# Section 8.3: Similar Polygons

A polygon is a \_ Closed \_ that consists of line segments. For example, Shape triangles, quadrilaterals, and octagons are all polygons.





When one polygon is an enlargement or a reduction of another polygon, we say the polygons are similar. Similar polygons have the same shape but not the same size.

Two polygons are similar when:

- orresponding sides have same proportion. (scale factor)

# **Example 1**

List all the corresponding sides and angles for the following diagrams.



| Corresponding Side |                  |                                                | Corresponding Angle |                   |
|--------------------|------------------|------------------------------------------------|---------------------|-------------------|
| PQ = 2 cm          | P'Q' = 3 cm      | $\frac{P'Q'}{PQ} = \frac{3}{2} = \frac{3}{15}$ | ∠P = 90°            | ∠P' = 90°         |
| QR = 1.5 cm        | Q'R' =2.25<br>cm | $\frac{2.25}{1.5} = 1.5$                       | ∠Q = 154°           | <u>(Q</u> '= 154° |
| RS = 2.5 cm        | R'S' = 3.75 cm   | $\frac{3.75}{2.5} = 1.5$                       | ∠R = 96°            | LR1=96°           |
| ST = 2.5 cm        | S'T = 3.75cm     | 3.75 = 1.5                                     | ∠S = 110°           | 5'=110°           |
|                    | T'P'=4.5 cm      |                                                | ∠T = 90°            | LT' = 90°         |



Scale factor

## Example 2

Are the following quadrilaterals the same? Explain.



| Corresponding Side |             |                           | Corresponding Angle |           |
|--------------------|-------------|---------------------------|---------------------|-----------|
| TQ = 3.0 cm        | XU = 2.0 cm | XU 2 3                    | ∠T                  | LX = 90°  |
| QR = 1.5cm         | UV =1.0cm   | -  15<br>11<br>2/3        | ∠Q                  | LU = 90°  |
| RS = 4,2cm         | VW=2.8cm    | 3 4<br>36 3<br>11<br>12 3 | ∠R                  | LV = 135° |
| ST = 4.5 cm        | WX = 3.0    | 3/45                      | ∠S                  | LW = 45°  |

## **Example 3**

These two polygons are similar. Find the corresponding lengths.

$$3.35 \times 5$$
  $SF = 3.6 \text{ cm}$   $= 1.5 \times 5$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$   $= 1.8 \text{ cm} \times 1.5 = 2.7 \text{ cm}$ 

Marsh

## **Example 4**

These two quadrilaterals are similar. Find the length of JM.



$$SF = 20 = 2.5$$

$$JM = \frac{16}{2.5} = 6.4 \text{ cm}$$

# **Example 5** Identify any pairs of similar rectangles.



$$\frac{BC}{1.5}$$
  $SF = 2.4 = 1.6$ 

$$5.25 \, \text{cm} \times 1.6 = 8.4 \, \text{cm}$$

$$\begin{array}{c}
AC \\
SF = 2.5 \\
\hline
1.5 \\
= 1.6 \\
5.25 \times 1.6 = 8.74 \times
\end{array}$$

## **Example 6**

The two octagonal garden plots are similar.

(a) Determine the length of GH.  $(\chi)$ 



$$SF = \frac{811}{5.4} = \frac{scale}{original}$$

original
(b) Determine the length of NP. (y)

$$\frac{8.1 \times = (5.4)(32.4)}{8.1}$$

$$\times = 21.6 \text{ m}$$

$$(27)(81) = 4$$

$$y = 40.5 \, \text{m}$$