
Reputation-based dependable scheduling of workflow applications

in Peer-to-Peer Grids

Mustafizur Rahman a,*, Rajiv Ranjan b, Rajkumar Buyya a

aCloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computer Science and Software Engineering,

The University of Melbourne, Victoria 3010, Australia
b Service Oriented Computing (SOC) Research Group, School of Computer Science and Engineering, The University of New South Wales, Sydney, Australia

a r t i c l e i n f o

Article history:

Received 30 September 2009

Received in revised form 30 March 2010

Accepted 28 May 2010

Available online 15 July 2010

Responsible Editor: Qian Zhang

Keywords:

Grid computing

Workflow

Decentralized management

Dependable scheduling

Peer-to-peer computing

a b s t r a c t

Grids facilitate creation of wide-area collaborative environment for sharing computing or

storage resources and various applications. Inter-connecting distributed Grid sites through

peer-to-peer routing and information dissemination structure (also known as Peer-to-Peer

Grids) is essential to avoid the problems of scheduling efficiency bottleneck and single

point of failure in the centralized or hierarchical scheduling approaches. On the other hand,

uncertainty and unreliability are facts in distributed infrastructures such as Peer-to-Peer

Grids, which are triggered by multiple factors including scale, dynamism, failures, and

incomplete global knowledge.

In this paper, a reputation-based Grid workflow scheduling technique is proposed to

counter the effect of inherent unreliability and temporal characteristics of computing

resources in large scale, decentralized Peer-to-Peer Grid environments. The proposed

approach builds upon structured peer-to-peer indexing and networking techniques to cre-

ate a scalable wide-area overlay of Grid sites for supporting dependable scheduling of

applications. The scheduling algorithm considers reliability of a Grid resource as a statisti-

cal property, which is globally computed in the decentralized Grid overlay based on

dynamic feedbacks or reputation scores assigned by individual service consumers medi-

ated via Grid resource brokers. The proposed algorithm dynamically adapts to changing

resource conditions and offers significant performance gains as compared to traditional

approaches in the event of unsuccessful job execution or resource failure. The results eval-

uated through an extensive trace driven simulation show that our scheduling technique

can reduce the makespan up to 50% and successfully isolate the failure-prone resources

from the system.

Crown Copyright � 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

Grid computing enables the sharing, selection, and

aggregation of geographically distributed heterogeneous

resources, such as computational clusters, supercomput-

ers, storage devices, and scientific instruments. These re-

sources are under control of different Grid sites and

being utilized to solve many important scientific, engineer-

ing, and business problems.

Inter-connecting distributed Grid sites through peer-to-

peer routing and information dissemination structure (also

known as Peer-to-Peer Grids) is essential to avoid the

problems of scheduling efficiency bottleneck and single

point of failure in the centralized or hierarchical schedul-

ing approaches. Peer-to-Peer Grid (P2PG) model offers an

opportunity for every site to pool its local resources as part

of a single, massive scale resource sharing abstraction.

P2PG infrastructures are large, heterogeneous, complex,

uncertain and distributed.

1389-1286/$ - see front matter Crown Copyright � 2010 Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2010.05.016

* Corresponding author. Tel.: +61 3 8344 1355; fax: +61 3 9348 1184.

E-mail addresses: mmrahman@csse.unimelb.edu.au (M. Rahman),

rajiv@unsw.edu.au (R. Ranjan), raj@csse.unimelb.edu.au (R. Buyya).

Computer Networks 54 (2010) 3341–3359

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

In a P2PG, both control and decision making are decen-

tralized by nature and different system components (users,

services, application components) interact together to

adaptively maintain and achieve a desired system wide

behaviour. Furthermore, the availability, performance,

and state of resources, applications and services undergo

continuous changes during the life cycle of an application.

Thus uncertainty and unreliability are facts in P2PG infra-

structures, which are triggered by multiple factors, includ-

ing: (i) software and hardware failures as the system and

application scale that lead to severe performance degrada-

tion and critical information loss; (ii) dynamism (unex-

pected failure) that occurs due to temporal behaviours,

which should be detected and resolved at runtime to cope

with changing conditions; and (iii) lack of complete global

knowledge that hampers efficient decision making as re-

gards to composition and deployment of the application

elements.

The aforementioned challenges are addressed in this

paper by developing a novel self-managing [1] scheduling

algorithm for workflow applications that takes into ac-

count the Grid site’s prior performance and behaviour for

facilitating opportunistic and context-aware placement of

application components. The proposed scheduling algo-

rithm is fully dependable, as it is capable of dynamically

adapting to the changes in system behaviour by taking into

consideration the performance metrics of Grid sites (soft-

ware and hardware capability, availability, failure). The

dependability of a Grid site is quantified using a decentral-

ized reputation model, which computes local and global

reputation scores for a Grid site based on the feedbacks

provided by the scheduling services that have previously

submitted their applications to that site. In particular, this

paper contributes the following to the state-of-the-art in

the Grid scheduling paradigm:

A novel Grid scheduling algorithm that aids the Grid

schedulers such as resource brokers in achieving improved

performance and automation through intelligent and

opportunistic placement of application elements based

on context awareness and dependability.

Further, the effectiveness of this contribution is ap-

praised through:

(i) A comprehensive simulation-driven analysis of the

proposed approach based on realistic and well-

known application failure models to capture the

transient behaviours that prevails in existing

Grid-based e-Science application execution environ-

ments;

(ii) A comparative evaluation that demonstrates the

self-adaptability of the proposed approach in com-

parison to Grid environments where: (1) resource/

application behaviours do not change (i.e. no failure

occurs), therefore no self-management is required

and, (2) transient conditions exist but runtime sys-

tems and application elements have no capability

to self-adapt.

The remainder of this paper is organized as follows. The

related work that are focused on dependable application

scheduling, distributed reputation models and Grid work-

flow management is presented in next section. Section 3

provides a brief discussion related to key system models

with respect to overlay creation, application composition,

task failure and application scheduling. In Section 4,we pro-

vide the distributed reputationmanagement technique and

the algorithms related to proposed dependable scheduling

approach with example. Simulation setup, performance

metrics and key findings of the experiments performed

are analyzed and discussed in Section 5. Finally, we con-

clude the paper with the direction for future work.

2. Related work

The main focus of this section is to compare the novelty

of the proposed work with respect to existing approaches.

We classify the related research into three main areas:

2.1. Dependable scheduling

A recent work by Kim et al. [19] that advocates Content

Addressable Network [28], DHT based dynamic propaga-

tion and load-balancing in desktop Grids, suffers from per-

formance uncertainty and unreliability due to the lack of

context awareness in scheduling. A most recent proposal

on reputation-driven scheduling in the context of volun-

tary computing environments (desktop grids) has been

put forward by Sonnek et al. [31]. They consider a central-

ized system model, where a central server is assigned

responsibility for maintaining reliability ratings that form

the basis for assigning tasks to group of voluntary nodes.

Such centralized models for scheduling and reputation

management [2] present serious bottleneck as regards to

scalability of the system and autonomy of Grid sites. More-

over, these approaches are targeted on bag of tasks type of

application model, whereas our approach considers sched-

uling of workflow applications. Currently, Grid information

services [9], on which Grid schedulers [13] depend for re-

source selection, do not provide information regarding

how the resources have performed in the recent past (per-

formance history) or at what level they are rated by other

schedulers in the system as regards to QoS satisfaction.

2.2. Distributed reputation models

There has been considerable amount of research work

done in peer-to-peer (P2P) reputation systems to evaluate

the trustworthiness of participating peers. These reputa-

tion systems are targeted towards P2P file sharing

networks that focus on sharing and distribution of infor-

mation in Internet-based environments. The PowerTrust

model proposed by Zhou [39], utilizes single dimensional

Overlay Hashing Functions (OHFs) for: (i) aassigning score

managers for peers in the system and (ii) aggregating/com-

puting the global reputation score. These kinds of OHFs are

adequate if the search for peers/resources is based on sin-

gle keyword (such as file name) or where there is single

ordering in search values. However, OHFs are unable to

support (or support with massive overhead) searches con-

taining multiple keywords, range queries (such as search

for a Grid site that has: Linux operating system, 100

3342 M. Rahman et al. / Computer Networks 54 (2010) 3341–3359

processors, Intel architecture, and reputationP 0.5). The

EigentTrust model [17] suggested by Kamvar et al. also suf-

fers from the shortcomings mentioned above. To overcome

these limitations, in the proposed approach a d-dimen-

sional data distribution technique [26] is applied on the

overlay of peers for managing the information related to

complex searches and reputation values.

2.3. Grid workflow management

With the increasing interest in Grid workflows, many

Grid workflow systems such as Pegasus [10], Triana [34],

Oinn et al. [22], Litzkow et al. [20], Kepler [21], Yang

et al. [37], Gridbus [38] and Askalon [12] have been devel-

oped in recent years. Among these systems, in terms of

workflow scheduling infrastructure, SwinDeW-G and Tri-

ana utilize decentralized P2P based technique. However,

the P2P communication in SwinDeW-G and Triana is

implemented by JXTA protocol, which uses a broadcast

technique. In this work, we use a DHT (such as Chord)

based P2P system for handling resource discovery and

scheduling coordination. The employment of DHT gives

the system the ability to perform deterministic discovery

of resources and produce controllable number of messages

in comparison to using JXTA.

