
University of Wollongong
School of Mathematics and Applied Statistics

STAT231 Probability and Random Variables 2014

Introductory Laboratory

1 R and RStudio

RStudio is a powerful statistical analysis package. It requires R to operate, so you must
install both R and RStudio onto your computer. In the Horner lab at Uni it is already
installed.

1.1 Installing R

R is available for free download from CSIRO domain:

http://cran.csiro.au

Also it is available on CRAN:

http://cran.r-project.org

Within theDownload and Install R box, there are three options to choose from depending
on the operating system that your computer runs.

❼ Mac (Apple):

1. Click on Download R for (Mac) OS X

2. Under the heading Files click on latest version and download it.

3. Go to your downloads folder and click on the downloaded R file (R-latest.pkg) to
open it.

4. Follow the onscreen installation process to install R.

❼ Windows (PC):

1. Click on Download R for Windows

2. Click on install R for the first time

3. Click on Download R 3.0.2 for Windows at the top of the screen.

4. Click on the downloaded file to start installation (R-3.0.2-win.exe). Most users
will want to accept the defaults. The effect is to install the R base system, plus
recommended packages. Windows users will find that one or more desktop R
icons have been created as part of the installation process.

If you already have R installed on your computer, you can make sure you have the latest
version available by installing R as outlined above.

1

1.2 Installing RStudio

RStudio is available for free download from:

http://www.rstudio.com

1. Within the Powerful IDE for R box, click on Download now.

2. On the next page, under the heading If you run R on your desktop, click on
Download RStudio Desktop.

3. On the next page, under the heading Recommended For Your System, click on
the file and download it. Notice that your operating system (either Mac OS X or
Windows) has been detected and the appropriate version of RStudio is available for
you.

4. Click on the icon for the downloaded installation file to install it. An RStudio icon will
appear. Click on the icon to start RStudio. RStudio should find any installed version
of R, and if necessary start R.

1.3 Installing and loading packages

1. First, start R Console, perhaps by clicking on an R icon (R x64 3.0.2), or click on
Windows Start Up Menu > R > R x64 3.0.2.
Make sure that you have a live Internet connection at home.

2. There are several packages to install for STAT231, for example the foreign package
and the plotrix package.

3. To install foreign enter the following in the Console:

> install.packages("foreign", dependencies=TRUE)

We include the dependencies=TRUE argument to ensure that all other packages that
are required by gdata are also installed.

4. This works on your home computer with live internet connection, first you have to
choose a mirror, standard choice is ”Australia”, e.g. ”Canberra”.

install.packages(”foreign”, dependencies=TRUE)
Warning in install.packages :
cannot open: HTTP status was ’407 Proxy Authentication Required’
Warning in install.packages :
unable to access index for repository http://cran.rstudio.com/bin/windows/contrib/3.0

2

5. However at uni, R requires proxy-authentication. First, open the homepage: https://www-
static.uow.edu.au/cgi-bin/firewallopen.cgi
and enter your username and password to authenticate yourself.

6. Note this command will not work without successful border authentication. Not all
students might have the privilige having the option of being authenticated.

Now you can return to R and enter—

install.packages(”foreign”, dependencies=TRUE)
Installing package into ’C:/Users/tsuesse/Documents/R/win-library/3.0’
(as ’lib’ is unspecified)
— Please select a CRAN mirror for use in this session —
trying URL ’http://cran.csiro.au/bin/windows/contrib/3.0/foreign0.8− 59.zip′

Contenttype′application/zip′length287435bytes(280Kb)
openedURL
downloaded280Kb
package′foreign′successfullyunpackedandMD5sumschecked
ThedownloadedbinarypackagesareinC : 1nb0packages

7. Alternatively (to border authentication) you can download the zip-file of the package,
e.g. ”foreign.zip” (use google to obtain, e.g. keyphrase ”R package foreign” or down-
load via www.r-project.org/). Then click on R > Packages > Install files from
local zip files ... to select your zip-file. The package will not be automatically
installed.

