmaria decipiens, Pantoneura plocamio -

ides, Picconiella plumosa, and Plocamium cartilagi -

neum) and 2 brown macroalgal species (Desmarestia

anceps and Desmarestia menziesii) to the amphipod

Paradexamine fissicauda. The second 2011 experi-

ment did not include Delisea pulchra, Desmarestia

anceps, and D. menziesii. Additionally, in March and

May 2011 and in March 2012, 4-way choice experi-

ments were conducted with Paradexamine fissicauda

to examine preferential feeding on the red algae C.

obtusangulum, Pantoneura ploca mioides, Picconiella

plumosa, and Plocamium cartilagineum.

Most bioassays were conducted with amphipods

within a week of collection. However, 2 populations

of Paradexamine fissicauda were maintained in the

laboratory for 2 months in 2011, one on a diet of

Ploca mium cartilagineum and the other on a diet of

Palmaria decipiens. Some of these amphipods were

used in a fish feeding bioassay with the sympatric

predator Notothenia coriiceps to determine if con-

suming the chemically defended algae affected the

amphipod’s palatability to the fish. The remainder of

the amphipods were maintained for an additional

week on a diet of Palmaria decipiens only. Paradex-

amine fissicauda feeds and clears its gut relatively

rapidly and this time interval would have allowed the

amphipods previously fed Plocamium cartilagineum

to clear their guts multiple times. These amphipods

were frozen at −80°C and used for the secondary

metabolite analyses detailed below in order to deter-

mine if the amphipods were sequestering defensive

algal metabolites.

No-choice feeding rate bioassays generally fol-

lowed methods described by Amsler et al. (2009b).

Single amphipods were placed in each of twenty

60 ml plastic bottles filled with filtered seawater. A

small portion (<5 mg) of an individual algal thallus

was placed in each of the 20 bottles with

amphipods. A similar portion from each alga was

placed in a paired bottle without an amphipod to

serve as autogenic control. No individual alga was

used as the source of more than one experimental

and autogenic control sample pair. The algae and

amphipods were maintained at ambient tempera-

tures by floating them in flow-through aquaria until

a visible biomass had been consumed, or for a max-

imum of 4 d. The seawater in all bottles was

changed daily. Thallus biomass was determined at

the beginning and end of the experiment by blot -

ting the algal thallus dry and weighing it to the

nearest 0.01 mg on a Mettler Toledo XP 26 Delta -

range microbalance. The amount of thallus con-

sumed was calculated by subtracting the final mass

from the initial mass after correcting by the ratio of

initial:final mass in the paired autogenic control bot-

tle. Amphipod feeding rates were expressed on a

per individual per hour basis.

The 4-way choice experiments followed the no-

choice methods with a few exceptions. A single Para -

dexamine fissi cauda was placed in each of twenty

250 ml plastic bottles with a small portion (<5 mg) of

each of the 4 red algae. A similar bottle lacking an

amphipod served as the autogenic control. The bot-

tles were maintained in a cold room at 1°C with a

daily water change.

Only individual Notothenia coriiceps that readily

fed from forceps were used in the fish feeding bio -

assay. Sixteen individuals were fed 3 times during

24 h a randomly assigned sequence of Bovallia

gigantea (a predatory amphipod of equivalent size

and with a spiny morphology similar to Paradexa -

mine fissicauda), P. fissicauda maintained on a long

term diet of Plocamium cartilagineum, or Para dexa -

mine fissicauda maintained on a long term diet of

Palmaria decipiens. The amphipods were released

from forceps in front of the fishes’ mouths. The fish,

which had been accustomed to feeding in this man-

ner, then took the amphipods into their mouths

before determining to eat or reject them. In each trial,

the amphipod was presented in the forceps with its

dorsal side towards the fish. The amphipods were

alive, but in order to control for any potential differ-

ences in escape behaviors between B. gigantea and

Para dexamine fissicauda each animal was briefly

immobilized imme diately before being presented to

the fish. This was done by quickly, partially drying

the amphipod followed by very light (non-crushing)

pressure on its head using the forceps. This was

observed to immobilize the amphi pods long enough

for the fish to have an opportunity to either accept or

reject them as food. After each trial the fish was

offered (and consumed) fresh limpet tissue to check

for satiation.
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Statistical analyses

Statistical analyses on amphipod feeding rates

were performed using SPSS software (SPSS). Multi-

ple comparisons utilized Mann-Whitney tests. Pair-

wise post hoc comparisons were made with Kruskal-

Wallis tests corrected for Type I error with the

sequential Dunn-Sidak method (Sokal & Rohlf 1995).