3. System models

3.1. Grid model

The proposed scheduling algorithm utilizes the P2PG

[27] model with regards to distributed resource organiza-

tion and Grid networking.

Definition 1. (Peer-to-Peer Grid): The P2PG, Gp = {S1,

S2, . . . ,Sn} consists of a number of sites n with each site

contributing its local resource to the Grid. Every site in

P2PG has its own resource descriptor Di which contains

definition of the resource that it is willing to contribute. Di

can include information about the CPU architecture, num-

ber of processors, memory size, secondary storage size,

operating system type, etc.

In this work, Di = (pi,ai,si,oi), which includes the number

of processors pi, processor architecture ai, their speed si,

and installed operating system type oi. In Table 1, the def-

initions for symbols that are utilized in this paper are

presented.

The application scheduling and resource discovery in

P2PG are facilitated by a specialized Grid Resource Man-

agement System (GRMS) known as Grid Autonomic Sched-

uler (GAS). Every contributing Grid site in P2PG maintains

its own GAS service. A GAS service is composed of three

software components: Grid Autonomic Manager (GAM),

Local Resource Management System (LRMS) and Grid Peer.

The GAM component of GAS exports a Grid site to the

outside world and is responsible for scheduling locally sub-

mitted jobs (workflows, parallel applications) in the P2PG.

Further, it also manages the execution of remote jobs

(workflows) in conjunction with the local resource man-

agement system. The LRMS software module can be real-

ized using systems such as SGE (Sun Grid Engine) [15]

and PBS [5]. Additionally, LRMS performs other activities

for facilitating Grid wide job submission and migration

process such as answering the GAM queries related to local

job queue length, expected response time, and current re-

source utilization status.

P2PG requires supporting technologies to enable scal-

able collaboration and communication between resources

and services across multiple Grid sites. For supporting

the required functions, it is mandatory to build some kind

of overlay network on top of the physical routing network.

To this end, the Grid peer (see Fig. 1) implements an over-

lay (infrastructure level core services) for enabling decen-

tralized and distributed resource discovery supporting

resources status lookups and updates across the P2PG. It

also enables decentralized inter-GAM collaboration for

optimizing load-balancing and distributed resource provi-

sioning. These core services are divided into a number of

Table 1

Notations: Grid, Reputation, Failure models and Metrics.

Symbol Meaning

Grid

n number of sites or GASs in the Grid system

Si i-th Grid site in the system

GASi i-th GAS in the system

ai processor architecture for resource at site Si.

pi number of processors for resource at site Si.

oi type of operating system for resource at site Si.

si processor speed for resource at site Si.

Reputation

succ(i, j,k) output of result verification function for task Tk of Sj
executed by Si.

feed(i, j,k)t feedback score of task Tk from Sj for Si after t

transactions.

NFi total number of negetive feedbacks given by other

sites for Si.

TFti transaction feedback value for Si after t transactions by

Si.

TFti;j transaction feedback value from Sj for Si after t

transactions.

GRt
i

global reputation of Si after t transactions.

LRt
i;j

local reputation of Si according to Sj after t

transactions.

MLR local reputation matrix.

MGR global reputation matrix.

LRinitial initial local reputation value of each site.

GRinitial initial global reputation value of each site.

Rth reputation threshold of a site for a task to be mapped

by scheduler.

srefresh time interval after which initial value is assigned to

reputation score of a site.

Failure

fpi task failing probability of Grid site Si.

X_Y failure distribution, where X% sites fail task with

probability between Y and Y + 0.1.

Metrics

Mi,j,k makespan of k-th workflow submitted by j-th user of

i-th Grid site.

Maverage average makespan per workflow in the system.

Fi number of tasks failed by site Si.

Ftotal total number of tasks failed in the system.

SCHi number of tasks scheduled by GASi.

SCHtotal total number of tasks scheduled in the system.

qMaverage ;Ftotal
Pearson’s correlation coefficient between Maverage and

Ftotal.

M. Rahman et al. / Computer Networks 54 (2010) 3341–3359 3343

sub-layers (refer to Fig. 1): (i) higher level services for dis-

covery, coordination, and messaging; (ii) low level distrib-

uted indexing and data organization techniques; and (iii)

self-organizing overlay that builds over Distributed Hash

Table (DHT) [32,28] routing structure.

A Grid Peer service accepts three basic types of objects

from the GAM service with regards to dependable and dy-

namic scheduling: (i) a claim, is an object sent by a GAM to

the DHT overlay for locating the resources that match the

user’s application requirements, (ii) a ticket, is an update

object sent by a Grid site, mentioning about the underlying

resource conditions, and (iii) a feedback, is an object sent by

a GAM regarding the reputation of a Grid site in the system

upon arrival of the output of a previously submitted task.

Examples of claim, ticket and feedback objects are shown

in Tables 2–4. In general, a Grid resource is identified by

more than one attribute (such as number of processors,

type of operating system, CPU speed); so a claim, ticket

or feedback object is always multi-dimensional. Further,

each of these objects can specify different kinds of con-

straints on the attribute values. More details on how these

objects are routed and mapped are given in Section 4.3.3.

3.2. Application model

In this work, we consider the Scientific workflow appli-

cations as the case study for the proposed scheduling ap-

proach. A Scientific workflow application can modeled as

a Directed Acyclic Graph (DAG), where the tasks in the

workflow are represented as nodes in the graph and the

dependencies among the tasks are represented as the di-

rected arcs among the nodes. In general, a task in a work-

flow is a set of instructions that can be executed on a single

processing element of a computing resource [7]. Examples

of such workflow applications are [4,35,30,11,24].

Definition 2. (Scientific Workflows): Scientific workflows

describe a series of large number of structured activities

and computations that arise in scientific problem solving.

Usually, scientific workflows are data or computation

intensive and the activities in the workflow have data or

control dependencies among them.

Example 1. Let, V be the finite set of tasks

{T1,T2, . . . ,Tx, . . . ,Ty,Tn} of a workflow and E be the set of

dependencies among the tasks of the form {Tx,Ty}, where

Tx is the parent task of Ty. Thus, the workflow can be repre-

sented as, W = {V,E}.

In a workflow, an entry task does not have any parent

task and an exit task does not have any child task. We also

assume that a child task can not be executed until all of its

parent tasks are completed. At any time of scheduling, the

task that has all of its parent tasks finished is called a ready

task.

3.3. Failure model

The Weibull distribution [18] is one of the most com-

monly used distributions in reliability engineering and

has become a standard in reliability textbook for modeling

time-dependant failure data. Therefore, in this work, we

use a 2-parameter weibull distribution to determine

whether a task execution is subject to failure or success

in the system. The 2-parameter weibull distribution is gen-

erally characterized by two parameters: shape parameter b

and scale parameter g. Fig. 2 shows the actual and weibull

distribution of the task execution time in the system.

After a task has finished its execution on a resource, the

execution time or the computational cost of that task is

measured. If it falls within a certain range of the weibull

distribution, then the task is considered as likely-to-fail.

A task execution may fail for various reasons (e.g. the

resource does not have appropriate libraries installed,

executables are outdated or the resource has been re-

Fig. 1. Layerd design of Peer-to-Peer Grid architecture.

Table 2

Claims stored with the coordination service at time t.

Time Claim ID sxi;j;k pxi;j;k axi;j;k oxi;j;k Rank

200 Claim 1 > 800 1 Intel Linux 0.2

350 Claim 2 >1200 1 Intel Linux 0.3

500 Claim 3 >700 1 Sparc Solaris 0.1

700 Claim 4 >1500 1 Intel Windows XP 0.4

Table 3

Ticket published to the coordination service at time t.

Time GFA ID si pi pi avail ai oi

900 GFA-8 1400 3 2 Intel Linux

Table 4

Feedbacks sent by different Grid sites to the coordination service.

Feedback

ID

From For User

ID

Workflow

ID

Task

ID

Score

002 S3 S1 1 1 4 1.0

040 S2 S9 1 2 6 0.5

100 S2 S9 1 2 9 0.42

251 S5 S10 1 3 89 0.5

3344 M. Rahman et al. / Computer Networks 54 (2010) 3341–3359

started before sending all the output files). Thus, whether a

task is likely to be failed is derived from weibull distribu-

tion and the logic for determining this is illustrated in

Fig. 3.

Next, if a task is likely-to-fail, then whether it will be

considered as a failed task further depends on the failure

probability fpi of the resource at site Si that has been as-

signed to execute the task. For this, we generate a uniform

random number between 0 and 1. If the value of this ran-

dom number is less than fpi, then the task is failed, other-

wise it is successful.

Definition 3. (Failure probability): Failure probability, fpi
is defined as the likelihood or chance that the resource at

Grid site Si will fail the execution of a workflow task that is

likely-to-fail in the system.