8. To install plotrix enter the following in the Console:

> install.packages("plotrix", dependencies=TRUE)

9. Every time you open RStudio (or R Console) and wish to use these packages you must
first load them into the library. You can do this by:

> library(foreign)

> library(plotrix)

Of course if you don’t need to use them you don’t need to load them. Notice that
these packages now have a tick next to them under the Packages tab in the bottom
right window.

3

Figure 1: RStudio opened for the first time in Windows/Mac.

1.4 Opening RStudio

When you open RStudio for the first time, it should look like the following:

1. Click on File > New > R Script

4

The screen now looks like the following:

Figure 2: RStudio with a R Script open.

This will open a new R Script in the top left corner. This is where you will type your
coding. The advantage of using an R Script is that your code will always remain there,
like a document, even after it has been run.

In the top right corner is the Workspace. This shows the data, matrices, variables, values,
etc that have been stored. A History of code that has been run is also available here.

In the bottom right corner is where the Plots are output and Help is given. This window
also gives access to the Files that are stored on the computer and Packages that have been
installed in RStudio.

Finally, The Console is in the bottom left corner. You can also run code in this window,
but it is not as convenient as using the R Script. This window also displays the output
from the code that has been run in the R Script.

5

1.5 Installing packages in RStudio

RStudio provides an interactive environment for installing packages, which works fine from
home. However setting up ”proxy authentication” at uni is complicated. Note: RStudio uses
R (Console) and installing packages under R automatically makes these packages available
under RStudio. We will use mainly RStudio at uni and most of the packages are pre-installed,
however if some are not installed, please install R packages as described under 1.3 in the R
Console and then start RStudio.

Installing packages in Rstudio (from home) can be done from home as follows:

1. In the package panel which located at bottom left by default, click on

Packages > Install Packages

2. Using the Install from pop-up menu select the an appropriate Repository (CRAN)

3. Type the packages name in the Packages textbox then click on Install

Figure 3: RStudio with interactive packages installation menu

6

1.6 Use of the R Script window

1. Return to the R Script and type:

2+2

You can either run the line that the cursor is in or a selection of lines by highlighting
them. To run items in the R Script, hold CONTROL and then hit ENTER at the
same time. Alternatively, hit the Run icon that is situated to the top right of the R
Script window. Now look in the Console window, as mentioned this is where the
output from the code run in the R Script is given. The following appears on screen:

> 2+2

[1] 4

>

In the Console, the code that has been run and the result from the code is shown.
The “[1]” says “first requested element will follow”. In this case we have requested
just one element, the solution to 2+2. The > indicates that R is ready for another
command.

2. Next, we create an object containing the solution to 2+2. In the R Script, hit
ENTER to start a new line. The number 2 will appear in the left hand margin to
indicate the 2nd line of code. Run the following code on the 2nd line of the R Script.

Result 1<- 2+2

The assignment symbol is <- and we use it to store items in objects. The value 4 is now
stored in an object with the name Result 1. You can check this by either looking in
the Workspace or by typing Result 1 into the third line of the R Script and running
it. R is case sensitive, so remember to use capitals where applicable. The following
appears in the Console after typing in Result 1:

> Result_1<- 2+2

> Result_1 # Check the contents of ✬Result_1✬

[1] 4

7

Notice the sentence #Check the contents of ’Result 1’, this is a comment and is not
run by RStudio. Everything after # symbol is a comment and is not executed by
R. It is always helpful to include comments in your work for future reference and
self-explanation, but it is probably not necessary in this Lab.

Objects in RStudio include vectors, in this case we can treat Result 1 as a vector with
only one element. But next we will consider a vector with multiple elements.