Because of the larger number of pair-wise compar-

isons of Paradexamine fissicauda feeding rates on

different macroalgal species in the 2010 and March-

April 2011 no-choice experiments, for those 2 exper-

iments alpha was set at 0.07 in the Dunn-Sidak

method. In all other statistical analyses, alpha was set

at 0.05. Amphipod feeding rates were also individu-

ally compared to zero consumption with one-sample

t-tests. Statistical analysis of fish acceptance vs.

rejection of amphipods in feeding bioassays were

performed with pair-wise, 2-tailed McNemar’s test

for correlated proportions using VassarStats (vas-

sarstats.net) corrected for Type I error with the

sequential Dunn-Sidak method.

Secondary metabolite analyses

Analysis of secondary metabolites from organisms

used in this study was conducted by GC-MS. Algal

thalli or amphipods were submerged in a solution

of dichloromethane/methanol (3:1) for 24 h, then de -

canted to produce a lipophilic extract. Injections of

1 µl of a 1.0 mg ml−1 solution of algae or amphipod

extract were introduced into the preheated splitless

inlet at 250°C of an Agilent 7980A GC fitted with an

HP-5ms column (30 m × 0.25 mm i.d.) incubated at an

initial oven temperature of 100°C for 2 min, and

heated to a final temperature of 250°C at a rate of 5°C

min−1. A final temperature of 300°C was reached at a

rate of 20°C min−1, then this temperature held for a

further 2 min. Helium was used as a carrier gas at a

constant flow rate of 1 ml min−1. Molecular ions were

detected on an Agilent 7200 QTOF equipped with an

electron ionization (EI) or chemical ionization (CI)

source, using 2 ml min−1 methane as a ionization gas.

Agilent MassHunter Qualitative Analysis software v.

4.0 was used for data processing.

RESULTS

Amphipod feeding rates on Plocamium carti-

lagineum differed significantly with species (U5 =

20.957, p = 0.001). Of the 6 amphipod species, only

Paradexamine fissicauda consumed the red alga at

appreciable rates (Fig. 1) and was the only amphipod

species to consume Plocamium cartilagineum at a

rate significantly different from zero consumption

(1-sample t-tests, p < 0.05).

In no-choice feeding assays, feeding rates of

freshly-collected Paradexamine fissicauda differed

significantly with macroalgal species in all 3 experi-

ments from both years. The 2010 results differed

noticeably from both 2011 experiments in terms of

relative consumption rates on some individual

 species, particularly Pantoneura plocamioides and

Cysto clonium obtusangulum (Fig. 2, Table S1 in the

supplement at www.int-res.com/articles/suppl/ m490

p079_supp.pdf). However, the 2011 experiments

also differed with respect to the relative difference

be tween feeding rates on Palmaria decipiens com-

pared to Plocamium cartilagineum and Picconiella

plumosa (Fig. 2) and the absolute feeding rates on

Plocamium cartilagineum and Picconiella plumosa

(Table S1 in the supplement). Although the absolute

feeding rates on Pantoneura plocamioides and C.

obtusangulum were very low in both 2011 experi-

ments, they were much less variable in the May

experiment and were both significantly different

from zero consumption then (p = 0.009 and <0.0005,

respectively), but not in the March−April experi-

ment (p = 0.400 and 0.176, respectively). Feeding

rates were not significantly different from zero in

Delisea pulchra, Desmarestia menziesii, and Des-

marestia anceps in either the March−April 2010 or

March−April 2011 experiments; and because of
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Fig. 1. Feeding rates (means ± SE) of individuals from vari-

ous Antarctic amphipod species on thallus fragments of the

red alga Plocamium cartilagineum. Letters indicate results

of pair-wise comparisons of feeding rates on algal frag-

ments. Bars with the same letters are not significantly differ-

ent (p > 0.05). # indicates that the data did not significantly 

differ from zero in a 1-way t-test (p > 0.05)



Mar Ecol Prog Ser 490: 79–90, 2013

that, combined with time constraints, they were not

in cluded in the May 2011 experiment.

The 4 red algal species that were consumed by

Paradexamine fissicauda in the 2010 experiment —

but were known from previous studies to be unpalat-

able to other amphipod species because of chemical

defenses (Aumack et al. 2010) and often also to fish

and sea stars (Amsler et al. 2005) — were chosen for

use in 4-way choice experiments in 2011 and 2012.

