IOP 201-Q (Industrial Psychological Research) <u>Tutorial 7</u>

TRUE/FALSE [1 point each]

Indicate whether the sentence or statement is true or false.

- 1. As defined in the text, random sampling requires sampling with replacement.
- 2. If there are 50 students in a class, then the probability of randomly selecting any particular individual is p = 1/50.
- 3. For any normal distribution, the mean and the median will have the same value.
- 4. For any normal distribution, the proportion in the tail beyond z = -2.00 is p = -0.0228.
- 5. For any normal distribution, a *z*-score of z = -0.25 separates the highest 59.87% of the scores from the rest of the distribution.
- 6. The mean of the distribution of sample means is called the *standard error* of \bar{x} .
- 7. The standard error of \overline{x} can never be greater than the standard deviation of the population from which the sample is selected.
 - 8. The distribution of sample means based on samples of n = 4 selected from a population with $\mu = 80$ and $\sigma = 20$ will have a standard error of 5.
- 9. A sample of n = 25 scores has a standard error of 2. This sample was selected from a population with $\sigma = 50$.
- 10. If the data provide convincing evidence that the treatment does have a real effect, then the statistical decision is to reject the null hypothesis.
- 11. One way to reduce the risk of a Type I error is to use a larger sample.
- 12. If the null hypothesis were rejected using a one-tailed test, then it certainly would be rejected if the researcher had used a two-tailed test.
- 13. The larger the sample size, the larger the *df* value for the t statistic.
- 14. Estimated standard error is computed from σ^2 .
- 15. Increasing the alpha level from $\alpha = .01$ to $\alpha = .05$ will produce an increase in the estimated standard error.
- 16. The larger the value for *df*, the more a *t* distribution resembles a normal distribution.
- 17. For a hypothesis test using a *t* statistic, the boundaries for the critical region will change if the sample size is changed. (Assume all other factors are held constant).
- 18. Two separate samples, each with n = 30 scores, from the same population will produce identical t statistics if the two sample means are equal.
- 19. In general, a small value (near zero) for a *t* statistic will result in rejecting the null hypothesis.
- 20. For the independent-measures t statistic, $df = (n_1 + 1) + (n_2 + 1)$.
- _____ 21. An increase in sample variance will produce an increase in the value for the *t* statistic (farther from zero).
- 22. For a two-tailed hypothesis with an independent-measures *t* statistic using two samples, each with n = 10 scores, the boundaries for the critical region using $\alpha = .05$ are $t = \pm 2.101$.

- 23. *Homogeneity of variance* assumes that the two population variances are equal.
- 24. With a repeated-measures design, it is possible to evaluate the difference between two treatments using only one sample of subjects.
- 25. The formula and calculations for the repeated-measures *t* statistic are identical to those for the singlesample *t* except that you use difference scores (*d* values) instead of *X* values.
- _____ 26. In general, as the variance of the difference scores increases, the magnitude of the *t* statistic also increases.
- 27. For a repeated-measures study, when the variance for the difference scores is small, it is an indication that the difference between treatment conditions is fairly consistent for all of the subjects.
- 28. The null hypothesis for a repeated-measures *t* test states that $\mu_d = 0$.
- 29. Repeated-measures designs are particularly well-suited to research questions concerning changes that occur over time.

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.

- _ 30. A jar contains 40 red marbles and 10 black marbles. If you take a random sample of a marble from this jar, what is the probability that the marble will be red?
 - A 10/50
 - B 40/50
 - C 10/40
 - D Cannot be determined with the information given
- 31. What proportion of a normal distribution is located in the tail beyond a z-score of z = -1.50?
 - A -0.668
 - В -0.9332
 - C 0.0668
 - D 0.9332
 - _ 32. For a normal distribution, what *z*-score value separates the lowest 20% of the distribution from the highest 80%?
 - A z = 0.20B z = 0.80C z = 0.84D z = -0.84
 - 33. What proportion of a normal distribution is located between z = 1.00 and z = 1.50?
 - A 0.0919
 - B 0.7745
 - C 0.5000
 - D 0.2255
 - 34. For a normal distribution with $\mu = 60$ and $\sigma = 8$, the probability of selecting a score greater than X = 64 is equal to _____.
 - A The proportion of the distribution with z-scores greater than 0.50
 - B The proportion of the distribution with z-scores greater than 1.00
 - C The proportion of the distribution with z-scores greater than 2.00
 - D The proportion of the distribution with z-scores greater than 4.00
 - 35. Scores on the SAT form a normal distribution with $\mu = 500$ and $\sigma = 100$. The State College accepts students whose SAT scores are in the top 60% of the distribution. What is the minimum SAT score needed for admission to the State College?
 - A 440
 - B 460
 - C 475
 - D 525

- 36. The standard deviation of the distribution of sample means is called _____.
 - A The expected value of \overline{x}
 - B The standard error of \overline{x}
 - C The sample standard deviation
 - D The central limit standard deviation
- 37. When a random sample is selected from a population, the sample mean is not expected to be exactly equal to the population mean. On average, the distance between a sample mean and the population mean is predicted by _____.
 - A The standard error
 - B The expected value
 - C The mean of the population
 - D The standard deviation of the population
- _____38. Which of the following samples would have a standard error of 2 points?
 - A n = 5 scores from a population with $\sigma = 10$
 - B n = 5 scores from a population with $\sigma = 20$
 - C n = 100 scores from a population with $\sigma = 10$
 - D n = 100 scores from a population with $\sigma = 20$
 - 39. For a particular population a sample of n = 4 scores has a standard error of 10. For the same population, a sample of n = 16 scores would have a standard error of _____.
 - A 2.5
 - B 5
 - C 10
 - D 20
 - 40. A random sample of n = 4 scores is obtained from a population with $\sigma = 10$. If the sample mean were 10 points greater than the population mean, then the sample mean would have a *z*-score of _____.
 - A +10.00
 - B +2.00
 - C +1.00
 - D Cannot be determined without knowing the population mean
- 41. A random sample is selected from a population with $\mu = 80$ and $\sigma = 10$. To ensure a standard error of 2 points or less, the sample size should be at least _____.
 - A n = 5
 - B n = 10
 - C n = 25
 - D It is impossible to obtain a standard error less than 2 for any sized sample.