3. Vectors with multiple lengths can be created and checked by running:

> Vector_1<- c(1,2,3,4,5,6,7,8,9,10)

> Vector_1 # Check the contents of ✬Vector_1✬

[1] 1 2 3 4 5 6 7 8 9 10

> Vector_2<- c(11,12,13,14,15,16,17,18,19,20)

> Vector_2 # Check the contents of ✬Vector_2✬

[1] 11 12 13 14 15 16 17 18 19 20

It is the c that is important here. This indicates that a vector follows, and must be
included when creating all vectors. Without the c RStudio produces an error as it
does not recognise what is going on. Hint: You could use Vector 1<- 1:10 because in
this case the vector is just a sequence from 1 to 10 that goes up by one. Alternatively,
we could create any sequence via:

seq(from, to, by)

and we can specify any start point (from), end point (to), and step size (by) we like.

1.7 Saving your work

1. (i) Save the R script by clicking on File > Save

(ii) Specify the file name Intro Lab.R (make sure suffix *.R or *.r is used, where *
stands for name of file, otherwise RTsudio does not recognise your script as R
script and syntax colouring is not available) and set the folder to Stat231 Intro Lab,
click Save.

(iii) When you open RStudio again, you can open your saved R Script by clicking
File > Open File... then find the file in the folder Stat231 Intro Lab.

8

1.8 Basic operations

1. Now that you have created vectors, there are many operations that you can perform
on them. For instance,

> # Find which values of ✬Vector 1✬ are greater than or equal to 4

> Vector_1 >= 4

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

> # Other relational operators are: >, <=, ==, != indicating

> # greater than, less than or eual to, equal to, and not equal.

> summary(Vector_1) # Produce a summary of ✬Vector_1✬

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 3.25 5.50 5.50 7.75 10.00

> mean(Vector_1) # Find the (sample) mean of the values in ✬Vector_1✬

[1] 5.5

> sd(Vector_1) # Find the (sample) standard deviation of ✬Vector_1✬

[1] 3.02765

> sum(Vector_1) # Find the sum of the values in ✬Vector_1✬

[1] 55

> length(Vector_1) # Check the length of ✬Vector_1✬

[1] 10

> length(Vector_2) # Check the length of ✬Vector_2✬

[1] 10

Basic arithmetic can be done on the vectors as they are the same length. For instance,

> Vector_1+Vector_2 # Add the vectors together

[1] 12 14 16 18 20 22 24 26 28 30

9

> Vector_1*Vector_2 # Multiply the vectors together

[1] 11 24 39 56 75 96 119 144 171 200

Notice that the operations are performed on the corresponding elements within each
object and that the output also has 10 values.

2. If we were to perform basic arithmetic between Vector 1 and Result 1 we would get:

> Result_1+Vector_1 # Add together

[1] 5 6 7 8 9 10 11 12 13 14

> Result_1*Vector_1 # Multiply together

[1] 4 8 12 16 20 24 28 32 36 40

and we can see that the value of Result 1 is applied to every element in vector 1
according to the operation. The output again has 10 values.

1.9 Data frames- grouping together data

1. If you have multiple objects of the same length, you can combine them into a table or
what is formally known as a data frame. A data frame not only gives you the ability to
store your data in a table, but is the preferred way to make data available to modelling
functions and plots. Create a data frame out of the two vectors by:

> Dataframe_1<- data.frame(Vector_1,Vector_2)

> Dataframe_1 # Check the contents of ✬Dataframe_1✬

Vector_1 Vector_2

1 1 11

2 2 12

3 3 13

4 4 14

5 5 15

6 6 16

7 7 17

8 8 18

9 9 19

10 10 20

10

You can also check the contents of Dataframe 1 by clicking on it in the Workspace.

2. You also have the ability to change the column names by:

> colnames(Dataframe_1)<- c("A","B")

Again check the new column names of Dataframe 1 by clicking on it in theWorkspace.
Notice that as there were two column names we created a vector containing them using
c. We quoted “A” and “B” to indicate to R that they are text not objects.

3. Now that we have created a data frame, we have the ability to access different parts of
it. For instance, the following all refer directly to the 2nd column of the data frame.