Example 2. Let us consider that failure probability of the

resource at Grid site S2 is 0.57. Hence, S2 will fail 57 of

the 100 likely-to-fail tasks assigned to it for execution.

4. Proposed methodology

4.1. Distributed reputation management

In this section, we propose the key methods related to

the distributed reputation management and its application

to dependable scheduling.

In a fully decentralized and distributed Grid overlay,

the P2P reputation system calculates the reputation score

for a Grid site Si by considering the opinions (i.e. feed-

backs) [39,17] from all the Grid sites 2 {S1,S2, . . . ,Sn},

who have previously interacted with Si. After a Grid site

Sj completes a transaction with another Grid site Si, Sj
provides its feedback for Si to the overlay, which is uti-

lized to compute the reputation of Si. This reputation va-

lue drives the future application scheduling decision

making in choosing Si for task execution. A Grid site,

which accumulates higher reputation in the system is

expected to be popular in the overlay. Over the period

of time, the distributed scheduling services (GASs) in

Fig. 3. Determination of tasks likely-to-fail based on the distribution of experimental and Weibull task execution time.

Fig. 2. Distribution of task execution time.

M. Rahman et al. / Computer Networks 54 (2010) 3341–3359 3345

the system are more likely to prefer that site in future

for placement of tasks. On the other hand, a Grid site

that performs badly over a period of time would accu-

mulate comparatively lower reputation and will eventu-

ally be shunted out of the system, i.e. would receive

none or very few job submissions from the schedulers

(GAS).

In the proposed approach, the overlay maintains two

reputation scores for each Grid site: (i) Global Reputation

(GR) and (ii) Local Reputation (LR). Here, the GAS service

(on behalf of local Grid site and users) rates the Grid sites,

to which it submits a task, after every successful transac-

tion (task completion) or unsuccessful transaction (task

failure) based on a feedback function, feed(i, j,k). The local

and global reputation scores for Grid sites are stored with-

in the distributed overlay in the form of local and global

reputation matrix. These values are recursively aggregated

from the feedback scores after each transaction and uti-

lized by the scheduling algorithm to dynamically quantify

the reliability of the sites.

4.1.1. Feedback generation

GAS services can use a variety of rating functions based

on system consensus for computing the feedback value.

Some of the example functions can include the model used

by eBay system. The reputation scheme in eBay is simple:

+ 1 for a good or successful transaction, � 1 for a poor or

failed feedback, and 0 for a neutral or don’t-care feedback.

In this model, the feedback score has three discrete values,

which evaluate the result of a transaction. However, this

model does not incorporate different types of behaviour

of the participating entities (e.g. an entity is failing transac-

tions of only a particular entity, an entity is failing transac-

tions only at the beginning or an entity is generating

successful and unsuccessful transactions alternately) into

the feedback score, which is required to be considered in

case of heterogeneous and dynamic resource sharing Grid

environments.

In our feedback model, the GAS service at site Sj com-

putes the feedback, feed(i, j,k) for a Grid site Si dynamically

after each transaction (i.e. Si completes execution of a task

Tk submitted by Sj). First, Sj verifies the output of a task re-

turned by Si using the result verification function suc-

cess(i, j,k) that assigns a value 2 {0,1}, where 0 represents

an unsuccessful/failed task execution and 1 represents a

successful task execution. A task execution may fail for

various reasons (e.g. the resource does not have appropri-

ate libraries installed, executables are outdated or resource

has been restarted before sending all the output files). The

result verification function is represented as,

successði; j; kÞ ¼
1 if task execution is sucessful

0 if task execution is failed

�

ð1Þ

Then Sj generates the feedback score based on the value

assigned by result verification function. If the assigned va-

lue is 1, feedback score is 1; on the other hand, if the as-

signed valued is 0 then the feedback score is calculated

from an exponential distribution. The output given by the

exponential function (refer to Fig. 4) is varied over the num-

ber of failed transactions between the corresponding two

Grid sites. The objective of using this exponential function

is to give a Grid site greater opportunity to execute tasks

at the beginning so that it is not shunted out of the system

after only few failed transactions. However, if a site contin-

ues to failmore transactions, the value for exponential func-

tion approaches 0. Thus, if Fi,j is the number of unsuccessful

task executions by Si with Sj, the feedback score for task Tk,

after t transactions by Si with Sj can be represented as,

feedði; j; kÞt ¼

1 if successði; j; kÞ ¼ 1

a
F

1
bf

i;j

f if successði; j; kÞ ¼ 0

8

>

<

>

:

ð2Þ

where, 0 < af 6 0.5 and bf 2 {1,2,3}.

If the feedback score given by a Grid site Sj is 1, we con-

sider it as Positive Feedback (PF), whereas a Negative Feed-

back (NF) is attained if feedback score is less than 1.

4.1.2. Global reputation calculation

The Global Reputation (GR) of a site is a statistical rep-

utation that is calculated by averaging all the feedbacks gi-

ven by the GAS services of other Grid sites for their tasks

executed at this site. Once the overlay receives a feedback,

it computes the Transaction Feedback (TF) for that feed-

back. The value of TF depends on whether the feedback is

positive or negative. If negetive feedback is received, TF is

same as the feedback value. However, if feedback is posi-

tive, the value of TF is computed from an exponential dis-

tribution (refer to Fig. 4), where the output value is varied

over the total number of negative feedbacks received by

the corresponding Grid site. The purpose of using this dis-

tribution is to allow a Grid site to accrue a higher value of

GR only if it executes more successful tasks than failed

tasks. So, if it fails very few transactions, the output of

the exponential function reaches 1 accordingly. Thus, if

NFi is the total number of negative feedbacks given by

other sites for Si, the transaction feedback value after t

transactions by Si can be calculated as,

TFt
i ¼

feedði; j;kÞt ifðnegative feedbackÞ or ðpositive feedback and NF i is 0Þ

ð1�apÞþa
NF

1
bp

i
p

8

<

:

9

=

;

� feedði; j;kÞt ifðpositive feedbackÞandðNF i >0Þ

8

>

>

<

>

>

:

ð3Þ

where, 0.5 6 ap < 1.0 and bp 2 {4,5,6}.

Fig. 4. The growth of atb over the number of transactions, t for different

values of b. Here, a = 0.5.

3346 M. Rahman et al. / Computer Networks 54 (2010) 3341–3359

The GR of a particular Grid site is calculated by taking

the average of aggregated TFs form other sites. Initially

GR is assigned a value GRinitial that is greater than or equal

to the reputation threshold Rth. Afterwards, it is dynami-

cally changed based on the TF computed after every trans-

action. Thus, GR of a Grid site, Si after total t number of

transactions with other sites is represented as,

GRt
i ¼

GRinitial if t ¼ 0
GRt�1

i
�tþTFt

i

ðtþ1Þ
if t > 0

(

ð4Þ

TheGR value of eachGrid site is stored in amatrix. At any

instance of time, the DHT-based distributed overlay main-

tains n � 1 global reputation matrix MGR (refer to Fig. 5(a))

for all the Grid sites Si 2 {1,2, . . . ,n} that is updated dynami-

cally after every transaction in the system. This MGR is uti-

lized by the distributed scheduler for mapping tasks to the

Grid sites based on their reputation values.

4.1.3. Local reputation calculation

Sometime, considering only GR of a Grid site for map-

ping tasks, cannot guarantee dependable scheduling. For

example, the resource at a site Si may fail tasks submitted

by only a particular Grid site Sj. In this case, as Sj success-

fully executes tasks submitted by other Grid sites, its GR

is high. So, the scheduler may still map the tasks submitted

by Sj to Si. Therefore, we introduce another reputation

score, Local Reputation (LR) for a Grid site.

Similar to GR, LR is calculated as an average of the feed-

back values except it considers feedbcks from only one Grid

site. TF for computing LR also follows the same function as

generating TF for GR. Therefore, ifNFi,j is the number of neg-

ative feedbacks given by Sj for Si after t transactions with Si,

the transaction feedback value can be calculated as,

TFt
i;j ¼

feedði; j;kÞt ifðnegative feedbackÞor ðpositive feedback and NF i is 0Þ

ð1�apÞþa
NF

1
bp

i;j
p

8

<

:

9

=

;

� feedði; j;kÞt ifðpositive feedbackÞand ðNF i > 0Þ

8

>

>

>

<

>

>

>

:

ð5Þ

where, 0.5 6 ap < 1.0 and bp 2 {4,5,6}.

Now, the LR of a Grid site, Si according to Sj, after t num-

ber of transactions with Sj is represented as,

LRt
i;j ¼

LRinitial if t ¼ 0
LRt�1

i;j
�tþTFt

i;j

ðtþ1Þ
if t > 0

(

ð6Þ

The LR values of each Grid site in regards to other sites

are kept in a n � n local reputation matrix MLR (refer to

Fig. 5(b)), which is stored in the overlay and updated

dynamically after every transaction between the corre-

sponding sites. Similar to MGR,MLR is also utilized by the

distributed scheduler for mapping tasks to the Grid sites

based on their reputation values.

An example scenario of local and global reputation cal-

culation in the distributed coordination space is depicted

in Fig. 6.

