Notes: ATOMS AND THE PERIODIC TABLE

Atomic Structure:

- _____: the smallest particle that has the properties of an element.
- From the early ______ concept of the atom to the modern atomic theory, scientists have built on and modified existing _____.

Atom Basics:

•Atoms are composed of a positively charged nucleus surrounded by an electron cloud.

-_____ (99% of atom's mass): uncharged neutrons and positively charged protons.

-_____: negatively charged electrons in constant motion creating a

"cloud" like a fan.

DEMOCRITUS:

• In _____, this Greek philosopher suggested that the universe was made of _____

"Atom" - Greek word meaning "______

JOHN DALTON:

Dalton's Atomic Theory:

—			
_			
_			
— _		 	
—			

THOMPSON AND MILLIKAN:

•As it turns out, the atom can be divided into _____

•Thompson and Millikan are given credit for the first discoveries relating to _____

RUTHERFORD:

•Rutherford discovered the _____

NIELS BOHR:

- In 1913, this Danish scientist suggested that electrons ______.
- In Bohr's model, electrons are placed in different _____ based on their ______

- By ______, Bohr's model of the atom no longer explained all observations. Bohr was correct about ______, but wrong about ______.
- Electrons occupy the ______ levels available.
- Energy ______ as distance from the nucleus ______.
- Electrons move in patterns of "______" around the nucleus.
- It is impossible to know both an electrons _____ and _____ at any moment in time.

ORBITALS:

- ORBITAL: the regions in an atom where there is a high ______ of finding electrons.
- _____ is the lowest energy orbital, and ______ is slightly higher

• _____ are the next two orbitals. They occupy even higher energy levels and take on more complex shapes than s & p

VALENCE ELECTRONS:

- Electrons in the outermost energy level are called ______.
- Valence electrons determine how an atom will ______.

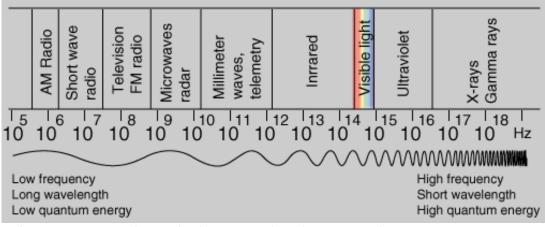
DMITRI MENDELEEV: 1834-1907

_____: created first periodic table of elements.

Arranged elements in order of increasing ______.

HENRY MOSELY: 1887 - 1915

One of _______ students. ______: Arranged the elements in order of increasing _______ (responsible for TODAY'S _______). PERIODICITY: regular variations (or patterns) of properties with increasing atomic number. Both


chemical and physical properties vary in a periodic (repeating) pattern.

- _____: horizontal row of elements on P.T.
- _____: vertical column of elements on P.T.

PERIODIC KEY	/:		# el	rotons = ectrons = eutrons =
ISOTOPES				
• Isotopes ar	e atoms that have the same # of	f		, but a different # of
• Example: Co	rbon-12 vs. Carbon-14			
¹² C	Mass # =; Atomic # =	(P,	E,	N)
^{14}C	Mass # =; Atomic # =	(P,	E,	N)
IONS				
•	: the process of adding or	removing ele	ctrons	from an atom or group of atoms.
• An	has a net		·	
• <u>Cation:</u> ion v	vith a	charge.	Ex:	
• <u>Anion:</u> ion w	ith a	_ charge.	Ex:	
ELECTRON DO)T DIAGRAMS: (diagram of vale	nce electron	s)	
Standard form	: Example	: oxygen		Example: chlorine

DETERMINING # OF PROTONS, NEUTRONS, AND ELECTRONS FROM CHEMICAL SYMBOLS:

<u>Example 1:</u>		<u>Example 2:</u>	
# protons =	14	# protons =	15
#electrons=	C	# electrons =	₇ N ³⁻
#neutrons=	6	# neutrons =	1

• Electromagnetic radiation (radiant energy) is characterized by its: -wavelength (color):

-frequency (energy):

• They are related by the equation:

where $c = 3.00 \times 10^8$ m/s (the speed of light in a vacuum)

<u>Wavelength</u> =

Diagram of a Wave:

Frequency =

<u>Example</u>: The frequency of violet light is 7.31×10^{14} Hz, and that of red light is 4.57×10^{14} Hz. Calculate the wavelength of each color.

• When sunlight or white light is passed through a prism, it gives the <u>continuous spectrum</u> observed in a rainbow.

- We can describe light as composed of particles, or **PHOTONS**.
- Each photon of light has a particular amount of energy (a **<u>quantum</u>**).
- The amt. of energy possessed by a photon depends on the color of the light.
- The energy of a photon is given by this equation:

where $h = 6.6262 \times 10^{-34} \text{ J} \cdot \text{s}$ and v = frequency (Hz) **Example:** Calculate the energy, in joules, of an individual photon of violet and red light.

What does this have to do with electron arrangement in atoms?

• When all electrons are in the lowest possible energy levels, an atom is said to be in its GROUND STATE.

• When an atom absorbs energy so that its electrons are "boosted" to higher energy levels, the atom is said to be in an **EXCITED STATE**.

