| Biology Cornell Notes: "Macromolecules" DATE: | | | |---|--|--| | STUDY QUESTIONS: | NOTES: Organic Chemistry | | | What are the 6 elements living things are made of? (DOK1) | All living things are mostly composed of 6 elements: Compounds are broken down into 2 general categories: Compounds: Do not contain carbon compounds Contain significant amounts of carbon. Often found with common "functional groups" | | | Why is carbon such a unique element? (DOK2) | Carbon Carbon has in outer shell. Carbon can form bonds with as many as 4 other atoms (elements). Usually with Example: CH4(methane) | | | Compare and contrast polymers and monomers. (DOK3) | Macromolecules • | | | | Macromolecules are formed from • Also called "condensation reaction" • Forms polymers by combining monomers by "". HO HO HO H Macromolecules are broken down by • Separates monomers by "" HO HO H HO H | | | | Carbohydrates Carbohydrates are made from like: glucose and fructose. • Carbohydrates • Examples: A. monosaccharide B. disaccharide C. polysaccharide | | | Biology Cornell Notes: "Macromolecules" DATE: | | | |---|---|--| | STUDY QUESTIONS: | Monosaccharide:sugar unit | | | | Examples:sugar unit | | | | Examples: | | | | Examples:sugar units | | | | Examples: | | | Lipid | de | | | Lipit | Not in water (do not dissolve). | | | | • Functions: | | | | Store the most energy | | | | Make up cell membranes | | | | Act as chemical messengers (hormones)Protect and insulate | | | | Examples: | | | | •: composed of 1 glycerol and 3 fatty acids. | | | | There are two kinds of fatty acids you may see these on food | | | | labels: | | | | fatty acids: no double bonds (bad) fatty acids: double bonds (good) | | | | 2. <u>latty delas.</u> dooble bottas (good) | | | Prot | reins | | | | • Functions of proteins: | | | | 1. Storage: albumin (egg white) | | | | 2. Transport: hemoglobin3. Regulatory: hormones | | | | 4. Movement: muscles | | | | 5. Structural: membranes, hair, nails | | | | 6. Enzymes: cellular reactions | | | | Four levels of protein structure: | | | | 1. Primary Structure: | | | | Secondary Structure: Tertiary Structure: | | | | 4. Quaternary Structure: | | | | | | | Nuc | cleic Acids | | | | Carry the to make proteins.Two types: | | | | 1. Deoxyribonucleic acid (double helix) | | | | 2. Ribonucleic acid (single strand) | | | | Nucleic acids are composed of long chains of | | | | linked by dehydration synthesis. | | | | Nucleotides include: phosphate group, pentose sugar (5-carbon)
nitrogenous bases: adenine (A), thymine (T) DNA only, uracil (U) | | | | RNA only, cytosine (C), guanine (G) | | | | (C), godinio (C) | | | <u>SUMMARY</u> : | | | | | | | | | | | | | | | | | | |