> # Access the 2nd column by specifying the column name after $

> Dataframe_1$B

[1] 11 12 13 14 15 16 17 18 19 20

> # Specify all elements of the 2nd column by

> Dataframe_1[,2]

[1] 11 12 13 14 15 16 17 18 19 20

> # Specify all elements of the column named B

> Dataframe_1[,"B"]

[1] 11 12 13 14 15 16 17 18 19 20

> # Treat ✬Dataframe_1✬ as a list and access all elements under B

> Dataframe_1[["B"]]

[1] 11 12 13 14 15 16 17 18 19 20

4. It is also interest to access a part of the data frame. For instance, the interested in a
part of vector ”B” in which the correspond values of vector ”A” are greater and equal
5.

5. You may be interested in accessing a particular element within the data frame. For
instance, the following all refer directly to the third element of the 2nd column.

11

> # Access a part of vector "B" in which the correspond values of

> # vector "A" are greater and equal 5

> Dataframe_1[,"B"][Dataframe_1[,"A"] > 5]

[1] 16 17 18 19 20

> # Access the third element of B

> Dataframe_1$B[3]

[1] 13

> # Specify the 3rd element of the 2nd column by

> Dataframe_1[3,2]

[1] 13

> # Specify the 3rd element of the column named B

> Dataframe_1[3,"B"]

[1] 13

> # Treat ✬Dataframe_1✬ as a list and view the 3rd element under B

> Dataframe_1[["B"]][3]

[1] 13

Try to keep it simple so I suggest using either the first or second methods to call on
elements as will be the case in the notes.

6. Moreover, it is possible to convert a dataframe to a matrix and vice versa. The
following commands refer directly to this conversion.

> # Conversion dataframe to a matrix

> Matrix.Data <- as.matrix(Dataframe_1)

> Matrix.Data

A B

[1,] 1 11

[2,] 2 12

[3,] 3 13

12

[4,] 4 14

[5,] 5 15

[6,] 6 16

[7,] 7 17

[8,] 8 18

[9,] 9 19

[10,] 10 20

> # Conversion matrix to a dataframe

> Dataframe_1 <- as.data.frame(Matrix.Data)

1.10 RStudio Help

RStudio has an extensive help system, every command and function has it’s own help page.
Search through the help pages via the Search Engine & Keywords icon under the Help
tab in the bottom right window. If you know the name of the function that you need help
with, insert a ? followed by it’s exact name in the Console window and hit ENTER . Type

> ?mean

in the Console to obtain the RStudio help file on the mean function.

1.11 Input of data from a file

The function read.table is used to input data from a file into a data frame. As an example
we will consider the data file plane excel.csv found moodle. Save this file along with the
remaining data files for this lab into a folder named Stat231 Intro Lab.

1. Return to RStudio and set the working directory to this folder. To do this, click on

Session > Set Working Directory > Choose Directory...

In the browser find the folder with the introductory lab data files, Stat231 Intro Lab,
and choose it as the working directory. In the Console will appear setwd() and the
brackets will contain the directory to the folder.

2. now the Files tab in the bottom right hand window will contain all files that are in
Stat231 Intro Lab. You should view the data file prior to reading it into R.

3. Click on plane excel.csv, a new tab will open next to the R Script. Notice that the
headings of each column are situated in the first row, and how the two columns are
separated by a comma. This is because this type of file contains comma-separated
values (hence csv).

13

4. Return to the R Script and use the read.table function to read in the plane data and
assign it to Data 1.

> Data_1<- read.table("plane_excel.csv", sep=",", header=TRUE)

The first argument within the read.table command specifies the file name that contains
the data (make sure to type it exactly as shown). Next we use sep=“,” to let R know
that the elements are separated by a comma. Finally, set header=TRUE to let R
know that the first row contains the column headings. Check the data frame Data 1
by clicking on it in the Workspace. Upon observation it has 45 rows and 2 columns.