Fig. 5. Reputation matrix for three Grid sites (S1,S2,S3).

Fig. 6. Interaction among different Grid entities in reputation based dependable workflow scheduling approach.

M. Rahman et al. / Computer Networks 54 (2010) 3341–3359 3347

4.2. Distributed workflow management

In this section, we provide the description of the algo-

rithms that have been devised for task scheduling and re-

source provisioning in order to achieve reputation-based

workflow management.

4.2.1. Task scheduling

Here, we discuss about the task scheduling algorithm

(refer to Algorithm 1) that is undertaken by a GAS in

P2PG on arrival of a job or workflow. When a user sub-

mits a workflow application W, the GAS calculates the

priority of each task (line 4). Earliest Finish Time (EFT)

[36] heuristic is used to calculate task priorities by tra-

versing the task graph in Breadth First Search (BFS) man-

ner. Once the rank values are calculated, the GAS

generates Ready tasks in the TaskList based on the depen-

dency of each task and put them into the Ready TaskList

(line 5). Finally, GAS submits the Ready tasks for execu-

tion (line 6).

Further, when the GAS receives a notification message

from site Si stating task Tk has finished execution, it first

updates the dependency lists of the tasks that are depen-

dant on Tk (line 11); then it computes the Ready tasks at

that moment and submits those for execution (line

12,13). Next, it generates feedback for the transaction

with Si (line 15). In order to do that it first verifies the

output of Tk using the result verification function repre-

sented by Eq. (1) (line 18). If output of the function is

0, Fi,j is incremented by one (line 20). Then it calculates

the feedback score for this transaction by Eq. (2) (line

22).

Algorithm 1. Task scheduling at GAS

1: PROCEDURE: Event-User Workflow Submit

2: Input: Workflow W

3: begin

4: Calculate rank value for each task using EFT

heuristic

5: Generate Ready TaskList for W

6: Submit Ready tasks for execution

7: end

8: PROCEDURE: Event-Task Finish Notification

9: Input: Task Tk, Workflow W

10: begin

11: Update dependency list of each task in TaskList

12: Generate Ready TaskList for W

13: Submit Ready tasks for execution

14: end

15: PROCEDURE: Generate Feedback

16: Input: Task Tk, Site Si
17: begin

18: Verify output of Tk by (1)

19: if success(i, j,k) = 0 then

20: Fi,j Fi,j + 1

21: end if

22: Calculate feedback score for Tk by (2)

23: end

4.2.2. Resource provisioning

The details of the decentralized resource provisioning

algorithm (refer to Algorithm 2) that is undertaken by

the P2P coordination space is presented here. When a re-

source claim object rk arrives at the coordination service,

it is added to the existing claim list, ClaimList by the coor-

dination service (line 1–5). When a resource ticket object

ui arrives at coordination service, the list of resource

claims (ClaimListm) that overlap or match with the submit-

ted resource ticket object is computed (line 6–10) if global

reputation of that resource is greater than or equal to the

reputation threshold Rth. The overlap signifies that the

task associated with the given claim object can be

executed on the ticket issuer’s resource subject to its

availability.

Then the coordination service sorts the claim objects in

ClaimListm in descending order according to their rank va-

lue (line 11). From the ClaimListm, the resource claimers

are selected one by one based on their rank value (higher

rank first) and notified about the resource ticket match if

local reputation of ticket issuer against the resource clai-

mer is greater than or equal to Rth and until the ticket is-

suer is not over-provisioned (line 13–19).

When a feedback object is arrived at coordination ser-

vice, first it is decided whether the feedback is negetive

or positive. If feedback is negetive, NFi and NFi,j are incre-

mented by one (line 25–27). Then local and global reputa-

tion scores are calculated consequently (line 29,30).

Finally, the local and global reputation matrices that are

stored in coordination space are updated by the coordina-

tion service (line 31).

Algorithm 2. Resource provisioning at coordination space

1: PROCEDURE: Event-Claim Submit

2: Input: Claim rk
3: begin

4: ClaimList ClaimList [rk
5: end

6: PROCEDURE: Event-Ticket Submit

7: Input: Ticket ui from Resource Ri

8: begin

9: if GRiP Rth then

10: ClaimListm list of claims in ClaimList that

are matched with ui
11: Sort ClaimListm in descending order of task’s

rank

12: index 0

13: while Ri is not over-provisioned do

14: if LRi,jP Rth then

15: Send notification of match event to

resource claimer ClaimListm[index]

16: Remove ClaimListm[index]

17: index index + 1

18: end if

19: end

20: end if

21: end

22: PROCEDURE: Event-Feedback submit

3348 M. Rahman et al. / Computer Networks 54 (2010) 3341–3359

23: Input: Feedback from site Sj
24: begin

25: if feedback is negetive then

26: NFi NFi + 1

27: NFi,j NFi,j + 1

28: end if

29: Calculate TFi and TFi,j by (3) and (5)

30: Calculate GRi and LRi,j by (4) and (6)

31: Update MGR and MLR

32: end

4.2.3. Time complexity

This section analyses the computational tractability of

the approach by deriving several time complexity bounds

to measure the computational quality. Using the example

for Grid workflow application model, we analyse the com-

plexity of calculating task rank, feedback generation, and

reputation scores (see Algorithm 1). These complexities

are further aggregated to model a composite function that

represents the overall complexity.

We consider a P2PG infrastructure consisting of n

number of Grid sites. Every Grid site Si instantiates a ser-

vice GASi. This implies that there are total n number of

GAS services in the infrastructure that are continuously

injecting task to resource mapping requests in form of

Claim Objects (refer to line 1 in Algorithm 2). We assume

every user submits a workflow application consisting of T

number of tasks and E number of dependencies among

the tasks to its local GAS service. Then the complexity of

calculating rank values of all the tasks using EFT heuristic

through BFS is O(E + T) [8]. Further, if an adjacency list is

used to handle the dependencies, then the complexity of

generating Ready tasks and updating dependency list is

O(E) [8].

Next, we derive the time complexity of generating feed-

back in Algorithm 1 (lines 15–23). After a GAS service re-

ceives the output of a submitted task, it has to compute a

feedback score, which is required to be reported to coordi-

nation service. The feedback score calculation involves few

mathematical computation (see Eq. (2)); thus, it involves

constant complexity of O(1). Therefore, the overall time

complexity of Algorithm 1 is O(E + T).

In worst case, ClaimList in the Algorithm 2 can contain

n.T number of enteries. So the complexity of sorting the

ClaimList is O((n.T)log(n.T)) (through the implementation

of merge sort algorithm) and finding out the total number

of matches is O(n.T). Calculating the number of resource

claimers that has to be notified about the matches also re-

quires O(n.T) steps in worst case.

Every new feedback score submitted by GAS services

needs to be aggregated into global reputation score (using

Eq. (4)). Similar to feedback computation, updating global

reputation score also involves series of mathematical steps.

Hence, the overall complexity of computing or updating

global reputation score is constant, O(1).

Finally, the adjacency matrix also handles the reputa-

tion matrices. Here, updating MGR and MLR is bounded by

O(1) . Thus the overall complexity of Resource Provisioning

algorithm is O((n.T)log(n.T)).

4.3. Distributed overlay management

In order to create a collaborative environment and

achieve efficient and scalable resource lookup, P2P Grid

overlay is created and utilized in the proposed approach.

A Grid peer undertakes the following critical tasks related

to management of this overlay, which are important for

proper functioning of P2PG.

4.3.1. Overlay construction

The overlay construction refers to how Grid peers are

logically connected over the physical network. In this

work, we utilize Chord [32] as the basis for creation of Grid

peer overlay. A Chord overlay inter-connects the Grid peer

services based on a ring topology. Fig. 7 shows a Chord-

based Grid peer overlay. The objects and Grid peers are

mapped on the overlay depending on their key values.

Each Grid peer is assigned responsibility for managing a

small number of objects and building up routing informa-

tion (finger table) at various Grid peers in the network. In

Fig. 7, Grid peers including 2, 8, and 14 have a finger table

of size 4. The finger table aids in resolving the lookup re-

quest within acceptable bounds such as in O(log(n)) rout-

ing hops. The finger table is constructed when a Grid

peer joins the overlay, and it is periodically updated to take

into account any new joins, leaves or failures.

4.3.2. Multi-dimensional data indexing

Traditionally, Chord as well as other DHT overlays, such

as CAN [28], Pastry [29]) have been proved to be efficient

for indexing 1-dimensional data (e.g. find a Grid resource

that offers ”Pentium”processor).However, resourceshosted

by a Grid site are identified by more than one attribute;

thereby a claim or a ticket or a feedback object is always

multi-dimensional in nature. In order to support multi-

dimensional data indexing (processor type, OS type, CPU

speed) over Chord overlay, we have implemented a spatial

indexing technique [33].

The indexing techniquebuilds amulti-dimensional attri-

bute spacebasedon theGrid resourceattributes,whereeach

attribute represents a single dimension. An example 2-

dimensional attributespace that indexes resourceattributes

including Speed and CPU Type is shown in Fig. 7.