Overall patterns were very similar between all 3 ex -

periments with Plocamium cartilagineum and Picco -

niella plumosa being consumed at statistically indis-

tinguishable rates (Fig. 3). Likewise, Panto neura

plocamioides and Cystoclonium obtusangulum were

consumed at statistically indistinguishable rates that,

with one exception, did not significantly differ from

zero consumption in 1-sample t-tests (Fig. 3). With

the exception of the May 2011 experiment when the

feeding rate on Picconiella plumosa did not signifi-

cantly differ from Pantoneura ploca mioides, the rates

on Plocamium cartilagineum and Picconiella plumosa

were significantly greater than on the other 2 species

(Fig. 3).

Acceptance of amphipods by fish in bioassays

 differed significantly between Plocamium cartilagi -

neum-fed Paradexamine fissicauda and both of the

other choices (Fig. 4). Only 2 of 16 P. fissicauda that

had been maintained for 2 months on a diet of Plo-

camium cartilagineum were consumed, but that in -

creased to 9 of 16 for Paradexamine fissicauda main-
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Fig. 2. Paradexamine fissicauda. No-choice feeding rates

(means ± SE) of individual P. fissicauda on thallus fragments

of various Antarctic red and brown macroalgal species from

3 separate experiments. Multiple comparison tests indicated

significant differences between rates in all 3 experiments

(March−April 2010: U7 = 93.869; March−April 2011: U7 =

69.582; May 2011: U4 = 46.186; p < 0.0005 in all 3 results).

Roman letters above bars indicate results of pair-wise com-

parisons of feeding rates on algal fragments within each

experiment. Bars with the same roman letters are not signifi -

cantly different (p > 0.07 in both March−April experiments,

p > 0.05 in May 2011 experiment). # indicates that the data

did not significantly differ from zero in a 1-way t-test (p >

0.05); nd indicates that these 3 species were not included in 

the May 2011 experiment

Fig. 3. Paradexamine fissicauda. Feeding rates (means ± SE)

of individual P. fissicauda on thallus fragments of 4 Antarctic

red macroalgal species from 3 separate choice experiments.

Multiple comparison tests indicated significant differences

between rates in all 3 experiments (March 2011: U3 = 25.748;

May 2011: U3 = 25.545; March 2012: U3 = 27.570; p < 0.0005

in all 3 results). Letters above bars indicate results of pair-

wise comparisons of feeding rates on algal fragments within

each experiment. Bars with the same letters are not signifi-

cantly different (p > 0.05). # indicates that the data did not 

significantly differ from zero in a 1-way t-test (p > 0.05)
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tained on Palmaria decipiens and to all but 1 of 16

Bovallia gigantea that had recently been collected

from the field. The difference in fish acceptance of

Palmaria deci piens-fed Paradexamine fissicauda

compared to fish acceptance of B. gigantea was only

marginally significant (p = 0.07).

Chemical analysis of lipophilic extracts of Plo-

camium cartilagineum collected from the vicinity of

Palmer Station demonstrated a mixture of halo-

genated monoterpenes, while Palmaria decipiens

was devoid of them (Fig. S1 in the supplement).

Lipophilic extracts of Paradexamine fissicauda main-

tained on Plocamium cartilagineum showed chro-

matographic features (peaks) at retention times that

correlated with P. cartilagineum halogenated mono -

terpenes (Fig. S2). P. cartilagineum chemistry in

Paradexamine fissicauda extracts was confirmed by

comparison of the mass spectral fragmentation pat-

tern of the 15.5 min feature found in both chro-

matograms (Figs. S3 & S4). The chromatogram of P.

fissicauda maintained on a diet of Palmaria decipiens

lacked features associated halogenated compounds

(Fig. S5).

DISCUSSION

These results validate our stable isotope composi-

tion-based hypothesis that Paradexamine fissicauda

consumes the chemically defended macroalga, Plo-

camium cartilagineum, on which it is most commonly

found in nature (Huang et al. 2007). Moreover, as

also expected from previous chemical ecology stud-

ies in Antarctica (Amsler et al. 2005, Aumack et al.

2010) and from stable isotope signatures (Aumack

2010), it was unique among 6 relatively common

amphipod species examined in being able to con-

sume P. cartilagineum, even though all of these

amphipod species have been reported from P. carti-

lagineum in the study area (Huang et al. 2007).