You can confirm this by:

> dim(Data_1)

[1] 45 2

5. Now we will read in the same data file using the read.csv function. This time assign it
to Data 2.

> Data_2<- read.csv("plane_excel.csv")

The first argument within the read.csv command again specifies the file name that
contains the data. But there is no need to use sep=“,” or header=TRUE as these are
defaults set for this function anyway. Again check the data as outlined in Step 4.

Essentially we have created two data frames, Data 1 and Data 2, that are identical.

6. Now view the sulphur oxide data by clicking on sulphur oxide.tex within the Files
window. A new tab will once again appear next to the R Script. Notice that there are
four columns, but we are only interested in the first. The headings are again situated
on the first row, but this time the four columns are separated by spaces not commas.
The NA’s indicate that no values are present. We will again use the read.csv function,
but will specify the separator as sep=“ ”. Return to the R Script and type:

> Sulphur_Data<- read.csv("sulphur_oxide.txt", sep=" ")

7. To remove any unwanted columns, use a minus in front of the column number.

14

> Sulphur_Data<-Sulphur_Data[,-2]

This has now removed the emissions.sorted column. Repeat this procedure twice to
also remove both the Bins and Bins2 columns. Notice that the Sulphur Data is now a
vector as it only contains the emissions column. Also note that the heading Emissions
has also gone.

The main point to remember is to first observe the data. Depending on what type
of data you have will determine how it should be read into RStudio. We were able to use the
read.csv and read.table functions for the three different data sets as we first observed the data
and determined the format of each. Also, there are a number of database packages available
which are quite helpful to manage the big dataset. One of these packages is RODBC which
is very useful for big dataset in excel file format with multi-sheets.

1.12 Basic/Exploratory data analysis

The specific data analysis that is required will depend on the researcher and aims of the
research being conducted. Having said this, there are a number of basic analytic techniques
that you should become familiar with despite the research being conducted. One of these is:

1.12.1 Always plot the data

There are many different types of plots available in RStudio, depending on the type of data
what you wish to observe will determine which plot is appropriate.

❼ Recall the sulphur oxide emissions data contained in the object Sulphur Data. This is
a single vector containing emissions values.

1. Possibly the best way to plot this is a histogram using the hist function.

> hist(Sulphur_Data)

2. There are a number of aspects that we can specify when plotting graphs. Some as-
pects are common to all types of plots, others are unique. The title can be set using
the argument main. Similarly, the x and y labels can be specified by xlab and ylab
respectively. The x and y axis limits can be set by xlim and ylim respectively. These
are in the format of a vector, with the first element indicating the lower limit followed
by the upper limit in the last element. Finally, the number of cells (or bars) in the
histogram can be set by the breaks argument.

15

> hist(Sulphur_Data, main= "Distribution of Sulphur Emissions",

+ col="lightblue", border="red", density= NULL,

+ xlab= "Sulphur Emissions", ylab= "Frequency",

+ xlim= c(0,40), ylim= c(0,30), breaks= 5)

Distribution of Sulphur Emissions

Sulphur Emissions

F
re

q
u

e
n

c
y

0 10 20 30 40

0
5

1
0

1
5

2
0

2
5

3
0

16

Now adjust the breaks from 5 to 10 to 20 and finally to 40 (also change the upper limit
of ylim from 30 to 15 to 8 to 6 respectively). Take note of what is going on. Notice how
the shape of the histogram changes shape. You have to be careful when interpreting
histograms as they are very easily influenced by the bar width. Commonly they are
not presented alone in a report, but rather as a part of other analysis and statistical
tests.

To save a histogram

(i) Click on the Export button situated at the top of the Plots window. You have
the option of saving as either an image or pdf.

(ii) Click on Save Plot as Image

(iii) Change the Image format to PNG and specify the File name, click Save. (The
saved plot will now appear in the Files tab in the bottom right window after you
click the Refresh file listing icon- its a circular arrow on the far right).