The attribute space resembles a grid like structure con-

sisting of multiple index cells. Each index cell is uniquely

identified by its centroid, termed as the control point. The

Chord hashing method (DHash(coordinates)) is used to

map these control points so that the responsibility for an

index cell is associated with a Grid peer in the overlay.

For example in Fig. 7, DHash(x1,y1)=k10 is the location of

the control point A (x1,y1) on the overlay, which is man-

aged by Grid peer 12.

4.3.3. Object mapping and routing

This process involves identification of index cells in the

attribute space to map a claim, ticket, or a feedback object.

For mapping claims, a mapping strategy based on diagonal

hyperplane of the attribute space is utilized. This mapping

involves feeding candidate claim index cells as inputs into

a mapping function, Imap(claim). This function returns the

IDs of index cells to which the given claim can be mapped

M. Rahman et al. / Computer Networks 54 (2010) 3341–3359 3349

(refer to step 7 in Fig. 7). Distributed hashing (DHash(cells))

is performed on these IDs, which returns keys for Chord

overlay to identify the current Grid peers responsible for

managing the given keys. Similarly, mapping of ticket

and feedback objects also involves the identification of

the cell in the attribute space using the same algorithm.

4.4. Scheduling example

This section provides an example scenario of the pro-

cess of task scheduling and distributed reputation manage-

ment. The key steps involved with the proposed scheduling

approach (see Fig. 8) are as follows:

1. A user submits his task to the local GAS service at site

Su.

2. Following this, the GAS inserts a claim object to the

DHT-based overlay to locate a dependable and available

Grid site (resource) that has reasonable reputation rat-

ing (above reputation threshold) in the system.

3. The GAS, GASs at site Ss submits a ticket object to the

overlay encapsulating the information about status

(availability) of the local resource.

4. The overlay undertakes the decentralized matchmaking

mechanism and discovers that the resource ticket issued

by Grid site Ss matches with the resource description

and reputation rating currently specified by claim object

inserted by site Su. Thus, a match notificationmessage is

sent to Su.

5. Next, GASu sends the task to site Ss. While the applica-

tion is being processed, GASu periodically monitors the

execution progress by sending IsAlive messages to Ss.

IsAlive messages allow the GAS services to detect the

hardware and network link failure related to the site Ss.

6. Once the execution of the task is finished, Ss returns the

output to GASu.

7. Finally, GASu performs the result verification for the

received output, computes the feedback score for Ss
and reports to the overlay. The feedback score is aggre-

gated to the local and global reputation scores for Ss
using the proposed decentralized and distributed repu-

tation model, described in this section.

5. Performance evaluation

5.1. Simulation setup

Our simulation infrastructure is created by combining

two discrete event simulators namely GridSim [6], and

PlanetSim [14]. GridSim offers a concrete base framework

Fig. 7. Overlay creation, data indexing, object mapping and routing: (1) A Grid site publishes ticket; (2) Grid peer 8 service computes the index cell,

C(x3,y3), to which the ticket maps by using mapping function IMap(ticket); (3) Next, distributed hashing function, DHash(x3,y3), is applied on the cell’s

coordinate values, which yields a overlay key, K14; (4) Grid peer 8 based on its finger table entry forwards the request to peer 12; (5) Similarly, peer 12 on

the overlay forwards the request to peer 14; (6) A GAS service submits a resource claim; (7) Grid peer 2 computes the index cell, C(x1,y1), to which the claim

maps; (8) DHash(x1,y1) is applied that yields an overlay key, K10; (9) Grid peer 2 based on its finger table entry forwards the mapping request to peer 12.

3350 M. Rahman et al. / Computer Networks 54 (2010) 3341–3359

for simulation of different kinds of heterogeneous re-

sources, services and application types. PlanetSim is an

event-based overlay network simulator that can simulate

both unstructured and structured overlays.

5.1.1. Workload configuration

In this study, we consider fork-join workflow (see Fig. 9)

and an example of such workflow is WIEN2K [4], which is a

quantum chemistry application developed at Vienna Uni-

versity of Technology. In this kind of workflow, forks of

tasks are created and then joined, such that there can be

only one entry task and one exit task. We vary the number

of tasks in a workflow from 100 to 500 during the experi-

ments and the size of each task is randomly generated

from a uniform distribution between 50000 MI (Million

Instructions) to 500000 MI. Further, we assume that work-

flows are computation intensive. Thus, the data depen-

dency among the tasks in the workflow is negligible. In

the Grid federation, each site has one user and each sub-

mits one workflow for execution.

5.1.2. Network configuration

The experiments run a Chord overlay with 32 bit config-

uration (number of bits utilized to generate node and key

ids). The total number of GAS/broker in the system is 64.

Further, network queue message processing rate is fixed

at 4000 messages per second and message queue size is

fixed at 104.

5.1.3. Resource claim and ticket injection rate

The GASs inject the ticket objects based on the exponen-

tial inter-arrival time distribution. The injection rate (i.e. re-

source update query rate) for the resource tickets is every

200 s [23]. At the beginning of the simulation, the resource

claims for the entry tasks of all the workflows in the system

are injected. Subsequently, when these tasks finish, then

the resource claims for the successive tasks in theworkflow

are posted. This process is repeated until all the tasks in the

workflow are successfully completed. Spatial extent of both

resource claims and ticket objects lie in a 4-dimensional

attribute space (an example is shown in Fig. 10). These

attribute dimensions include the number of processors, pi,

their speed, si, their architecture, ai, and operating system

type, oi. The distribution for these resource dimensions is

generated by utilizing the configuration of resources that

are deployed in various Grids including NorduGrid, Auver-

Grid, Grid5000, NaregiGrid, and SHARCNET [16].

5.1.4. Reputation configuration

The values of the parameters for configuring reputation

based scheduling in our experiment are listed in Table 5.Fig. 9. A fork-join workflow.

Fig. 8. Reputation-based dependable scheduling example. Grid sites p, l, s, and u are managed by their respective Grid Autonomic Scheduler services.

M. Rahman et al. / Computer Networks 54 (2010) 3341–3359 3351

5.1.5. Failure configuration

In our experiment, the values of weibull shape and scale

parameters b and g are 1.2 and 141 respectively, where the

mean execution time of a task in the system is equal to

141 s.

Along with this Weibull distribution, we also generate a

set of resource failure distributions, X_Y by incorporating

resource failure probability fp, where X represents the per-

centage of resources likely to fail tasks in the system and Y

represents the probability of failure. For instance, if X is 20

and Y is 0.4, then 20% of resources in the system may fail

tasks with the probability (fp) between 0.4 and 0.5. The re-

source failure distributions, we use in the experiment are

as follows:

X 0:1 : 0:1 6 fp < 0:2;X 0:3 : 0:3 6 fp < 0:4

X 0:5 : 0:5 6 fp < 0:6;X 0:7 : 0:7 6 fp < 0:8

X 0:9 : 0:9 6 fp < 1:0

Some example failure distributions are presented in

Tables 6 and 7.

5.2. Performance metrics

As a measurement of scheduling performance, we eval-

uate the following performance metrics:

Scheduling Efficiency:In order to determine the sched-

uling efficiency, we measure two values of the system: (i)

average makespan per workflow and (ii) total number of

tasks failed by all the Grid sites in the system.

Definition 4. (Makespan): Makespan is calculated as the

response time of a whole workflow, which is equal to the

difference between the submission time of the entry task

in the workflow and the output arrival time of the exit task

in that workflow.

Example 3. Let us consider that a user at Grid site Si wants

to execute a fork-join workflow illustrated in Fig. 9, con-

sisting of 11 tasks. If GASi submits a claim object for task

T1 to the overlay at time t1 = 20 s and the output of task

T11 is delivered to the user at time t2 = 1220 s, then the

makespan of this workflow is t2 � t1 = 1200 s.

The measurement of makespan is taken by averaging

over all the workflows in the system. If there are n number

of Grid sites and each site has u number of users with each

user submitting w number of workflows, then average

makespan per workflow in the system can be defined as,

Maverage ¼

P

1 6 i 6 n

1 6 j 6 u

1 6 k 6 w

Mi;j;k

n� u�w

If there are n number of Grid sites and site Si fails Fi
number of tasks, then the total number of tasks failed in

the system can be defined as,

Ftotal ¼
X

16i6n

F i

Scheduling complexity: It is measured as the total number

of tasks scheduled by all GASs in the system. If there are n

number of Grid sites and GASi schedules SCHi number of

tasks, then total number of tasks scheduled in the system

can be expressed as,

SCHtotal ¼
X

16i6n

SCHi

Pruning Efficiency:We consider pruning efficiency as the

degree to which the failure-prone resource are shunted out

of the system. We have measured total number of tasks suc-

cessfully executed and failed by the resource at each Grid

site in order to show the pruning efficiency.

5.3. Results and observations

In this section, we present the experimental results ob-

tained by simulating our reputation based dependable

Table 6

Example failure distributions (25_Y).