The observation that Paradexamine fissicauda

maintained on a diet of Plocamium cartilagineum

contained halogenated metabolites derived from the

algae and were almost always rejected by the omni -

vorous fish Notothenia coriiceps indicates that Para -

dexamine fissicauda is able to sequester at least

some of the potent chemical defenses of Plocamium

cartilagineum for its own use as a defense. The P. car-

tilagineum-fed Paradexamine fissi cauda were rejec -

ted significantly more often than P. fissicauda which

had been maintained on the undefended alga Pal-

maria decipiens (and did not contain halogenated

metabolites) and also significantly more often than

the similar amphipod Bovallia gigantea. We have not

yet identified the specific metabolites involved, but

lipophilic extracts of Plocamium carti lagineum are

strongly deterrent to feeding of N. coriiceps in artifi-

cial food bioassays (Amsler et al. 2005) and P. carti-

lagineum secondary metabolites in the amphipods

would presumably also deter the fish if present in

sufficient concentrations. Rejection of the amphipods

by the fish was rapid and the amphi pods were not

crushed, so it seems likely that the responsible com-

pounds are present in the exoskeleton. This, how-

ever, remains to be determined.

The main predators of macroalgal-associated

amphi pods along the western Antarctic Peninsula

are probably fish, particularly the large omnivore

Notothenia coriiceps (cf. Zamzow et al. 2010, 2011).

Some Paradexamine fissicauda were present in the

gut contents of some N. coriiceps from 2 of 3 collec-

tion sites in our study area — but even at those 2 sites,

with low relative frequencies of occurrence and with

relative importance indices (an assessment of their

importance to the fish) of zero (Zamzow et al. 2011).

Hence, although P. fissicauda is sometimes consu -

med by fish in nature, this does not appear to be fre-

quent, and its relative unpalatability presumably

provides a competitive advantage to P. fissicauda

compared to sympatric amphipod species which are

palatable to fish.

The observation that Palmaria decipiens-fed Para -

dexamine fissicauda were rejected at a marginally

greater rate than were Bovallia gigantea could indi-

cate that some proportion of sequestered defenses

had been maintained within P. fissicauda tissues

 during the 2 months they were not able to feed on

Plocamium cartilagineum; although if so, either these

metabolites are not halogenated or are retained at

levels below detection limits in our chemical analy-

ses. Alternately, it could indicate that a structural

85

Fig. 4. Notothenia coriiceps. Percent of amphipods consu med

by the fish N. coriiceps. Letters above bars indicate re sults of

pair-wise comparisons of the numbers consumed. Bars with 

the same letters are not significantly different (p > 0.05)



Mar Ecol Prog Ser 490: 79–90, 2013

trait of Paradexamine fissicauda not present in B.

gigantea also helps deter fish feeding. Compared to

P. fissicauda, B. gigantea is somewhat larger and has

larger but less dense spines.

Savitzky et al. (2012) have recently defined seques-

tration as ‘the evolved retention within tissues of spe-

cific compounds, not normally retained in the an -

cestors of the taxon in question, which confers a

selective advantage through one or more particular

functions.’ In marine systems, some opisthobranch

molluscs are known to sequester macroalgal de -

fenses (reviewed by Jormalainen & Honkanen 2008,

Cimino & Ghiselin 2009, Hay 2009), but as noted pre-

viously we are aware of no examples of this in

amphipods or other marine arthropods. Complete

evidence for sequestration of defensive compounds

by Paradexamine fissicauda will require identifica-

tion of the specific dietary-derived defensive meta -

bolites in their tissues or exoskeletons at concentra-

tions which are shown to be deterrent to fish, but it

appears that such sequestration of defenses is clearly

occurring in and providing a selective advantage to

P. fissicauda.

The use of chemical defenses in other aquatic

arthropods is almost unknown. Luckenbach & Orth

(1990) provided circumstantial evidence that the

small, parasitic crab Pinnotheres ostreum deters

predators with some form of chemical secretion that

is only produced or released by live crabs. Lipophilic

extracts of (and intact, live) brooded juveniles of the

Antarctic isopod Glyptonotus antarcticus are un -

palatable to predatory sea stars (McClintock et al.

2003). In both cases there is neither evidence nor rea-

son to expect that the defenses have a dietary origin.