(iv) Using RStudio it is possible to save plot in Scalable Vector Graphics (SVG)
which provides a super-high quality plot. To do this in RStudio, click on Plots
> Export > Save Plot as Image then in format pop-up menu select SVG.

❼ Recall the plane data contained in the data frame Data 1. This is a 45×2 table
containing the plane number in one column and distance values in the second column.
One way to plot this data is to display the distance means according to plane number
side by side. The 95% confidence interval for each mean can also be shown.

1. First we must find the distance means of the three planes. To do this, we must first be
able to call on the distances from the three planes individually. Recall how we accessed
the second column:

> Data_1$distance

This gives the 45 distance values.

2. We want to pick out the distance values for plane number 1. We do this by:

> Data_1$distance[Data_1$plane==1]

[1] 35 56 60 60 73 90 123 144 171 238 288 336 346 459 500

What this is saying is that we want all the distance values (Data 1✩distance) when
plane is equal to 1 (Data 1✩plane==1). Assign this to Plane 1, and do a similar
process to save the distance values for planes 2 and 3 to objects Plane 2 and Plane 3
respectively.

17

> Plane_1<- Data_1$distance[Data_1$plane==1]

> Plane_2<- Data_1$distance[Data_1$plane==2]

> Plane_3<- Data_1$distance[Data_1$plane==3]

Make sure you check that the contents of these three objects match those from the
data frame. The easiest way to do this would be to first order the observations in the
Data 1 data frame according to plane, and then order them by distance within plane
number. We can do both of these at the same time using the order function.

> Data_1[order(Data_1$plane, Data_1$distance),]

This tells R that we want to order every row in the Data 1 data frame firstly in terms
of plane number, and then order the distances within each plane. This is done in an
increasing fashion. Had we wanted to order them decreasingly, simply add a minus
in front of the desired column within the order function. We can also reassign the
ordered data frame to Data 1.

> Data_1<- Data_1[order(Data_1$plane, Data_1$distance),]

3. Next we calculate the means and 95% confidence intervals for the three objects Plane 1,
Plane 2, and Plane 3. The easiest way to do this is via the t.test function. The details
of what this function tests will be formally covered later in the course, but for now we
are only interested in the mean and confidence interval that are output from it.

> t.test(Plane_1)

One Sample t-test

data: Plane_1

t = 4.9997, df = 14, p-value = 0.0001946

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

113.4046 283.7954

sample estimates:

mean of x

198.6

18

Record mean of x and 95 percent confidence interval to three decimal places. Do the
same for Plane 2, and Plane 3.

4. Create an object that contains the distance means for the three planes, and label this
Dist Mean.

> Dist_Mean<- c(198.600, 607.667, 488.067)

5. Create another object that contains the three lower limits of the 95% confidence in-
tervals, and label this Low pt.

> Low_pt<- c(113.405, 485.123, 387.559)

6. The final object contains the three upper limits of the 95% confidence intervals, and
label this Upp pt.

> Upp_pt<- c(283.795, 730.210, 588.574)

7. The plot we are going to create requires the plotrix package, load it in by:

> library(plotrix)

8. Next we use the plotCI function to plot the treatment means with corresponding CIs.
Specify the number of planes in the first argument, followed by the means, upper, and
lower limits respectively. The names of the three planes are Superlooper, Cone Dart,
and Glider respectively.

> Number_Plane<- c(1,2,3) # Specify the planes

> # Start the side-by-side CI plot

> plotCI(Number_Plane, Dist_Mean, ui= Upp_pt, li=Low_pt, lwd=1.5,

+ col=c("dodgerblue","darksalmon","olivedrab3"),

+ main= "95% CI for Distance", xlab= "Plane",

+ ylab= "Distance", ylim= c(70, 790),

+ pch=20, # pch=20 gives solid dots for the plot symbols

+ xaxt= "n" # xaxt="n" hides the x-axis scale

+)

19

> # Set the x-axis scale to the actual names of the planes

> axis(side=1, at=1:3, labels=c("Superlooper","Cone Dart","Glider"))