• The light emitted by an element when its electrons return to a lower energy state can be viewed as a **bright line emission spectrum**. (see figure 6.3 on page 147)

• The light absorbed by an element when white light is passed through a sample is illustrated by the **absorption spectrum**.

Note: The wavelengths of light that are absorbed by the gas show up as black lines, and are equal to the wavelengths of light given off in the emission spectrum.

Why?

• Electronic energy is **<u>quantized</u>** (only certain values of electron energy are possible).

• When an electron moves from a lower energy level to a higher energy level in an atom, energy of a characteristic frequency (wavelength) is **absorbed**.

• When an electron falls from a higher energy level back to the lower energy level, then radiation of the same frequency (wavelength) is <u>emitted</u>.

• The bright-line emission spectrum is unique to each element, just like a fingerprint is unique to each person. *see figure 6.3, p. 147 - Harcourt text (honors only)

<u>Example</u>: A green line of wavelength 486 nm is observed in the emission spectrum of hydrogen. Calculate the energy of one photon of this green light.

<u>Example</u>: The green light associated with the aurora borealis is emitted by excited (high-energy) oxygen atoms at 557.7 nm. What is the frequency of this light?

Notes: Electron Configurations

• The quantum mechanical model of the atom predicts energy levels for electrons; it is concerned with the probability, or likelihood, of finding an electron in a certain position.

- Regions where electrons are likely to be found are called orbitals. EACH ORBITAL CAN HOLD UP TO 2 ELECTRONS!
- In quantum theory, each electron is assigned a set of quantum numbers (*analogy: like the mailing address of an electron)

1) Principal Quantum Number ():

- · describes the energy level that the electron occupies
- n = 1, 2, 3, 4

• the larger the value of n, the farther away from the nucleus and the higher the energy of the electron.

2) Sublevels ():

• the # of sublevels in each energy level = the quantum #, n, for that energy level.

• sublevels are labeled with a # that is the principal quantum #, and a letter: s, p, d, f (ex: 2p is the p sublevel in the 2^{nd} energy level)

Principal Energy Level	Sublevels	Orbitals	

Sublevel	# of orbitals	Max. # of electrons

3) spin quantum number ():

labels the orientation of the electron;

• electrons in an orbital spin in opposite directions; these directions are designated as $+\frac{1}{2}$ and $-\frac{1}{2}$

<u>**Pauli Exclusion Principle**</u>: states that no 2 electrons have an identical set of four quantum #'s; ensures that no more than 2 electrons can be found within a particular orbital.

<u>Hund's rule</u>: orbitals of equal energy are each occupied by one electron before any pairing occurs. (repulsion between electrons in a single orbital is minimized)

All electrons in singly occupied orbitals must have the same spin; when 2 electrons occupy an orbital they have opposite spins.

Orbital diagrams:

-each orbital is represented by a box -each electron is represented by an arrow

hydrogen:

helium:

carbon:

Electron configurations: an abbreviated form of the orbital diagram.

helium:

boron:

neon:

aluminum:

uranium:

Abbreviated electron configurations: an abbreviated form of the electron configuration.

helium:	N ³⁻ ∶
boron:	Se ²⁻ :
aluminum:	M g²+ :
cobalt:	
uranium:	

PERIODIC GROUPS:

<u>Alkali Metals</u>

•	Group on the periodic table.	
•		
•	Readily combine with	
•	Tendency to	
Alkali	ne Earth Metals	
•	Group on the periodic table.	
•	Abundant metals	
•	Not as reactive as	
•	Higher and	than alkali metals
Frans	ition Metals	
•	Groups on the periodic table.	
•	Important for living organisms	
lalog	ens	
•	Group on the periodic table.	
•	"" combines with groups and _	to form salts (ionic bonds)
loble	Gases	
•	Group on the periodic table.	
•		
•		
anth	anides	
•	Part of the "	"
•		
•	readily in air	
•	React slowly with	
Actini		
•		

PERIODIC TRENDS

1) Atomic Radii:

- Trend:_____
- ・Why?

The atomic radius gets bigger because electrons are added to energy levels farther away from the nucleus.

PLUS, the inner electrons shield the outer electrons from the positive charge ("pull") of the nucleus; this is known as the <i>SHIELDING EFFECT.

- Trend: _____
- Why?

As the # of protons in the nucleus increases, the positive charge, and as a result, the "pull" on the electrons, increases.

2) Ionization Energy: energy required to remove an outer electron

- Trend: _____
- Why?

Electrons are in a higher energy levels as you move down a group; they are further away from the nucleus, and thus easier to remove.

• Trend: _____

• Why?

The increasing charge in the nucleus as you move across a period exerts greater "pull" on the electrons; it requires more energy to remove an electron.

<u>3) Ionic Radii</u>

<u>4)</u> Electronegativity: the tendency of an atom to attract electrons to itself when chemically combined with another element.

- Trend: _____
- Why?

Although the nuclear charge is increasing, the larger size produced by the added energy levels means the electrons are farther away from the nucleus; decreased attraction, so decreased electronegativity; plus shielding effect.

- Trend: _____
- Why?

Nuclear charge is increasing, atomic radius is decreasing, so the attractive force that the nucleus can exert on another electron increases.