ResourceID 25_0.1 25_0.3 25_0.5 25_0.7 25_0.9

1 0 0 0 0 0

2 0 0 0 0 0

3 0.1542 0.3390 0.5013 0.7864 0.9662

4 0 0 0 0 0

Table 7

Example failure distributions (50_Y).

ResourceID 50_0.1 50_0.3 50_0.5 50_0.7 50_0.9

1 0 0 0 0 0

2 0.1787 0.3655 0.5352 0.7573 0.9614

3 0.1135 0.3719 0.5884 0.7117 0.9418

4 0 0 0 0 0

Fig. 10. 3-dimensional attribute space for resource configuration and

ticket data distribution.

Table 5

Reputation parameters.

Parameter Value Parameter Value

af 0.5 LRinitial 0.8

bf 2.0 GRinitial 0.8

ap 0.5 Rth 0.8

bp 5.0 srefresh 1000 s

3352 M. Rahman et al. / Computer Networks 54 (2010) 3341–3359

workflow scheduling approach and compare these with

that of other approaches. The experiments are conducted

with the aim at characterizing:

(i) the performance of proposed reputation based

dependable scheduling approach (Failure with Repu-

tation), compared to its alternatives, No Failure

(resources do not fail any task) and Failure without

Self-adaptation (some resources fail tasks and sched-

uler uses a simple rescheduling technique) with

respect to various performance metrics;

(ii) the impact of different resource failure distributions

and sizes of workflow on the performance of our

approach and of its alternatives;

(iii) the significance of reputation threshold (Rth) on the

performance of proposed reputation based schedul-

ing approach;

(iv) the performance of the exponential feedback func-

tion utilized in the proposed reputation based

scheduling approach.

The configuration of different parameters for all the

experiments are listed in Table 9.

5.3.1. Experiment 1: Measuring scheduling efficiency

Experiment 1.1 (Impact of failure distribution): Fig. 11

presents the results of scheduling efficiency of the pro-

posed reputation based scheduling approach against the

other approaches, Failure without Self-adaptation and No

Failure for different failure distributions. The total number

of tasks failed by all Grid sites, Ftotal for each of the three

approaches are depicted in Fig. 11(a) and (b) for different

failure distributions. As we can see from Fig. 11(a) that

when the failure probability of the resources is increased

(for example, from 0.1 to 0.9), Ftotal in Failure without Self-

adaptation is heavily increased accordingly.

This situation is further aggravated for 50_Y (refer to

Fig. 11(b)) since more resources are likely to fail tasks.

In contrast, our approach, Failure with Reputation can

strongly reduce the number of task failures in the system

irrespective of failure distributions. This happens due to

the reason that in this case, the resources with higher

failure probability are not assigned any task by the

schedulers as their reputation scores are decreased be-

yond the threshold Rth after few task failures. Therefore,

Ftotal in Failure with Reputation is not increased with the

increase in failure probability since those failure-prone

resources are always shunted out of the system after

few failures. For instance, total number of tasks failed

by all sites in Failure with Reputation is upto 96.8% and

96.5% less than that in Failure without Self-adaptation

for 25_Y and 50_Y respectively.

The average makespan per workflow, Maverage also

shows (see Fig. 11(c) and (d)) similar trend (upto 28%

and 50% makespan reduction for 25_Y and 50_Y respec-

tively) as reflected in total number of task failures since

if one task is failed, its child tasks can not be scheduled

and eventually the completion time of the whole workflow

is increased.

Experiment 1.2 (Impact of number of tasks in workflow):

Fig. 12 presents the results of scheduling efficiency of the

proposed reputation based dependable scheduling ap-

proach against the other approaches, Failure without Self-

adaptation and Failure for different sizes of workflow. The

results show that if the number of tasks in a workflow in-

creases, Maverage also increases for all the three approaches

since the overall workload on the system is increased. But

the impact is more evident for Failure without Self-

adaptation.

As we can see from Fig. 12(a) and (b), in case of Failure

without Self-adaptation, both Ftotal and Maverage are in-

creased rapidly with the increase in workflow size (num-

ber of tasks). This happens due to the reason that when

the workflow size is increased, average number of tasks

scheduled per resource in the system is also increased lin-

early as the number of Grid sites is not changed over time

in this experiment. This results in allowing the failure-

prone resources to fail more tasks. Thus, Ftotal and Maverage

in Failure without Self-adaptation show a piecewise linear

growth over the size of workflow.

However, in case of Failure with Reputation, when the

workload on the system is increased, resources with higher

reputation score get more tasks leaving the failure-prone

resources isolate. This results in less number of task fail-

ures in the system even in higher workload. Therefore,

with the increase in workflow size across the system, the

Table 8

Pearson’s correlation coefficient: Maverage vs. Ftotal.

Approach Exp 1.1

(25_Y)

Exp 1.1

(50_Y)

Exp

1.2

Exp 3

Failure with

Reputation

0.2073 �0.4202 0.9904 0.9382

Failure 0.9673 0.9973 0.9971 –

Table 9

Configuration for different experiments.

Parameter Experiment 1.1 Experiment 1.2 Experiment 2 Experiment 3 Experiment 4 Experiment 5

n 64 64 64 64 64 64

no. of tasks 100 100 to 500 100 100 100 100

task size (MI) 50000 to 500000 50000 to

500000

50000 to

500000

50000 to

500000

50000 to

500000

50000 to 500000

failure

distribution

25_0.1 to 25_0.9, 50_0.1 to

50_0.9

50_0.5 50_0.5 50_0.5 50_0.5 50_0.5

Rth 0.8 0.8 0.8 0.8 0.0 to 0.99 0.8

feedback

function

exponential exponential exponential exponential exponential exponential/

simple

M. Rahman et al. / Computer Networks 54 (2010) 3341–3359 3353

performance gain achieved in terms of Ftotal and Maverage by

applying the proposed approach is more evident. For

example, when the workflow consists of 500 tasks, Ftotal
in Failure with Reputation is 88.4% less than that in Failure

without Self-adaptation and the makespan reduction is

38.1% accordingly.

5.3.2. Experiment 2: Measuring scheduling complexity

Fig. 13 shows the total number of tasks scheduled by

GAS1 to GAS16 in the system for the failure distribution,

50_0.5. From the figure, it is evident that in case of Failure

without Self-adaptation, each GAS needs to schedule more

tasks than No Failure (where, GAS is not required to sche-

dule any extra task than the size of workflow), which in-

creases the load on the GAS accordingly. On the contrary,

in case of Failure with Reputation, the number of tasks

Fig. 11. Effect of failure distribution on the makespan of workflow and the total number of task failures in the system.

Fig. 12. Effect of workflow size on Ftotal and Maverage in the system (failure

distribution 50_0.5).

Fig. 13. Total number of tasks scheduled by the GAS in the system

(GAS1–GAS16) for failure distribution 50_0.5.

3354 M. Rahman et al. / Computer Networks 54 (2010) 3341–3359

scheduled by each GAS in the system is almost equal to

that of No Failure as very few tasks are failed in this ap-

proach. For example, GAS14 schedules 100 tasks in No Fail-

ure, 102 in Failure with Reputation, whereas in case of

Failure without Self-adaptation, it needs to schedule 216

tasks, which is 112% greater than that in Failure with Repu-

tation since 116 tasks, scheduled by GAS14 are failed by

the Grid sites.

As the other GASs in the system also show the similar

trend, the total number of tasks scheduled in the system,

SCHtotal for Failure with Reputation (6569) is much smaller

than that for Failure without Self-adaptation (8075).

5.3.3. Experiment 3: Measuring pruning efficiency

Fig. 14 illustrates the pruning efficiency of the proposed

scheduling technique. Fig. 14(a) and (b) shows the total

number of tasks successfully executed and failed by the re-

sources in Grid site 1 to Grid site 16 respectively for 50_0.5.

From the figures, we can realize that in Failure without Self-

adaptation, if a Grid site can execute task faster, it is as-

signed more tasks. Thus, the number of successful and

failed tasks by that site is high if it’s failure probability is

low and high respectively.

On the other hand, in case of Failure with Reputation,

number of successful tasks by a Grid site is high if it is fas-

ter and does not fail any task. If it fails task, although it can

execute task faster, it is not assigned any task further.

Therefore, total failed tasks by that resource becomes very

low. For instance, total failed tasks by resource R2 (with

0.59 failure probability and 3600 MIPS rating) is 152 in

Failure without Self-adaptation, whereas it is only 11 in Fail-

ure with Reputation. Fig. 14(c) shows how failure-prone re-

source R2 is shunted out of the system over the period of

time in our proposed reputation based scheduling

approach.

5.3.4. Experiment 4: Impact of reputation threshold

Fig. 15 shows the impact of reputation threshold (Rth)

on Ftotal and Maverage in the system for Failure with Reputa-

tion when failure distribution is 50_0.5. From the figure,

it is evident that when Rth is slightly higher than 0,Ftotal
and Maverage for Failure with Reputation are almost equal

to that for Failure without Self-adaptation. This happens

due to the reason that if Rth is very low then the reputation

based scheduling scheme is not able to isolate the failure-

prone resources with lower reputation score. Hence a con-

siderable amount of tasks are assigned to those resources

and Ftotal is increased eventually.