Dietary accumulation of microalgal-derived toxins is

known in crabs and lobsters, primarily localized to

the hepatopancreas and primarily as the result of

consumption of filter-feeding bivalves that have bio -

accumulated toxins from harmful microalgal species

(Shumway 1995), but there is no evidence that the

crustaceans derive any benefits from this. Some

amphipods, while not sequestering defenses from

other organisms into their own tissues, are known to

deter predators by attaching themselves to chemi-

cally defended species. In Antarctica, the pelagic

amphipod Hyperiella dilatata captures and holds

onto the chemically defended pteropod Clione ant -

arctica to deter fish predators (McClintock & Janssen

1990). Some crustaceans are known to cover them-

selves with chemically defended algae for protection

(Hay et al. 1990, Stachowicz & Hay 1999). For exam-

ple, the amphipod Pseudamphithoides incurvaria is

a dietary specialist on chemically defended brown

algae and constructs portable, envelope-like domi-

ciles from one, Dictyota bartayresii, which protect it

from fish predation (Hay et al. 1990).

Plocamium cartilagineum is one of the most com-

mon understory red macroalgae in almost all pub-

lished qualitative, semi-quantitative, or quantitative

reports from along the western Antarctic Peninsula

(Neushul 1965, DeLaca & Lipps 1976, Zielinski 1981,

1990, Westermeier et al. 1992, Chung et al. 1994,

Klöser et al. 1994, 1996, Amsler et al. 1995, Brouwer

et al. 1995, Quartino et al. 2001, 2005, Quartino &

Boraso de Zaixso 2008, see Wiencke et al. in press for

distribution map). Based on our personal observa-

tions during many hundreds of dives at dozens of

sites in our study area, it is probably the most abun-

dant chemically defended red alga with the highly

branched morphology preferred by Antarctic amphi -

pods (Huang et al. 2007). Consequently, it would

seem that selection for tolerance to defensive com-

pounds produced by P. cartilagineum would be par-

ticularly beneficial to Paradexamine fissicauda. The

amphipods should not only benefit from associational

refuge from predators as discussed previously, but

tolerance of this host’s defenses also benefits P. fissi-

cauda by providing it with an additional and wide-

spread food source (cf. Sotka & Whalen 2008).

Plocamium cartilagineum from Antarctica pro-

duces a variety of halogenated monoterpenes (Stierle

& Sims 1979, Stierle et al. 1979, Cueto et al. 1991,

Ankisetty et al. 2004) including at least 2 (anverene

and epi-plocamene D) which deter feeding by the

amphipod Gondogeneia antarctica (Ankisetty et al.

2004). Its lipophilic extract was one of only 3 crude

extracts from 27 macroalgal species (along with lipo -

philic extracts of Desmarestia menziesii and Delisea

pulchra) which suppressed 100% of feeding by G.

antarctica in artificial food bioassays (Amsler et al.

2005). Because of the diversity of possible chemical

defenses, the specific enzymes needed for tolerance

are commonly specific to particular defensive com-

pounds, and herbivores that specialize on particular

chemically defended hosts often have limited ability

to tolerate defensive compounds from other organ-

isms (e.g. Sorensen et al. 2005).

The other 2 macroalgal species also consumed by

Paradexamine fissicauda in all bioassays were Pal-

maria decipiens and Picconiella plumosa. P. plumosa

has been shown to be chemically defended from

 consumption by the amphipods Gondogeneia ant -

arctica and Prostebbingia gracilis (Amsler et al. 2005,

Aumack et al. 2010). It is comparable to Plocamium

cartilagineum in terms of protein content and other

determinants of nutritional value (Peters et al. 2005).
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Its carbon isotope ratio (−34.5‰, C. F. Aumack un -

publ. data) is close to that of P. cartilagineum and

Paradexamine fissicauda and we observe P. fissi-

cauda associating with Picconiella plumosa more fre-

quently than other, more abundant, rhodophytes in

nature (Aumack 2010). We do not know anything

about its defensive metabolites, but they may be sim-

ilar enough to those of Plocamium cartilagineum to

be detoxified by the same pathway. Picconiella plu -

mosa is widely distributed along the western Antarc-

tic Peninsula, particularly at depths exceeding 20 m

(Wiencke & Clayton 2002, Hommersand et al. 2009),

and as such represents a second chemically defen -

ded red alga that Paradexamine fissicauda is able to

exploit as a refuge and food source.

Palmaria decipiens, the third red alga regularly

consumed by Paradexamine fissicauda in our assays,

is one of the most generally palatable macroalgal

species in the community (Amsler et al. 2005, 2009b,

Aumack et al. 2010) and although not all amphipod

species consume it as fresh thallus (Aumack et al.