- 42. The null hypothesis _____.
 - A States that the treatment has no effect
 - B Is denoted by the symbol H_1
 - C Is always stated in terms of sample statistics
 - D All of the above
- 43. In general, increasing the alpha level (for example from .01 to .05) will _____.
 - A Increase the likelihood of rejecting the null hypothesis
 - B Decrease the likelihood of rejecting the null hypothesis
 - C Not affect the likelihood of rejecting the null hypothesis
- 44. A sample of n = 25 individuals is selected from a population with $\mu = 80$ and a treatment is administered to the sample. If the treatment has no effect, then
 - A The sample mean should be very different from 80 and should lead you to reject the null hypothesis
 - B The sample mean should be very different from 80 and should lead you to fail to reject the null hypothesis
 - C The sample mean should be close to 80 and should lead you to reject the null hypothesis
 - D The sample mean should be close 80 and should lead you to fail to reject the null hypothesis
- _____ 45. The probability of committing a Type I error _____.
 - A Is determined solely by the size of the treatment effect
 - B Cannot be controlled by the experimenter
 - C Is determined by the level of significance that one chooses
 - D Is determined by the value for beta (β) one selects
- 46. A researcher expects a treatment to produce an increase in the population mean. Assuming a normal distribution, what is the critical *z*-score for a one-tailed test with $\alpha = .01$?
 - A +2.33
 - B ±2.58
 - C +1.65
 - D ±2.33
 - 47. If a treatment has a very small effect, then a hypothesis test evaluating the treatment effect is likely to
 - A Result in a Type I error
 - B Result in a Type II error
 - C Correctly reject the null hypothesis
 - D Correctly fail to reject the null hypothesis

- 48. To calculate a *t* statistic, what information is needed from the sample?
 - A The value for *n*
 - B The value for \overline{x}
 - C The value for s or s^2
 - D All of the above are needed to compute t.
 - E No sample values are needed to compute t.
- 49. When *n* is small (less than 30), the *t* distribution _____.
 - A Is identical in shape to the normal *z* distribution
 - B Is flatter and more spread out than the normal *z* distribution
 - C Is taller and narrower than the normal z distribution
 - D Cannot be specified, making hypothesis tests impossible
 - 50. With $\alpha = .05$ and df = 8, the critical value for a one-tailed *t* test is t = 1.860. Assuming all other factors are held constant, if the *df* value were increased to df = 20, the critical value of t would _____.
 - A Increase
 - B Decrease
 - C Stay the same
 - D Not enough information to answer
- 51. A sample of n = 25 scores produces a *t* statistic of t = -2.05. If the researcher is using a two-tailed test with $\alpha = .05$, the correct statistical decision is _____.
 - A Reject the null hypothesis
 - B Fail to reject the null hypothesis
 - C Cannot answer without additional information
- _ 52. An important assumption for the *t* test is that _____.
 - A The population distribution is normal
 - B The sample size be less than 30
 - C The value for σ is known
 - D The *t* distribution is normal
- 53. An independent-measures *t* hypothesis test is appropriate when .
 - A The value for σ is known
 - B The mean for a treated group of subjects is compared to a known population mean
 - C One sample is used to test a hypothesis about one population
 - D There are two separate samples containing different subjects
 - _ 54. An independent-measures experiment uses two samples with n = 7 in each to compare two experimental treatments. The *t* statistic from this experiment will have degrees of freedom equal to
 - A 12
 - B 6
 - C 13
 - D 9

- 55. The results of an independent-measures research study are reported as "t(5) = -2.12, p > .05, two tails." What statistical decision was made?
 - A The researcher failed to reject $H_{0.}$
 - B The null hypothesis was rejected.
 - C There was a marginally significant effect.
 - D Cannot be determined from the researcher's statement
- _____ 56. A repeated-measures study would not be appropriate for which of the following situations?
 - A A researcher would like to study the effect of practice on performance.
 - B A researcher would like to compare individuals from two different populations.
 - C The effect of a treatment is studied in a small group of individuals with a rare disease.
 - D A developmental psychologist examines how behavior unfolds by observing the same group of children at different ages.
 - 57. What is the value of \overline{d} for the following set of difference scores? Scores: 3, -8, 6, -4, -2
 - A -1 B -5 C 23 D 23/5 = 4.6
- 58. A research report describing the results from a repeated-measures study states, "The data showed a significant difference between treatments, t(22) = 4.71, p < .05." From this report you can conclude that the outcome of the hypothesis test was _____.
 - A To reject the null hypothesis.
 - B To fail to reject the null hypothesis
 - C It is impossible to determine whether or not the null hypothesis was rejected from the information given.
 - 59. What is the value of $s_{\overline{d}}$ for the following set of D-scores? Scores: 4, 8, 4, 4
 - A 12
 - B 2
 - C 4
 - D 1
- $_$ 60. If the null hypothesis is true, on average the expected value for the related-samples t statistic is
 - A 0
 - B 1
 - C 1.96
 - D *t* > 1.96

61. An advantage of a repeated-measured design is that it reduces the contribution of error variability due to _____.

A \overline{d}

- B Degrees of freedomC The effect of the treatmentD Individual differences