However, when the value of Rth is set a little bit higher

than 0, performance of the proposed reputation based

scheduling approach in terms of scheduling efficiency is

improved rapidly. Furthermore, with the increase of the

value of Rth, average makespan and total task failures for

Failure with Reputation gradually become almost equal to

that for No Failure. For example, when Rth is set to 0.2,

0.6 and 0.9,Ftotal for Failure with Reputation is 58.4%, 85.1%

and 92.6% less than that for Failure without Self-adaptation

respectively. Similarly, Maverage is also reduced by 15.8%,

23.0% and 26.6% if Rth is set to 0.2, 0.6 and 0.9, respectively.

5.3.5. Experiment 5: Performance of exponential feedback

function

Fig. 16 shows the significance of using exponential feed-

back functions on Ftotal and Maverage in the system when the

proposed approach, Failure with Reputation is employed. In

order to measure the performance, we compare our pro-

posed feedback function against a simple linear feedback

function available in the literature. From Fig. 15(a) and

(b), it is evident that using an exponential function for cal-

culating feedback results in reduced makespan and less

number of total task failures in compare to using a simple

linear feedback function. Although Maverage is not much

varied, we can see a significant improvement in terms of

Ftotal. For instance, in case of failure distribution 50_0.5,

when simple feedback function is used, 20% more tasks

are failed than using exponential feedback function.

5.4. Discussion and summary

The results from the experiments show that there is a

similarity of trend between the two performance metrics

Maverage and Ftotal. Thus, we have calculated the Pearson’s

Fig. 14. Effect of considering reputation on pruning failure-prone

resources (failure distribution 50_0.5).

M. Rahman et al. / Computer Networks 54 (2010) 3341–3359 3355

correlation coefficient [3] and plotted the relationship be-

tween these metrics in Fig. 17.

Definition 5. (Pearson’s correlation coefficient): Pearson’s

correlation coefficient qP,Q between two random variables

P,Qwith means lP,lQ and standard deviations rP,rQ is used

to measure the linear relationship between them. It is

defined as a quotient of the covariance of the two variables

and the product of their standard deviations:

qP;Q ¼
covðP;QÞ

rPrQ

¼
EððP � lPÞðQ � lQ ÞÞ

rPrQ

ð7Þ

where, lP = E(P) and rP
2 = E(P2) � E2(P).

The correlation is 1 when there is a positive linear

dependence and � 1 in case of negative linear dependence.

Zero indicates that there is absolutely no linear relation-

ship between the variables.

The Pearson’s correlation coefficient,qMaverage ;Ftotal
between

Maverage and Ftotal in the system for different experiments

conducted is listed in Table 8. From the table it can be

observed that except for Failure with Reputation in Experi-

ment 1, the values of qMaverage ;Ftotal
for both Failure with

Reputation and Failure without Self-adaptation are greater

than 0.9 in all other experiments. This indicates that there is

a high degree of positive correlation or linear dependence

betweenMaverage and Ftotal in the system. This happens due to

the reason that when a task is failed, the task that depends

on it’s output needs to wait for longer period of time to be

scheduled and executed. Therefore, the completion time of

exit task is delayed and makespan of the workflow is

increased, which indicates a linear relationship between

Maverage and Ftotal (see Fig. 17(b)–(d)).

However, in case of Failure with Reputation in Experi-

ment 1, workload is not heavy, Ftotal is small and failure-

prone resources are isolated quickly. Thus makespan of the

workflow is not increased over the resource failure prob-

ability although Ftotal is increase by a small margin. This

means that there is no clear relationship or correlation

between Maverage and Ftotal in such situation, which is

reflected in Fig. 17(a).

In summary, the above experimental and analytical

studies indicate the following:

(i) considering reputation of Grid sites/resources for

scheduling can increase the reliability of application

scheduling in P2PG and improve the efficiency of

distributed schedulers.

(ii) compared to Failure without Self-adaptation, Failure

with Reputation can effectively reduce application

completion time by avoiding potential task failures

through intelligent scheduling irrespective of failure

pattern of resources or workload on the system.

(iii) pruning efficiency of reputation based scheduling

approach can be improved by increasing the reputa-

tion threshold in the system.

(iv) there is a high degree of positive correlation between

makespan of workflow and total task failures in the

system.

Fig. 15. Effect of reputation threshold (Rth) on Ftotal and Maverage in the

system for Failure with Reputation (failure distribution 50_0.5).

Fig. 16. Significance of exponential feedback function on Ftotal andMaverage

in the system for Failure with Reputation (failure distribution 50_Y).

3356 M. Rahman et al. / Computer Networks 54 (2010) 3341–3359

6. Conclusion and future work

In this paper, we have presented a reputation based

dependable scheduling technique for workflow applica-

tions in Peer-to-Peer Grids. Using simulation, we have

measured the performance of the proposed scheduling

technique against two cases: Failure without Self-adaptation

and No Failure. The results show that our scheduling tech-

nique can reduce the makespan up to 50% and successfully

isolate the failure-prone resources from the system. Thus,

by applying the proposed reputation based scheduling

technique, not only context-aware and opportunistic

placement of workflow tasks is possible but also significant

performance gains are achievable (as analyzed in the pre-

vious section). Moreover, our results have practical impor-

tance since they highlight the fact that the schedulers,

which do not have the ability to self-adapt in dynamic Grid

conditions deliver degraded performance to application

workflows.

Thus, it is reasonable to conclude that developing self-

adapting Grid scheduling and application management

techniques is important to exploiting the realm of Grids.

Further, adapting to dynamic resource conditions aids in

coping with the unpredictability and uncertainty of Inter-

net-scale, multi-sites Peer-to-Peer Grids. In future, we in-

tend to focus on implementing this reputation based

dependable scheduling technique in real world P2PG sys-

tem such as Aneka Federation [25]. As this paper shows

that the variation in Rth has an impact on the system per-

formance, in our future work, we also endeavour to devise

an approach considering dynamic Rth, adjusted by the

scheduler.

Acknowledgements

This work is partially supported by Australian Research

Council (ARC) Discovery Project grant. The authors would

like to gratefully thank Xiaofeng Wang for his assistance

in formulating the distributed reputation model.

References

[1] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt, G.
Zhang, L. Zhen, M. Parashar, B. Khargharia, S. Hariri, AutoMate:
enabling autonomic applications on the grid. in: Proceedings of
Autonomic Computing Workshop, USA, June 2003.

[2] F. Azzedin, M. Maheswaran, Integrating Trust into Grid Resource
Management Systems. in: Proceedings of 31st International
Conference on Parallel Processing, Canada, 2002.

[3] N. Balakrishnan, C.R. Rao, Order statistics: Applications, Handbook of
Statistics 17 (1998).

[4] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Wien2k-
an augmented plane wave plus local orbitals program for calculating
crystal properties. Technical report, Vienna University of
Technology, Austria, 2001.

[5] B. Bode, D. Halstead, R. Kendall, D. Jackson, PBS: The portable Batch
Scheduler and the Maui scheduler on Linux clusters. in: Proceedings
of fourth Linux Showcase and Conference, Atlanta, USA, October,
2000.

[6] R. Buyya, M. Murshed, Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for
grid computing, Concurrency and Computation: Practice and
Experience 14 (13-15) (2002) 1175–1220. Wiley Press.

[7] E. Byun, Y. Kee, E. Deelman, K. Vahi, G. Mehta, J. Kim, Estimating
resource needs for time-constrained workflows, in: Proceedings of
fourth IEEE International Conference on eScience, USA, December,
2008.

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to algorithms,
MIT Press, 1990.

[9] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, Grid information
services for distributed resource sharing. in: Proceedings of the 10th

Fig. 17. Correlation between Ftotal and Maverage in the system.

M. Rahman et al. / Computer Networks 54 (2010) 3341–3359 3357

IEEE International Symposium on High Performance Distributed
Computing, USA, June, 2001.

[10] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.H. Su,
K. Vahi, M. Livny, Pegasus: Mapping scientific workflow onto the
grid. in: Proceedings of Across Grids Conference, Cyprus, 2004.

[11] L. Clementi et al., Services oriented architecture for managing
workflows of avian flu grid. in: Proceedings of Fourth IEEE
International Conference on eScience, USA, December, 2008.

[12] T. Fahringer et al., Askalon: A tool set for cluster and grid computing,
Concurrency and Computation: Practice and Experience 17 (2005)
143–169.

[13] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-G: A
computation management agent for multi-institutional grids. in:
Proceedings of 10th IEEE International Symposium on High
Performance Distributed Computing, USA, June, 2001.

[14] P. Garca, C. Pairot, R. Mondjar, J. Pujol, H. Tejedor, R. Rallo, Planetsim:
A new overlay network simulation framework. in: Proceedings of
Software Engineering and Middleware, Linz, Austria, 2004.

[15] W. Gentzsch, Sun Grid Engine: Towards Creating a Compute
Power Grid. in: Proceedings of first IEEE International Symposium
on Cluster Computing and the Grid, Brisbane, Australia, May,
2001.