> # Set reference lines across the mean points

> abline(h=Dist_Mean, lty=2,

+ col=c("dodgerblue","darksalmon","olivedrab3"))

1
0
0

3
0
0

5
0
0

7
0
0

95% CI for Distance

Plane

D
is

ta
n
c
e

Superlooper Cone Dart Glider

20

Click the Zoom button under the Plots tab to view the plot with more detail. As
mentioned, we use the axis command to specify the scale on the axis, in this case
side=1. This refers to the x-axis. Had we wanted to change the y-axis, we would have
used yaxt=“n” and specified side=2.

To save a plot

(i) Follow the instructions given for saving the histogram.

1.12.2 Summary Statistics

Run some of the basic operations outlined in Section 1.6 on the objects Sulphur Data,
Plane 1, Plane 2 and Plane 3.

1.13 Saving your work

1. (i) Save the R script by clicking on File > Save

2. (i) Save the Workspace so that you don’t have to run your code when opening
RStudio again.

(ii) Click on the floppy disk icon under the Workspace tab.

(iii) Specify the file name and set the folder to Stat231 Intro Lab, click Save.

(iv) After you have saved the workspace, clear it by clicking the broom icon to the
right of the Workspace tab. The workspace goes blank. Now open the saved
Workspace by clicking on the open icon to the left of the Workspace tab (brown
folder with a green arrow coming out of it). Then find the file in the folder
Stat231 Intro Lab. The workspace is populated with the objects from this Lab.
Do the same process when reopening RStudio so you don’t have to run your code.

3. (i) You can save the Console either by copying and pasting it into a word document
(or similar).

(ii) Alternatively, you can save the Console by typing the following code into the
Console.

Create a log of the Intro Lab
con <- file(“Intro Lab.log”)
sink(con, append=TRUE)
sink(con, append=TRUE, type=“message”)
Specify your saved R Script
source(“Intro Lab.R”, echo=TRUE, max.deparse.length=10000)
sink()
sink(type=“message”)

21

(iii) You can get to a new line in the console without running the code by holding

SHIFT and then hitting ENTER at the same time.

(iv) Run this code.

(v) A text file containing a log of the code and output from your saved R Script has
now been created.

(vi) You can view it in the Files tab in the bottom right window under Intro Lab.log
after you refresh the tab via clicking the circular arrow to the far right.

1.14 References

Maindonald, J., H. (July 2013) Data Analysis, Graphics, and Visualisation Using R.

2 Logbook Questions - Week 1

Each of the labs will be followed by Logbook Questions. A student will be required to attend
at least 3 out of 4 labs to pass this subject and is required to finish all Logbook Questions
(if not during lab, then at home). These will be checked after the fourth lab (week11). Print
out your code, output and plots and all related work in a so-called lab-book. Lab 1 (week
1) should be followed by Lab 2 (week 4), etc. and it should be clear what is input and what
output, etc.

Lab books are common practice in stats service subjects. In last years, only a small
percentage of students came to labs and finished the exercises. To avoid this happening
again, lab-books are now an assessment task and attendance is required.

Also note that some of the later assignments require some minor R programming. Hence
it is essential to learn some basic R as quickly as possible, i.e. to complete labs exercises
and lab-book questions.

You get 5 marks for each lab (20 in total), and all 4 labs together will be worth 5% of
the total mark.

1. Create vector x, as the sequence of 0, 2, 4, 6, . . . , 40

2. Create vector y, defined as x2

3. Store x and y in a data frame called, “data”

4. Plot y vs x using the plot command. Make sure the axes are properly labeled.

5. Save the data frame ”data” as a csv-file ”data.csv” using ”write.table”, use help(write.table)
to see the options of write table, which is very similar to ”read.table()”

6. Enter ”rm(list=ls())” which deletes all objects

7. Enter ”x” and show output

8. Load the data back into R with ”read.table”

22

9. Calculate the sum of x and the (sample) mean/average of y

23