2010, Bucolo et al. 2011), this is not attributable to

chemical defenses (Aumack et al. 2010). In nature,

Palmaria decipiens supports a far less abundant

amphi pod fauna than other, chemically defended

species (probably because they are more likely to be

consumed by omnivorous fish on P. decipiens; Zam-

zow et al. 2010) and Paradexamine fissicauda was

not found on it during 2 surveys (Huang et al. 2007,

Aumack et al. 2011a). Moreover, the stable carbon

isotope ratio in Palmaria decipiens is very different

from that of Paradexamine fissicauda (Aumack 2010)

so it is unlikely that Palmaria decipiens is an impor-

tant food source for Paradexamine fissicauda in

nature. There is no obvious explanation for the dra-

matically higher consumption of Palmaria decipiens

in 2010 compared to the 2 no-choice experiments in

2011 (Fig. 2). P. decipiens is a pseudo-perennial

(Wiencke & Clayton 2002) that dies back to a crus-

tose holdfast in winter. By May, many (if not most) of

the blades in our study area have completely senes -

ced (authors’ pers. obs.) so it is possible that the rea-

son the May 2011 feeding rate on the P. decipiens

material we were able to collect was not different

from rates on Plocamium cartilagineum or Picconiella

plumosa was due to decreased nutritional quality of

the remaining Palmaria decipiens. It is also possible

that P. decipiens began to senesce earlier in 2011

than 2010, resulting in a lower nutritional quality

and, hence, the lower feeding rate on it in March−

April 2011 compared to 2010. However, we have not

examined the influence of nutritional quality on feed-

ing in any amphipod species in this community.

Feeding rates on Pantoneura plocamioides and

Cysto clonium obtusangulum in no-choice assays

were comparable to or higher than on Plocamium

cartilagineum and Picconiella plumosa in the 2010

assays, but were much lower and often not signifi-

cantly different from zero in the 2011 and 2012 no-

choice and choice bioassays. Aumack et al. (2010)

reported that in collections made in 2007 and 2008,

both Pantoneura plocamioides and C. obtusangulum

were un palatable as fresh thallus and as chemical

extracts to the amphipods Gondogeneia antarctica

and Prostebbingia gracilis. However, Amsler et al.

(2005) found no significance deterrence to feeding by

G. ant arctica in Pantoneura plocamioides extracts

prepared from material collected in March−April

2000 (C. obtusangulum was not included in that

study). It appears that there may be significant inter-

annual (or, perhaps, collection site) variation in the

defensive chemistry of P. plocamioides and probably

C. obtusangulum. Be cause of the observation of dif-

ferences across studies in deterrence to G. antarctica

in addition to that seen here for Paradexamine fissi-

cauda, with respect at least to Pantoneura plo-

camioides it is likely that the differences observed

across years are not due to variation in specific

defenses that Paradexamine fissicauda is able to tol-

erate but that other amphipods are not.

Three species, Desmarestia menziesii, Desmarestia

anceps, and Delisea pulchra, were not consumed at

rates significantly different from zero in either the

March−April 2010 or 2011 no-choice assays. All 3 are

unpalatable to fish and sea stars as fresh thallus and

in crude extracts (Amsler et al. 2005). Both Des-

marestia spp. are unpalatable to the amphipod Gon-

dogeneia antarctica as fresh thallus (Amsler et al.

2009b) and crude extract (Amsler et al. 2005). Delisea

pulchra extracts are strongly deterrent to G. antarc-

tica (Amsler et al. 2005) but we have not performed

fresh thallus feeding assays on it using any amphipod

other than Paradexamine fissicauda.

In summary, Paradexamine fissicauda benefits

from its ability to both live on and consume some of

the chemically defended macroalgae in its commu-

nity, as has sometimes been observed in temperate

and tropical amphipod species (Hay 1992, 1996). It

appears to sequester host defenses for its own use,

which is a novel observation in marine arthropods.

Other prominent macroalgal-associated amphipods

in this community are thought to be in a community-

wide mutualistic relationship with the dominant,

chemically defended macroalgae. They benefit from

an associational defense from fish predation (Zam-

zow et al. 2010) while the macroalgae benefit from a
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reduction of epiphytic diatoms and filamentous algae

as well as emergent filaments of algal endophytes

(Amsler et al. 2009b, Aumack et al. 2011b). P. fissi-

cauda would still benefit from the associational

defense and may also consume some epiphytic dia -

toms and filamentous macroalgae (although its stable

carbon isotope signature suggests that any such con-

sumption is likely minimal; Aumack 2010). However,

with respect to community-wide mutualism, this spe-

cies appears to ‘cheat’ the system by being able to

exploit its chemically defended hosts for food as well

as for shelter.
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