[16] A. Iosup, Hui Li, Mathieu Jan, Shanny Anoep, C. Dumitrescu, Lex
Wolters, Dick Epema, The grid workloads archive, Future Generation
Computing Systems, Elsevier Press, Amsterdam, The Netherlands,
2009.

[17] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The Eigentrust
algorithm for reputation management in P2P networks. in:
Proceedings of 12th international conference on World Wide Web,
Hungary, 2003.

[18] D. Kececioglu, Reliability Engineering Handbook, vol. 1, Prentice
Hall, Inc., New Jersey, 1991.

[19] J. Kim, P. Keleher, M. Marsh, B. Bhattacharjee, A. Sussman, Using
content-addressable networks for load balancing in desktop grids.
in: Proceedings of 16th international symposium on High
performance distributed computing, USA, June, 2007.

[20] M. Litzkow, M. Livny, M. Mutka, Condor-a hunter of idle
workstations. in: Proceedings of eighth International Conference of
Distributed Computing Systems, IEEE CS Press, USA, June 1988.

[21] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A.
Lee, J. Tao, Y. Zhao, Scientific workflow management and the kepler
system, Concurrency and Computation: Practice and Experience,
Special Issue on Scientific Workflows (2005).

[22] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T.
Carver, K. Glover, M.R. Pocock, A. Wipat, P. Li, Taverna: A tool for the
composition and enactment of bioinformatics workflows,
Bioinformatics 20 (17) (2004) 3045–3054.

[23] M. Rahman, R. Ranjan, R. Buyya, Cooperative and decentralized
workflow scheduling in global grids. Future Generation Computing
Systems 26(5), Elsevier Press, Amsterdam, The Netherlands, 2010,
pp. 753–768.

[24] L. Ramakrishnan, M. Reed, J. Tilson, D. Reed, Grid portals for
bioinformatics. Renaissance Computing Institute, University of
North Carolina, USA.

[25] R. Ranjan, R. Buyya, Decentralized Overlay for Federation of
Enterprise Clouds, in: K. Li et al. (Eds.), Handbook of Research on
Scalable Computing Technologies, IGI Global, USA, 2009.

[26] R. Ranjan, L. Chan, A. Harwood, S. Karunasekera, R. Buyya,
Decentralized resource discovery service for large scale federated
grids. in: Proceedings of the third IEEE International Conference on
e-Science and Grid Computing, India, December, 2007.

[27] R. Ranjan, A. Harwood, R. Buyya, A case for cooperative and incentive
based coupling of distributed clusters, Future Generation Computer
Systems 24(4), Elsevier Press, Amsterdam, The Netherlands, 2008,
pp. 280–295.

[28] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Schenker, A scalable
content-addressable network. in: SIGCOMM ’01: Proceedings of the
2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, USA, 2001.

[29] A. Rowstron and P. Druschel, Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. in:
Proceedings of IFIP/ACM International Conference on Distributed
Systems Platforms, 2001.

[30] F. Schuller and J. Qin, Towards a workflow model for meteorological
simulations on the austriangrid. in: Proceedings of first Austrian
Grid Symposium, Schloss Hagenberg, Austria, December, 2005.

[31] J. Sonnek, A. Chandra, J. Weissman, Adaptive Reputation-Based
Scheduling on Unreliable Distributed Infrastructures, IEEE

Transactions on Parallel and Distributed Systems 18 (11) (2007)
1551–1564.

[32] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord:
A scalable peer-to-peer lookup service for internet applications. in:
Proceedings of ACM SIGCOMM Conference on Applications,
technologies, architectures, and protocols for computer
communications, USA, 2001.

[33] E. Tanin, A. Harwood, H. Samet, A distributed quad-tree index for
peer-to-peer settings, . in: Proceedings of 21st IEEE International
Conference on Data Engineering, Tokyo, Japan, 2005.

[34] I. Taylor, M. Shields, I. Wang, Resource management of triana p2p
services. Grid Resource Management, Netherlands, June 2003.

[35] D. Theiner, P. Rutschmann, An inverse modelling approach for the
estimation of hydrological model parameters, Journal of
Hydroinformatics (2005).

[36] H. Topcuouglu, S. Hariri, M.Y. Wu, Performance-effective and low-
complexity task scheduling for heterogeneous computing, IEEE
Transactions on Parallel and Distributed Systems 13 (3) (2002)
260–274.

[37] Y. Yang, J. Chen, J. Lignier, H. Jin, Peer-to-peer based grid workflow
runtime environment of swindew-g. in: Proceedings of third IEEE
International Conference on e-Science and Grid Computing, India,
December 2007.

[38] J. Yu and R. Buyya, A novel architecture for realizing grid workflow
using tuple spaces. in: Proceedings of fifth IEEE/ACM Workshop on
Grid Computing, IEEE CS Press, USA, 2004.

[39] R. Zhou, K. Hwang, PowerTrust: a robust and scalable reputation
system for trusted peer-to-peer computing, IEEE Transactions on
Parallel and Distributed Systems 18 (4) (2007) 460–473.

Mustafizur Rahman received BSc. in Com-

puter Science and Engineering from Bangla-

desh University of Engineering and

Technology (BUET), Dhaka, Bangladesh in

2004. He worked as a lecturer in Department

of Computer Science and Engineering at BUET

and research assistant at the University of

Melbourne, Melbourne, Australia. Currently,

he is with CLOUDS Lab and a PhD candidate in

Department of Computer Science and Soft-

ware Engineering at the University of Mel-

bourne. His research interest includes

scientific workflow management, scheduling in Grid, Cloud and P2P

systems, and autonomic computing. He has served as a reviewer for

journals including Future Generation Computer Systems and IEEE

Transactions on Automation Science and Engineering. He is a student

member of IEEE and IEEE Computer Society.

Dr. Rajiv Ranjan is a Senior Research Associ-

ate in the School of Computer Science and

Engineering, University of New South Wales

(UNSW). He has a PhD in Computer Science

and Software Engineering from the University

of Melbourne, which was awarded in 2009. He

also completed Bachelor of Computer Engi-

neering from North Gujarat University, India,

in 2002. Dr. Ranjan is broadly interested in the

emerging areas of cloud, grid, and service

computing. The main goal of his current

research is to advance the fundamental

understanding and state of the art of provisioning and delivery of appli-

cation services in large, heterogeneous, uncertain, and evolving distrib-

uted systems.

Dr. Ranjan has 26 refereed publications, in journals with high impact

factor (according to JCR published by ISI), in proceedings of IEEE’s/

ACM’s premier conferences and in books published by leading pub-

lishers. His h-index is 8, with a total citation count of 270. Dr. Ranjan

served as Guest Editor for leading distributed systems and software

engineering journals and recently joined the Editorial Board of Inter-

national Journal of Information Technology, Communications and Con-

vergence (Inderscience Publishers). He serves as the editor of IEEE TCSC

Newsletter.

3358 M. Rahman et al. / Computer Networks 54 (2010) 3341–3359

Dr. Rajkumar Buyya is Professor of Computer

Science and Software Engineering; and

Director of the Cloud Computing and Distrib-

uted Systems (CLOUDS) Laboratory at the

University of Melbourne, Australia. He is also

serving as the founding CEO of Manjrasoft Pty

Ltd., a spin-off company of the University,

commercializing its innovations in Grid and

Cloud Computing. He has authored and pub-

lished over 300 research papers and four text

books. The books on emerging topics that Dr.

Buyya edited include, High Performance

Cluster Computing (Prentice Hall, USA, 1999), Content Delivery Networks

(Springer, Germany, 2008), Market-Oriented Grid and Utility Computing

(Wiley, USA, 2009), and Cloud Computing: Principles and Paradigms

(Wiley, 2010). He is one of the highly cited authors in computer science

and software engineering worldwide (h-index = 48, g-index = 102,

12000 + citations).

Dr. Buyya has contributed to the creation of high-performance computing

and communication system software for Indian PARAM supercomputers.

He has pioneered Economic Paradigm for Service-Oriented Distributed

Computing and developed key Grid and Cloud Computing technologies

such as Gridbus and Aneka that power the emerging e-Science and e-

Business applications. Software technologies for Grid and Cloud com-

puting developed under Dr. Buyya’s leadership have gained rapid

acceptance and are in use at several academic institutions and commer-

cial enterprises in 40 countries around the world.

Dr. Buyya has led the establishment and development of key community

activities, including serving as foundation Chair of the IEEE Technical

Committee on Scalable Computing and four IEEE conferences (CCGrid,

Cluster, Grid, and e-Science). He has presented over 200 invited talks on

his vision on IT Futures and advanced computing technologies at inter-

national conferences and institutions in Asia, Australia, Europe, North

America, and South America. These contributions and international

research leadership of Dr. Buyya are recognised through the award of

”2009 IEEE Medal for Excellence in Scalable Computing” from the IEEE

Computer Society, USA. For further information on Dr. Buyya, please visit

his cyberhome: http://www.buyya.com.

M. Rahman et al. / Computer Networks 54 (2010) 3341–3359 3359

